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Supplemental Material for

“Correlators exceeding 1 in continuous measurements of superconducting qubits”

I. EXPERIMENTAL DETAILS

A. Setup and parameters

We have performed continuous quantum measurement
of the qubit observable σz using the typical circuit QED
setup, illustrated in Fig. 1 of the main text, generally sim-
ilar to Ref. [S1] (though with important modifications).
We use a 3D microwave cavity whose fundamental mode
is dispersively coupled to a transmon qubit. The weakly-
coupled input port is used to inject the Rabi drive and
the readout tone. The stronger-coupled output port is
used for the outgoing field. An additional cancellation
tone (injected through circulator) displaces the outgoing
field close to the vacuum, thus preventing saturation of
the amplifier (the saturation becomes a serious problem
for large angles ϕa).

The cavity frequency is 6.66 GHz and the qubit fre-
quency is 4.26 GHz (the same as in Refs. [S2, S3]). The
cavity mode decays with the rate κ/2π = 7.2 MHz, the
qubit relaxation times are T1 = 60µs and T ∗2 = 30µs.
For qubit measurement, the cavity is coherently driven,
causing the measurement-induced ensemble dephasing,
which greatly exceeds intrinsic qubit dephasing. The
resulting ensemble dephasing rate is Γ = 1/1.8µs =
2π × 88 kHz (for the results presented below in Sec.
I D, Γ = 1/1.6µs). The amplifier half-bandwidth is
Bamp/2π ' 10 MHz. The detection quantum efficiency
is η = 0.44.

For measurement of correlators, the qubit is prepared
in the states x0 = ±1, and then we apply the Rabi ro-
tation about x-axis with frequency ΩR/2π = ±1 MHz
(there are four combinations). The output signals from
the continuous measurement are recorded for the dura-
tion of 4.88µs with a timestep of 4 ns; after an additional
averaging, the timestep is increased to ∆t = 40 ns. We
use only the traces, selected by heralding the ground state
of the qubit at the start of a run and checking that the
transmon qubit is still within the two-level subspace after
the run [S3] (this eliminates about 25% of traces).

Experimental parameters satisfy the relation Γ �
|Ωr| � κ . Bamp. This justifies the white noise and
the “bad cavity” assumptions needed for the quantum
Bayesian formalism [S4, S5]. Since 1/2T1Γ = 0.015� 1,
we can neglect energy relaxation in the analysis.

B. Calibration of response

The response ∆I(ϕa) is calibrated for each angle ϕa

between the amplified quadrature and the informational
(maximum response) quadrature. For this calibration,
the qubit is initialized in the state |1〉 (zin = 1) or |0〉

FIG. S1. Calibration of the detector response ∆I(ϕa) for
ϕa = 0 and 70◦. Detector response is obtained as the slope
of the linear fit (dashed lines) to experimental results for
〈I+(t)〉 − 〈I−(t)〉, depicted by circles. We find ∆I(0) = 2.01
and ∆I(70◦) = 0.66.

(zin = −1) and then continuously measured with no
Rabi oscillations applied. For each initial state, we col-
lect about 17,000 traces of the continuous (digitized with

∆t) output signal Ĩ(t), each of 4 µs duration. Units of

Ĩ(t) are arbitrary, but always the same (same gain of the
amplifier).

To find the response ∆I(ϕa), for each trace we numer-
ically calculate the integral

I±(t) =

∫ t

0

Ĩ±(t′) dt′, (S1)

where the subscript ± corresponds to initial state zin =
±1, and then average over the ensemble of traces to get
〈I±(t)〉. The difference 〈I+(t)〉 − 〈I−(t)〉 for ϕa = 0 and
ϕa = 70◦ is shown in Fig. S1. From the slope of these
practically straight lines, we find the response ∆I(ϕa) =
d[〈I+(t)〉 − 〈I−(t)〉]/dt. Note that we use only initial
0.6 µs of the process, because for a significantly longer
integration there is a noticeable deviation from straight
lines due to energy relaxation. From the slopes of lines in
Fig. S1, we obtain the responses ∆I(0) = ∆Imax = 2.01
and ∆I(70◦) = 0.66. This confirms the expected relation
∆I(ϕa) = ∆Imax cosϕa within 3% inaccuracy.

