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3Department of Electrical Engineering, University of California, Riverside, California 92521-0204, USA
(Received 28 October 2005; published 14 July 2006)

A kicked quantum nondemolition measurement is introduced, where a qubit is weakly measured by
pumping current. Measurement statistics are derived for weak measurements combined with single-qubit
unitary operations. These results are applied to violate a generalization of the Leggett-Garg inequality.
The violation is related to the failure of the noninvasive detector assumption, and may be interpreted as
either intrinsic detector backaction, or the qubit entangling the microscopic detector excitations. The
results are discussed in terms of a quantum point contact kicked by a pulse generator, measuring a double
quantum dot.

DOI: 10.1103/PhysRevLett.97.026805 PACS numbers: 73.23.�b, 03.65.Ta, 03.67.Lx

An important goal in the research of quantum phe-
nomena in the solid state is to provide realistic tests that
demonstrate quantum behavior which no analogous clas-
sical system could exhibit. The best known example of
such a test is Bell’s inequality (BI) [1], but in submicron
sized samples the BI serves primarily as a test of entangle-
ment rather than ruling out local hidden variable theories
[2]. The seminal work of Leggett and Garg [3] provides
another inequality involving only one quantum variable
together with a set of projective measurements. This test
demonstrates that the predictions of quantum mechanics
are incompatible with the philosophical assumptions of
macrorealism and a noninvasive detector. An interesting
parallel between the two inequalities is that the role of
hidden variables in the BI is played by trajectories in the
Leggett-Garg inequality (LGI). The belief that the quan-
tum system really takes a definite classical trajectory be-
tween two points (chosen from an arbitrary probability
distribution) may be disproved with the LGI.

This Letter proposes a generalization of the LGI using
quantum nondemolition (QND) measurements weakly
measuring the quantum state by pumping current. Weak
measurements, in contrast to projective measurements,
obtain partial information about the state from an inher-
ently noisy output, so wave function collapse happens
continuously. In the solid state, the typically weak coupling
between system and detector implies that weak measure-
ments are the norm. A generic problem arising in making a
projective measurement out of many weak measurements
is that the quantum system has its own Hamil-
tonian dynamics that effectively rotates the measurement
basis, preventing projective measurement. The way around
this problem is with QND measurements.

Kicked QND.—The scheme we employ is that of kicked
QND measurements, introduced by Braginsky et al. and
Thorne et al. [4] for the harmonic oscillator. In Ref. [5], the
idea is introduced for the two-state system by two of the
authors by making an analogy to a cat playing with a string

that moves in a circle: rather than chasing the string [6], the
cat sits in one spot waiting for the string to come to it, and
only then bats at it [7]. The motion in a circle comes from
the evolution of a two-state system, where H � ��x=2 is
the qubit Hamiltonian, and � is the tunnel coupling of the
symmetric qubit which defines the Rabi oscillation period,
�q � 2�=�. Although kicked measurement may be real-
ized in a wide variety of systems, we will focus on a
quantum point contact (QPC) kicked by a voltage pulse
generator. This detector measures �z, the position of the
electron in a double quantum dot (DD) charge qubit as
depicted in Fig. 1. The QPC detector is growing in experi-
mental importance [8–11], and Hayashi et al. [8] applied
rectangular voltage pulses similar to the ones we consider.

An experimentally appealing variation on the idea of
kicked measurement is illustrated in Fig. 1, where a se-
quence of voltage kicks of duration �V � �q is applied to
the QPC, alternating in sign every half oscillation period.
The parameters of the measurement process with an ideal

+ + +
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FIG. 1 (color online). Visualization of the kicked QND mea-
surement. A voltage pulse is applied to the QPC, followed by a
quiet period of zero voltage bias, lasting for a Rabi oscillation
period, followed by another pulse, and so on. The up or down
variation is depicted, where the kicks come every half period,
and the sign of the voltage pulse alternates with every kick.
Readout of the coherent superposition of trajectories (red or
blue) occurs by measuring the sign of the current, and corre-
sponds to an elementary quantum pump.
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QPC detector [12–15] are specified by the currents, I1;2,
that correspond to the different positions of the electron in
the DD, and the detector shot noise power SI � eI�1� T�
(where T is the transparency). The typical time needed to
distinguish the qubit signal from the background noise is
the measurement time TM � 4SI=�I1 � I2�

2. If the qubit
starts in state j1i (or j2i), so the kicks are in (or out of)
phase with the coherent oscillations, then the physical
current produced by the QPC is �I1 � I2���V=�q�> 0 [or
�I2 � I1���V=�q�< 0]. Thus, by simply determining the
sign of the current, a measurement of the quantum state
can be made. Besides being a phase detector, this apparatus
is also an elementary quantum pump [16], where the kicks
provide one time-changing parameter of zero average, and
the intrinsic quantum dynamics of the qubit provide the
other changing parameter of zero average that nevertheless
causes a net flow of current [17].

