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ABSTRACT
We have calculated dc I —V curves of the semiconductor superlattices of a very small (practically,

submicron) cross-section. The I—V curves exhibit periodic oscillations with a voltage period e/C. These
oscillations are caused by quantization of electric charge @ of the walls of static high-field domains.

2. INTRODUCTION

At sufficiently low temperatures, electron transport properties of small conductors separated by low-
transparent tunnel barriers are dominated by single-electron charging effects.!*? The origin of these effects
is the quantization of electric charge @ of the electrodes in units of the fundamental charge e. In electrodes
with small electric capacitance C, the charge quantization gives rise to the energy gaps (of the order
of characteristic charging energy E. = €%/2C) between states which differ by one extra electron in the
conductor. Since these gaps can be varied continuously, for example, by externally applied voltages, one
can control the motion of single electrons in such systems.

Single-electron charging effects were studied mostly in metallic systems. In semiconductor nanos-
tructures, only double-barrier structures ("quantum dots” and "quantum wells”) were investigated both
experimentally>~¢ and theoretically’=®. In this work we consider single-electron charging effects in multi-
barrier superlattices (Fig. 1a).

3. BASIC RELATIONS

Let us consider a superlattice with narrow minibands. If the temperature 7" or Fermi energy drops eV
across the barriers of the superlattice are larger than the miniband width ¢ (max{T,eV;} > §), electrons
are nearly localized in the conducting layers, and electron motion through the superlattice can be described
as sequential hopping. If an area S of the superlattice is small, electric capacitance C between nearest
conducting layers in the superlattice can be also small in the sense that T <« €?/C. In such a ”slim”
superlattice with localized electrons, quantization of electric charge @ of its conducting layers becomes
essential, since addition of even one electron to a conducting layer increases electrostatic energy of this
layer considerably.

As in the double-barrier systems,!®11¢ charge quantization in the conducting layers may coexist with

quantization of electron energy due to lateral confinement. When electrons occupy only the lowest mini-
band, the ratio A/E, of the average spacing A between electron energy levels and charging energy E. is
independent of the area S as long as characteristic lateral dimensions of the superlattice is much larger
than its period d. This ratio depends only on d, A/E. ~ ap/d,” where ap is the Bohr radius (ag ~ 10nm
for GaAs). In this work, we discuss the superlattices with d > ap, where the discreteness of the energy
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spectrum of the conducting layers is negligible. Besides this, we assume that equilibrium concentration of
electrons in the conducting layers is sufficiently large, so that the total number of electrons in each layer
is much larger than unity.

(a) .

(b)
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) (e = ==

Fig. 1. (a) Conduction band edge profile of the multibarrier superlattice and (b)
equivalent circuit of the superlattice. Dashed regions denote energy states occupied
by electrons. Divided rectangle is the standard notation for a small-area tunnel
junction.?

Under these conditions the superlattice is equivalent to a 1D array of metallic tunnel junctions!?.
Specifically, in the superlattices with large barrier resistances R (R > Rg = nh/2e?) dynamics of electron
tunneling is dominated by transitions in which electron tunnels through one barrier. This dynamics can be
described by the standard master equation for probabilities o(ny, ..., ni,...,ny_1) = 0{n} to find n; extra
electrons in the ith conducting layer:

N
5{n} = Y(THn} ofn}y + 5 {n}j o{n}f - (T {n) + T7 {n})o{n)] ()

Here Ff are the rates of forward and backward electron tunneling through the jth barrier, and by {n}Ji
we denote the distribution of electron which differs from the distribution {n} by the forward or backward
tunneling of one electron through the jth barrier: {n};t = {n1,...,njFlynjp1 1, ...,nn_1}.

The rates of electron tunneling through the jth barrier of the superlattice can be presented in the same
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form as in metallic systems!2:

r, = SO0 ey, 2

where 1;(V) is the dc I -V curve of the barrier at a fixed dc voltage V across the barrier, while U; is a
decrease of electrostatic energy of the system due to the tunneling event. (In all numerical examples below
we assume that temperature is small, T < U;, and that the superlattice is uniform, [;(V)) = I(V).)