To find the quantum efficiency η (even though we do
not actually need it for the correlators), we first obtain
the “measurement time” τm as τm(ϕa) = [2/∆I(ϕa)]2 ×
dσ2(t)/dt, where the variance σ2(t) = σ2

±(t) ≡ 〈I2
±(t)〉 −

〈I±(t)〉2 should theoretically be independent of ϕa and
zin. Figure S2 shows that indeed σ2

+(t) ≈ σ2
−(t), and

they are almost the same for ϕa = 0 and ϕa = 70◦, so
we practically have one straight line. From the linear fit,
dσ2(t)/dt = 2.06µs, we obtain τm(0) = τmin ≈ 2.04µs
and τm(70◦) = 18.9µs. Therefore, the quantum efficiency
is η = (2Γτmin)−1 = 0.44.
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FIG. S2. The variance σ2
±(t) ≡ 〈I2±(t)〉 − 〈I±(t)〉2 as a func-

tion of the integration time t. Circles show σ+, crosses show
σ−, blue symbols are for ϕa = 0, red symbols are for ϕa = 70◦.
All four cases can be fitted by one straight (dashed) line with
slope dσ2(t)/dt = 2.06µs, which gives τm(0) = 2.04µs and
τm(70◦) = 18.9µs.

C. Correlators

For measurement of correlators, the qubit is prepared
at time t0 = 0 in the pure state r0 = (±1, 0, 0) and then
is Rabi-rotated about x-axis with frequency ΩR/2π =
±1 MHz (four combinations), while being continuously
measured along z-axis. The ensemble-averaged evolution
is supposed to change (decrease) only x component of
the qubit state, while z and y components should remain
zero on average. We obtain experimental correlators as

K(τ) =
1

T

∫ tskip+T

tskip

〈
Ĩ(t1)− 〈Ĩ(t1)〉

∆I(ϕa)

× Ĩ(t1 + τ)− 〈Ĩ(t1 + τ)〉
∆I(ϕa)

〉
dt1, (S2)

where the averaging time is T = 0.28µs (to reduce fluc-
tuations) and the discarded initial duration is tskip =
0.28µs (to avoid initial transients in the data). Note
that both T and tskip are small in comparison with
1/Γ = 1.8µs and duration of 4.88 µs of the recorded
traces.

Since on average z(t) = 0 for x0 = ±1 and Rabi ro-

tation over x-axis, the average 〈Ĩ(t)〉 in Eq. (S2) should

theoretically be a constant offset Ĩo. However, this is not
exactly the case in the experiment, as seen from Fig. S3,
which shows 〈Ĩ(t)〉 for all four combinations of x0 and ΩR

in the case ϕa = 70◦. Besides the overall shift, Ĩo ' −0.4,
we see small periodic features, the reason for which is
unclear. Note that the size of these features (' ±0.1) is
small in comparison with the response (0.66) and noise in
an individual trace (σ∆t ≈ 6); however, they still slightly

affect the correlators. This is why we subtract 〈Ĩ(t)〉 in

Eq. (S2) instead of subtracting a constant offset Ĩo, in
order to remove the fluctuating offsets. Moreover, we
calculate 〈Ĩ(t)〉 in Eq. (S2) by averaging over a relatively
small number of neighboring runs (about 3,000), in order

Rabi frequency:  
ΩR/2𝜋 = 1MHz (blue), −1MHz (red)
Initial state: 
𝑥0 = 1 symbol + ,−1

〈ሚ 𝐼
(𝑡
)〉
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FIG. S3. The offset 〈Ĩ(t)〉 for the initial state x0 = 1 (crosses)
or x0 = −1 (triangles) and Rabi frequency ΩR = 1 MHz
(blue symbols) or −1 MHz (red symbols). The data points
are separated by ∆t = 40 ns.

to account for offsets, slowly fluctuating in time. Figure
S3 also explains why we use tskip = 0.28µs, i.e., skip first
seven data points, for which some transient process is
easily noticeable.