To characterize the result of each measurement kick,
dimensionless variables are introduced by defining the
current origin at I0 � �I1 � I2�=2 and scaling the current
per pulse as I � I0 � x�I1 � I2�=2, so I1;2 are mapped onto
x � �1 (positive or negative current in the pumping pro-
posal). The weak (static) coupling between QPC and DD
implies that �V � TM. In these units, we take x to be
normally distributed with variance D � TM=�V � 1. The
typical number of kicks needed to distinguish the two
states is D kicks. The measurement result I after N kicks
is I � �1=N�

PN
n�1 xn, and we seek the conditional proba-

bility distribution P�I ; Nj�� of measuring the result I ,
starting with a given density operator � prepared before
the first kick. The probability of measuring the result xn
after one kick is determined by the state of the qubit just
before the measurement, and is given by

 P�xn� � ��n�11 P1�xn� � �
�n�
22 P2�xn�; (1)

where �ij are the elements of the density matrix in the z
basis, and the notation Pj�xn� is introduced for the j � 1, 2
distributions of the nth kick. These two distributions de-
scribe the detector output for the nth kick, if the electron
resides only on one of the two dots. The density matrix of
the qubit is updated based on information obtained from
the measurement that just occurred. This is done with the
quantum Bayes rule [13] that defines a nonunitary quantum
map [18]:

 ��n�1�
11 � 1� ��n�1�

22 �
��n�11 P1�xn�

��n�11 P1�xn� � �
�n�
22 P2�xn�

;

��n�1�
12 � 	��n�1�

21 
� � ��n�12

�������������������������������������������
��n�1�

11 ��n�1�
22 =��n�11 �

�n�
22

q
:

(2)

The quantum Bayesian formalism provides additional in-
sight into the quantum detection process, and is well suited
to analyze kicked QND measurements. Equivalence with
the quantum trajectories approach is shown in Ref. [19]
[see also Ref. [20] ]. The advantage of QND measurement
in the quantum Bayesian approach follows from using

Eqs. (2) to calculate the probability distribution
P�I ; Nj�� of current I after N kicks, starting with the
density matrix �:

 P�I ; Nj�� � �11P�I ; Nj1� � �22P�I ; Nj2�; (3)

where �11; �22 are the diagonal matrix elements of the
original density matrix, and the functions P�I ; Njj�, j �
1, 2 are defined as Gaussian probability distributions of the
current, with average ��1�j�1, and variance D=N. These
two distributions describe the total detector output for N
kicks, if the electron resides only on one of the two dots. In
Eq. (3), the N weak measurements simply compose to give
one N-times stronger measurement. As N is increased, the
distributions limit to delta functions giving either I � 1,
�1 with probability �11, �22, respectively. A one-sigma
confidence is obtained whenN � D (see above). The QND
measurement output only involves the diagonal density
matrix elements, so the current output behaves exactly as
if it were simply collecting information about a classical
bit from a noisy process. In spite of this fact, the Eqs. (2)
allow us to deduce the DD electron’s density matrix pre-
pared after the N measurements from our knowledge of I :

 �0 �
1

�11e
� � �22e

��
�11e� �12

��12 �22e
��

� �
; (4)

where � � IN=D is the rescaled measurement result. The
conditional quantum dynamics of Eq. (4) is illustrated in
Fig. 2 for all pure states, where (x, y, z) are coordinates on
the Bloch sphere. The x and y behavior follows from z,
which is in turn conditioned on the detector output I , so the
sphere is colored according to the conditional evolution of
z. If � is positive (negative), then states are ‘‘attracted’’
toward the North (South) pole. As � grows increasingly
positive or negative, we become more confident which
state the qubit has collapsed to, so the sphere is more and
more red (j1i) or blue (j2i), but notice that this depends on
the initial state. The conditional evolution of several rep-
resentative states is indicated with black arrows.