The energy U; in eq. (2) can be expressed via the voltages across the jth barrier before (‘/j(i)) and after
(V]-(f)) the tunneling event:
€y 6]
U= SV + v ). 3)

In general, these voltages should be calculated from the equivalent circuit shown in Fig. 1b. However, since
the period of the superlattice is much smaller that its lateral dimensions, the self-capacitance Co of the
conducting layers is also small, Co < C, and can be neglected for superlattices with not too large number
N of periods,'2 N < (C/Cp)'/2. For negligible Cp we have:

€
2Ceyy

i 1
Uy =e(V) = 55—),  Ceps =C1L+ ). (4)

The main difference with system of metallic junctions is the shape of the barrier I—V curves Iy(V),
which for superlattice may contain negative differential resistance (NDR) region. For voltages smaller
than the Fermi level p in the conducting layers and energy gap above the lowest miniband, they can be

approximated as follows:!?
| % 1

AR (V/Vo)?
Here the first term describes tunneling which does not change the electron state with respect to motion along
the layers of the superlattice, while the small parameter A accounts for tunneling which is accompanied

by scattering between these states, and determines the upper voltage boundary Vo/\/x of the NDR region
(the lower boundary of this region is approximately Vo).

I(V) = + A). (5)

4. HIGH-FIELD DOMAINS

In conventional superlattices with large areas, the potential e/C associated with one electron in the
conducting layer is much smaller than characteristic voltage scale Vg of the barrier I—V" curve (1). In this
case, different tunneling events in the superlattice are virtually not correlated, and the master equation
(1) is reduced to an equation for average current between conducting regions and their average potentials.
This equation corresponds to representation of the superlattice! as a series of capacitances shunted by
non-linear resistances. This model is sufficient for description of the high-field domain formation'®~18 in
the superlattice.

If the bias voltage V across the superlattice exceeds NVj, at least one of the barriers is biased in the
NDR region, and uniform potential distribution along the superlattice becomes unstable. A transient leads
to another state in which nearly all voltage drops across one junction (“high-field domain”) - see Fig. 2.
The domain is the bottleneck for the current flow, and dc current I through the superlattice decreases
due to domain formation. In superlattices with small A (A < N~2) the tunnel barrier in the domain is
biased in the NDR region of its I —V curve, so that there is a voltage region where the current through
the superlattice decreases smoothly with increasing voltage. At larger A (A > N ~2) such a region is absent
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and formation of the high-field domain shows up as an abrupt transition between two current branches of
the superlattice /—V curve with increasing current. These two types of behavior are illustrated in Fig. 3.

@ 4 (a)

(b)

Fig. 2. Schematic distribution of electrostatic potential (a) and electric charge
(b) along the superlattice with one high field domain.

In both cases an increase of the current I leads eventually (at I ~ V5/2R) to formation of the second
high-field domain, the third domain, etc. The process of domains formation continues almost periodically
in the bias voltage, with the period about (N + 2/A)V,. This results in the periodic oscillations of the dc
current in the superlattice with this period, similar to those shown in Fig. 3b. (For parameters of Fig. 3a
the period is too large to be seen in this figure.) The total number of oscillations is equal to the number
of periods in the superlattice.

Another feature associated with high-field domain formation is the hysteresis in the dc -V curves of
the superlattice. When the voltage increases, domains are formed at larger voltages than those at which
they are destroyed at decreasing voltage, so that the current depends on the history of voltage variations.
Such a hysteresis can be seen in Fig. 3a. At not too small ratios (e/C)/Vy, voltage fluctuations due to shot
noise caused by electron tunneling, lead to rapid switching between possible current values, and actual dc
I-V curve passes somewhere in between them.

The above two features are typical experimental manifestations of high-field domains in superlattices.1>~18

5. DOMAIN QUANTIZATION

The single-electron voltage e/C is inversely proportional to the superlattice area, and at sufficiently
small areas can become larger than the voltage scale Vj of the barrier I —V curve (5). In this case,
discreteness of electric charge of conduction layers becomes essential. Figures 4,5 show the dc -V curves
of the superlattices in this regime, calculated by numerical simulation of dynamics of electron tunneling
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Fig. 3.