To calculate the theoretical result for the two-time cor-
relator, we use Eq. (20) of the main text with r(t1−0) =
(e−Γt1x0, 0, 0). Solving the ensemble-averaged qubit evo-
lution (energy relaxation is neglected), we obtain the cor-
relator

K(t1, t1 + τ) =

[
cos(Ω̃Rτ) +

Γ

2Ω̃R

sin(Ω̃Rτ)

]
e−Γτ/2

+x0 e
−Γt1

tanϕa ΩR

Ω̃R

sin(Ω̃Rτ) e−Γτ/2, (S3)

where Ω̃R =
√

Ω2
R − Γ2/4. To perform the additional

integration over t1 in Eq. (S2), we notice that t1 enters
Eq. (S3) only via the factor e−Γt1 in the second term.
Therefore, the only change in Eq. (S3) is the replacement

x0 → c x0, c = e−Γtskip
1− e−ΓT

ΓT
. (S4)

Thus we obtain Eq. (23) of the main text,

K(τ) =

[
cos(Ω̃Rτ) +

Γ

2Ω̃R

sin(Ω̃Rτ)

]
e−Γτ/2

+c x0 tanϕa
ΩR

Ω̃R

sin(Ω̃Rτ) e−Γτ/2. (S5)

Figure S4 shows experimental results (symbols) and
analytics (lines) for the correlators K(τ) for ϕa = 70◦

in the four cases: for Rabi frequency ΩR/2π = 1 MHz
(upper panel) or −1 MHz (lower panel) and initial state
x0 = 1 (blue circles and blue lines) or x0 = −1 (red
crosses and red lines). There is a good agreement be-
tween the theory and experiment in all the four cases.
In Fig. 3(a) of the main text we present the same re-
sults, additionally averaged over two cases with the same
product ΩRx0.
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FIG. S4. Experimental correlators (symbols) and analytics
(lines) for the four cases with ΩR/2π = ±1 MHz and x0 =
±1. The amplified-quadrature angle determining the phase
backaction is ϕa = 70◦, time-averaging parameters are T =
0.28µs and tskip = 0.28µs, ensemble averaging is over 3.2×105

traces in each case.

D. Correlators for other angles ϕa

We have also measured the correlators for angles ϕa =
0, 40◦, and 80◦. This was done on a different date com-
pared with the results presented in Sections I B, I C, and
in the main text, so parameters are slightly different.
In particular, the qubit ensemble dephasing rate dur-
ing measurement is Γ = 1/1.6µs (a slightly higher mi-
crowave power for measurement). The detector responses
are ∆I(0) = 2.3, ∆I(40◦) = 1.75, and ∆I(80◦) = 0.44.
The relation ∆I(ϕa) = ∆Imax cos(ϕa) is satisfied with
1% inaccuracy for 40◦ and with 10% inaccuracy for 80◦

(inaccuracy grows with decrease of the SNR).

Figure S5 shows the experimental correlators (sym-
bols) and theoretical results (lines) for the angles ϕa =
0, 40◦ and 80◦. We use ΩR/2π = 1 MHz (only one di-
rection) and x0 = ±1, the time-integration parameters
are still T = tskip = 0.28µs. The experimental correla-
tors for ϕa = 0 agree with the theory very well; they are
practically the same for x0 = 1 and x0 = −1 (theoret-
ically there is no dependence on the initial state [S3]),
and |K(τ)| ≤ 1 always because there is no phase back-
action. Experimental correlators for ϕa = 40◦ also agree
well with the theory; the correlator K(τ) for x0 = 1
marginally exceeds 1 at only one point. Experimental
correlators for ϕa = 80◦ greatly exceed 1 at many points,
reaching values up to Kmax ' 5. However, there is a
significant deviation from the theory, which is somewhat
expected since the SNR greatly decreases for angles ϕa

close to π/2.
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FIG. S5. Experimental correlators (symbols) and theoretical
predictions (lines) for angles ϕa = 0 (top panel), 40◦ (middle
panel), and 80◦ (bottom panel). Initial states are x0 = 1
(blue circles and lines) and x0 = −1 (red crosses and lines),
Rabi frequency is ΩR = 1 MHz.

II. GENERALIZED COLLAPSE RECIPE FOR
MULTI-TIME MULTI-DETECTOR

CORRELATORS

In this section we prove the generalized collapse recipe
(GCR) for multi-time correlators from simultaneous con-
tinuous measurement of Nd noncommuting qubit observ-
ables σ` = n`σ, where n` is the `th measurement axis
direction on the Bloch sphere and ` = 1, ...Nd.