Generalized LGI.—While the point of the kicked QND
proposal was to effectively turn off the qubit unitary evo-
lution while the measurement is taking place, kicked mea-
surement provides a simple way of generating a single-
qubit rotation: waiting some fraction r of a Rabi oscillation
between kicks defines a phase shift � � 2�r on the DD
qubit. Consider now an experiment, comprised ofN1 kicks,
followed by a single-qubit unitary operation U���, fol-
lowed by N2 kicks. The measurement results are defined
as I1 � �1=N1�

PN1
n�1 xn, I2 � �1=N2�

PN1�N2
n�N1�1 xn. We

seek the normalized probability distribution P�I1; I2� of
finding current I1 after N1 kicks, and I2 after N2 subse-
quent kicks. This distribution may also be interpreted as a
‘‘joint counting statistics.’’ After the first N1 kicks, the
measured current I1 will occur with a probability density
given by (3), and prepares a post-measurement density
matrix �0 (4). The subsequent unitary operation rotates
this density matrix, �new � U�0Uy. The following set of
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N2 kicks start with �new and continue to measure in the z
basis as before. Equation (3) may be applied again to
obtain
 

P�I1; I2� � 	�11P�I1; N1j1� � �22P�I1; N1j2�


� 	�new
11 P�I2; N2j1� � �

new
22 P�I2; N2j2�
; (5)

where the new density matrix elements are

 �new
11 � 	cos2��=2��11e

� � sin2��=2��22e
��

� sin�Im�12
=��11e� � �22e���;

�new
12 � 	Re�12 � �i=2� sin���11e

� � �22e
���

� i cos�Im�12
=��11e� � �22e���:

(6)

Note that the outcome of the first N1 kicks, I1, appears in
the expression involving the second set of kicks, so the
distribution does not factorize. It is straightforward to
generalize the results (5) and (6) to any number of dis-
locations in the pulse sequence, each of which has a phase
shift.

We now demonstrate how these results may be used to
violate a generalized LGI. A generalized LGI has been
discussed by Ruskov et al. [21] for the current correlations
and the spectral noise peak generated by a qubit. Our setup
has the advantage of full tunability of phase shifts and
measurement strength and thus permits a LGI test over a
wide range of parameters. The original proposal [3] de-
rived an inequality involving correlation functions from
three experiments, each consisting of two projective mea-
surements done at specified times starting from the same
initial condition. The beauty of weak measurements is that

the inequality may be violated with only one set of mea-
surements together with statistical averaging. To derive the
weak measurement generalization of the LGI, consider
three kicks surrounding two phase shifts �1;2. Define the
correlation function B � S12 � S23 � S13, where Snm �
hInImi; n,m � 1, 2, 3. The assumptions of ‘‘macrorealism
and a noninvasive detector’’ [3] are introduced with a
white, additive, noise model of the detection process (char-
acteristic of QPC electron transport). The measured result
In can be decomposed into a system signal and detector
noise contribution, In � Cn � �n. The signal Cn describes
the DD state at measurement n, while the detector noise
term, �n, is white Gaussian noise (discussed previously), of
zero average and variance h�2

ni � D=Nn. The signal con-
tribution Cn may be endowed with classical hidden varia-
bles f�g, chosen from any probability distribution. The
signal can now change arbitrarily between measurements,
but only in a bounded way, �1  Cn�f�g�  1. The non-
invasive detector assumption implies that the detector
noise does not affect the measured system in the past or
the future, so h�nCm�f�g�i � 0, for any n, m. These as-
sumptions imply that Snm � hCn�f�g�Cm�f�g�ir, where
h. . .ir denotes further averaging over the hidden variables
f�g, as well as over realizations or initial conditions. From
the bound on each of the signal contributions, it is straight-
forward to show that B  1, concluding the weak mea-
surement generalization of the LGI.

Starting with any DD electron state, we find quantum
mechanically from the generalization of (5) and (6) that

 B � cos�1 � cos�2 � cos�1 cos�2

� sin�1 sin�2 exp��N2=2D�; (7)

for an arbitrary number of kicks N1, N2, N3 made around
the phase shifts. The first three terms in (7) cannot violate
the LGI, and it is the last term that is responsible for the
violation. In the weak measurement limit, N2 � D, the
Bell-like parameter takes the form, B � cos�1 � cos�2 �
cos��1 ��2�, and is maximally violated for �1 � �2 �
�=3 so B � 3=2. The physical interpretation for the sup-
pression of the critical term in (7) is the following: if
measurement 2 had not been made, the system travels in
a coherent superposition of trajectories (red and blue in
Fig. 1) between 1! 3. The intermediate measurement
gives the necessary third point, but also yields information
(at a rateD�1 per kick) about which trajectory the quantum
system ‘‘really’’ took [22]. This information manifests
itself in making it harder to violate the LGI. In the projec-
tive measurement limit, N2 � D, we are statistically con-
fident which trajectory the system took, and it becomes
impossible to violate the LGI.