In this case, the quantum Bayesian equation for qubit
evolution in Itô interpretation is [cf. Eq. (4) of the main
text]

ṙ = Λens(r−rst)+

Nd∑
`=1

[
n` − (n`r) r
√
τ`

+K`
(n`×r)
√
τ`

]
ξ`(t),

(S6)
where τ` is the “measurement time” for the `th detector
and K` = tanϕa

` determines the corresponding relative
strength of phase backaction. The normalized output
signal from the `th detector is modeled as

I`(t) = Tr[σ`ρ(t)] +
√
τ` ξ`(t) = n`r(t) +

√
τ` ξ`(t), (S7)
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where ξ` are uncorrelated white noises,

〈ξ`(t) ξ`′(t′)〉 = δ``′ δ(t− t′). (S8)

Let us consider the N -time correlator

K`1...`N (t1, ...tN ) ≡ 〈I`N (tN ) · · · I`2(t2) I`1(t1)〉, (S9)

in which the time arguments are ordered as t1 < t2 <
... < tN and N can be smaller, equal, or larger than Nd.
We will prove that this correlator can be obtained from
the GCR formula

KGCR
`1...`N (t1, ...tN )

=

2N∑
{I`j =±1}

[ j=N∏
j=2

I`jp
(
I`j , tj

∣∣I`j−1 , tj−1

)]
I`1p

(
I`1 , t1

)
,

(S10)

where the sum is over 2N scenarios of obtaining discrete
outcomes I`j = ±1 of (fictitious) “strong” measurements
at time moments tj (j = 1, ...N),

p
(
I`1 , t1

)
=

1 + I`1 n`1r(t1 − 0)

2
(S11)

is the probability to get the first outcome I`1 = ±1 at
time t1, and

p
(
I`j , tj

∣∣I`j−1
, tj−1

)
=

1 + I`jn`jrens

(
tj
∣∣I`j−1r

(j−1)
coll , tj−1

)
2

(S12)
is the “conditional probability” to get the outcome I`j
at time tj (j ≥ 2) given that we got the outcome I`j−1

at time tj−1 (this “probability” can be negative or larger
than 1). We assume (pretend) that the strong measure-
ment of σ`j (with phase backaction) at time tj with the
result I`j = ±1 collapses (abruptly moves) the qubit state
to

r(tj+0) = I`jr
(j)
coll = I`j

[
n`j +K`j n`j×r(tj−0)

]
, (S13)

while at other times, t 6= tj , the qubit evolution is given
by the ensemble-averaged equation

ṙens = Λens(rens − rst). (S14)

Therefore, in each of the 2N scenarios, we have a different

sequence of after-collapse states I`jr
(j)
coll, with

r
(1)
coll = n`1 +K`1 n`1 × r(t1 − 0) (S15)

for the first collapse, and then for j ≥ 2 we have

r
(j)
coll = n`j +K`jn`j × rens

(
tj
∣∣I`j−1r

(j−1)
coll , tj−1

)
, (S16)

where rens

(
t
∣∣rin, tin

)
is the solution of Eq. (S14) with

initial condition rens

(
tin
∣∣rin, tin

)
= rin, and r(t1 − 0) =

rens

(
t1
∣∣r0, t0

)
if the procedure starts at time t0 < t1 with

the initial state r0.

Note that the initial qubit state should be physical,
and therefore the 3-vector r0 should be within the Bloch
sphere, |r0| ≤ 1. However, after each collapse, the state

I`jr
(j)
coll will be outside the Bloch sphere (if K`j 6= 0).

Therefore, the state before the next collapse may also
be outside the Bloch sphere, and then the “conditional
probabilities” for the next outcome I`j+1

= ±1 may be
negative or larger than 1 – see Eq. (S12). Also note
that the 3 × 3 matrix Λens in Eq. (S14) takes into ac-
count unitary evolution, continuous measurement by all
Nd detectors, and possible additional decoherence. Both
Λens and rst can depend on time. The formal solution of
Eq. (S14) can still be written in the same form as in the
main text,

rens

(
t
∣∣rin, tin

)
= P(t|tin) rin + Pst(t|tin), (S17)

where P(t|t′) is a 3 × 3 matrix satisfying equation
∂tP(t|t′) = Λens(t)P(t|t′) with P(t′|t′) = 11, and

Pst(t|t′) = −
∫ t
t′
P(t|t′′) Λens(t

′′) rst(t
′′) dt′′.

To prove that Eqs. (S10)–(S16) give the correct value
for the multi-time correlator (S9), let us first carry out
the summation over the last outcome I`N in Eq. (S10)
and represent the result as

KGCR
`1...`N (t1, ...tN ) = n`NK

GCR
`1...`N (t1, ...tN ), (S18)

where we have introduced the vector-valued correlator

KGCR
`1...`N (t1, ...tN ) ≡

2N−1∑
{I`j =±1}

rens

(
tN
∣∣I`N−1

r
(N−1)
coll , tN−1

)

×
[ j=N−1∏

j=2

I`jp
(
I`j , tj

∣∣I`j−1
, tj−1

)]
I`1p

(
I`1 , t1

)
.

(S19)

We then apply Eq. (S17) to Eq. (S19), use Eq. (S16) with
j = N − 1 and use the relations (S9) and (S18)–(S19) to
obtain the recursive formula

KGCR
N = P(tN |tN−1)

[
n`N−1

KGCR
N−2

+K`N−1
n`N−1

×KGCR
N−1

]
+KGCR

N−1 Pst(tN |tN−1),

(S20)

where for brevity KGCR
N ≡ KGCR

`1...`N
(t1, ...tN ) and

KGCR
N ≡ KGCR

`1...`N
(t1, ...tN ). This recursion for N needs

two initial cases, for which N = 2 and N = 1 can be
used. The correlators for N = 1 are trivial,

KGCR
`1 (t1) = r(t1 − 0) (S21)

and therefore KGCR
`1

(t1) = n`1r(t1 − 0), while the GCR
correlators for N = 2 are [cf. Eq. (10) of the main text]

KGCR
`1`2 (t1, t2) = rens

(
t2
∣∣r(1)

coll, t1
) 1 + n`1r(t1 − 0)

2

−rens

(
t2
∣∣− r(1)

coll, t1
)1− n`1r(t1 − 0)

2
(S22)
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and correspondingly KGCR
`1`2

(t1, t2) = n`2K
GCR
`1`2

(t1, t2).
Using Eq. (S17), it is easy to see that Eq. (S22) can be
obtained from the recursion (S20) if we formally define

KGCR
0 = 1. (S23)

Thus far, we have just rewritten the GCR in a recursive
form [Eqs. (S18) and (S20)]. Next, we will show that
the same recursive relations for the correlators [including
the initial cases (S21)–(S23)] can be obtained from the
quantum Bayesian equations Eq. (S6)–(S7), thus proving
the GCR.

Now we are considering the actual process (not the
fictitious scenarios of the GCR), so I`(t) are continuous
noisy signals – see Eq. (S7). Using the causality property
〈ξ`(t) I`′(t′)〉 = 0 for t > t′, we can express the multi-time
correlator (S9) in the same form as Eq. (S18),

K`1...`N (t1, ...tN ) = n`NK`1...`N (t1, ...tN ), (S24)

where we have introduced the vector-valued correlator

K`1...`N (t1, ...tN ) ≡ 〈rN I`N−1
(tN−1)...I`1(t1)〉 (S25)

and for brevity we use notation rN ≡ r(tN ). Also intro-
ducing the short notation KN ≡ K`1...`N (t1, ...tN ) and
using Eq. (S7) for I`N−1

(t), we can write KN as a sum
of two terms,

KN = K
(1)
N +K

(2)
N , (S26a)

K
(1)
N ≡

〈
rN
(
n`N−1

rN−1

)
I`N−2

(tN−2)...I`1(t1)
〉
,

(S26b)

K
(2)
N ≡

〈
rN
√
τ`N−1

ξ`N−1
(tN−1) I`N−2

(tN−2)...I`1(t1)
〉
.

(S26c)

We now consider K
(1)
N and K

(2)
N as functions of tN .