An alternative picture may be seen by reconsidering
three incident electron groups on the QPC, spaced by a
phase shift �1;2 on the DD qubit. Rather than directly
project the QPC electrons after each passes (as is necessary
for the quantum Bayesian approach), we use a well-known
property of quantum circuits, that the predictions of quan-

(a) (b)

(e)(d)

(c)

FIG. 2 (color online). The conditional evolution of all pure
states under kicked QND measurement is represented on the
Bloch sphere. From (a)–(e), the rescaled result of the measure-
ment is � � ��1;�0:5; 0; 0:5; 1�, respectively. As the detector
obtains more information, we can with greater statistical cer-
tainty distinguish the post-measurement quantum state, so the
Bloch sphere is more and more red (j1i) or blue (j2i), depending
on the value of � measured (color is assigned according to �11 �
�22 of the final state). The conditional evolution of several
representative states is also indicated with black arrows. The
North, South pole represent the states j1i; j2i.
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tum mechanics are identical if the projective measurements
are delayed to the end of all unitary operations. Then the
above procedure is identical to the quantum circuit drawn
in Fig. 3, where each initial left scattering state jLi encodes
many transport electrons. Rather than attribute the corre-
lations (7) to detector backaction, another interpretation is
to see the above procedure as the DD qubit effectively
creating entanglement between the transport electrons. For
simplicity, we consider the 1=2 transparency point [see
Ref. [14] for a more general discussion]. Fol-
lowing the detector treatment in Refs. [12,15], the trans-
mission (reflection) amplitudes t1;2�r2;1� �

�����������������
1=2� 	

p
of

the two scattering matrices corresponding to the two posi-
tions of the DD electron are expanded in the detector
sensitivity 	 to second order. If the qubit is in state j1i,
j2i then the outgoing detector scattering states are j
1;2i �

jsi�1� 	2=2� � 	jai, where jsi, jai � �jLi � jRi�=
���
2
p

are
combinations of the left or right scattering states. Before
measurements are made, the state is given by
 

j�i � U��1�U��2�j ij0i�1� 3	2=2� � 	j 0i

� 	cos���j1i � j3i� � cos��j2i
 � 	j 
00i

� 	sin���j3i � j1i� � sin��j2i
 � 	2j i

� 	cos���j10i � j30i� � cos��j20i
 � 	2j 000i

� 	sin���j30i � j10i� � sin��j20i
; (8)

where j0i � jsssi, j1; 2; 3i � jass; sas; ssai, j10; 20; 30i �
jsaa; asa; aasi, and jklmi � jkiIjliIIjmiIII. The DD states
are defined as j ;0 ;00 ;000 i � �j1i � �j2i, ��j1i � �j2i,
i��j1i � �j2i�, i��j1i � �j2i�, and �� � ��1 ��2�=2.
The first dominant term is separable and alone can produce
no correlations, while the remaining terms are entangled.
Using projection operators on the right scattering states in
order to calculate current correlators recovers the weak
measurement limit of (7).

Conclusions.—We have proposed a kicked qubit readout
scheme that is both a quantum nondemolition measure-
ment and a quantum pump. Kicked measurements com-

bined with unitary operations were used to formulate and
violate a weak measurement generalization of Leggett and
Garg’s inequality. The fact that our proposal uses one set of
pulses to accomplish both weak measurements and phase
shifts provides an important advantage for an experiment
aimed at violating the LG inequality.
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FIG. 3. Quantum circuit analysis of the generalized LGI: three
sets of initially unentangled QPC electrons in the left scattering
states jLiI;II;III are entangled with the DD electron state j i with
operations E1;2;3. The DD electron undergoes two different phase
shifts �1;2 between the passing electron bunches. Projective
measurements are made on the QPC electrons in the current
collector, and are delayed until the end of all unitary operations
in the entanglement picture.
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