By differentiating them over tN and using Eq. (S6), we
obtain the following equations of motion

∂tNK
(1)
N = Λens

[
K

(1)
N − rstKN−1

]
, (S27a)

∂tNK
(2)
N = ΛensK

(2)
N . (S27b)

The initial condition for K
(1)
N is

K
(1)
N (tN−1) ≡K(1)

`1...`N
(tN = tN−1, tN−1, ..., t1)

=
〈
rN−1

(
n`N−1

rN−1

)
I`N−2

(tN−2)...I`1(t1)
〉
, (S28)

and the initial condition for K
(2)
N can be obtained by

averaging over the noise ξ`N−1
(tN−1) in the same way as

in the main text (for the two-time correlator), that gives

K
(2)
N (tN−1) ≡K(2)

`1...`N
(tN = tN−1, tN−1, ..., t1) =〈[

n`N−1
− (n`N−1

rN−1) rN−1 +K`N−1
(n`N−1

× rN−1)
]

× I`N−2
(tN−2)...I`1(t1)

〉
. (S29)

We then solve the linear equations (S27) using (S17),

K
(1)
N =P(tN |tN−1)K

(1)
N (tN−1) + PstKN−1, (S30a)

K
(2)
N =P(tN |tN−1)K

(2)
N (tN−1), (S30b)

and inserting the initial conditions (S28)–(S29), we find

K
(1)
N +K

(2)
N = P(tN |tN−1)×〈[

n`N−1
+K`N−1

(n`N−1
× rN−1)

]
I`N−2

(tN−2)...I`1(t1)
〉

+ Pst(tN |tN−1)KN−1, (S31)

where KN is the short notation for the correlator (S24).
Finally, using Eqs. (S9), (S25), and (S26a), the result

(S31) can be rewritten as a recursion,

KN = P(tN |tN−1)
[
n`N−1

KN−2

+K`N−1
(n`N−1

×KN−1)
]

+ Pst(tN |tN−1)KN−1,

(S32)

which is exactly the same as Eq. (S20) for the vector-
valued correlators obtained via the GCR method [recall
that Eq. (S24) is also the same as Eq. (S18)]. It is easy
to see that KN in the initial cases N = 1 and N = 2
for the recursive relation (S32) also coincide with the re-
sults (S21) and (S22) for the GCR method [so that we
can still define K0 = 1 as in Eq. (S23)]. This proves that
KN = KGCR

N , so any multi-time multi-detector corre-
lator calculated via the generalized collapse recipe coin-
cides with the correlator given by the quantum Bayesian
formalism. The obvious advantage of the recipe is sim-
plicity of calculations compared with the direct quantum
Bayesian simulations.

Note that for a single detector (Nd = 1), the correla-
tors can be larger than 1 only in the presence of a uni-
tary evolution. This is because the projection of the col-
lapsed state (S13) on the measurement axis is ±1 (even
though it is outside the Bloch sphere), and without uni-
tary evolution (only decoherence) this projection remains
within the ±1 range. In contrast, for detectors of non-
commuting observables, the correlators can exceed 1 even
without unitary evolution, only due to phase backaction.
As an example, for continuous measurement of σz and
σx [S2], the two-time cross-correlator Kzx(t1, t2) exceeds
1 for small positive values of t1 and t2 − t1 if the initial
state is r(0) = (0,−1, 0) and the phase backaction for
σz-measurement is sufficiently strong, Kz = tanϕa

z > 1.
A weaker phase backaction would also produce cross-
correlator larger than 1 if σx measurement is replaced
with the measurement along the direction between x and
z.

We emphasize that the GCR is only a recipe to obtain
correct values of the correlators from continuous mea-
surement of a qubit. For actual evolution of the qubit,
the quantum Bayesian/trajectory equation (S6) should
be used. It is in principle possible to obtain correlators
from the actual evolution (e.g., using Monte Carlo simu-
lations). However, obtaining the same values for the cor-
relators is much simpler using the GCR. The GCR uses a



6

fictitious evolution: in particular, actual continuous mea-
surements are replaced with “strong” measurements at
time moments tj , which may produce unphysical states

outside the Bloch sphere. Nevertheless, the correlators
obtained from this fictitious evolution coincide with ac-
tual correlators.
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