The DC I-V curves of conventional large-area superlattice, calculated

by numerical modeling of dynamics of electron tunneling based on egs. (2)-(5). The
curves reflect formation of the high-field domains in the superlattice.
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based on egs. (2)-(5). The most obvious manifestation of single-electron charging effects is Coulomb
blockade!'?, i.e. suppression of current at small voltages V < V; (eq. (4) shows that Coulomb blockade
threshold V; is (N — 1)e/2C).
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Fig. 4. The DC I-V curve of a slim superlattice with the same set of parameters

as in Fig. 2a, except for the area, i.e. (e/C)/V; ratio. The curve exhibits single-
electron charging effects - see text.

At voltages just above Coulomb blockade threshold, electron tunneling events in different barriers of
the superlattice are correlated. Similar to the 1D arrays of metallic junctions,'® such a correlated motion
of electrons through the superlattice should give rise to SET oscillations with the frequency f = I/e.
However, the amplitude of the SET oscillations in the limit of small Cy is proportional to N(Cy/C)'/? and
can be small for short superlattices.

The new feature of the superlattice I —V curves (in comparison to the 1D arrays of metallic tunnel
junctions) is periodic oscillation of the current with voltage period e/C - see Figs. 4,5. The origin of this
effect is quantization of the voltage drop AV across the high-field domain barrier. Since this barrier is the
bottleneck for the current flow, the current in the superlattice is determined by AV. Due to the discreteness
of the charge in the conducting layers adjacent to the barrier, AV increases in a stepwise manner with
increasing bias voltage across the superlattice. Each step in this dependence corresponds to addition of
one extra electron to these layers. (This picture resembles that describing formation of Coulomb staircase
in the dc /—V curves of the metallic double-junction system.!?)

Quantitatively, at small A the tunneling rate through the high-filed domain barrier is much smaller than
that through other barriers of the superlattice. As a result, electrons are accumulated in the conducting
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Fig. 5. Evolution of the current oscillations in the dc 7 — V curves of the slim
superlattice with increasing Ohmic contribution to the barrier current.
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layers adjacent to this barrier and
1 ne
AV =(V+(N - 1)6), (6)

where n is the number of accumulated electrons. In the adopted approximation the current in the super-
lattice is determined solely by AV:

€
I=I(AV - 5

—éz)zlo(%(V—‘/t+(N—1)%)- (M

The voltage drop across the other barriers of the superlattice is

1 ne
o0V=—V+(N-1)—=).
V(N - 1)) (®)
Electron can enter the superlattice and increase n by one if §V > V;. This means that

n = Int[(V - V;)C/e] + 1. (9)

Equations (7) and (9) imply that at sufficiently small A (VA <« Vy/(e/C)) the current I exhibits
staircase-like "fine” structure with the period e/C, while the general shape of the -V curve (at voltages
not too close to the Coulomb blockade threshold) follows that of a single barrier. This situation is illustrated
by Fig. 4 and the lowest curve in Fig. 5. At larger A the /—V curve deviates from Io(V), but the fine
structure persists until A ~ V;/(e/C), when it becomes considerably less pronounced -see Fig. 5.

The voltage period e/C of the current modulation in the superlattice with large space period considered
above is determined by the charge discreteness. If the space period of the superlattice is comparable to the
Bohr radius, the discreteness of the energy spectrum of the conducting layers should become essential - see
Sec. 2. The energy discreteness should modify the voltage period in the same way as in the double-barrier
system.”

Even more interesting question is the crossover between sequential hopping of electrons in the superlat-
tice, which is dominated by the single-electron charging effects, and coherent electron wave propagation in
the lowest Bloch miniband. These two regimes of electron transport are characterized, respectively, by the
SET oscillations with frequency I/e, and by the Bloch oscillations with frequency eV/AN. Crudely, the
crossover should take place at E. ~ A. However, its quantitative picture is far from being clear at present.

6. CONCLUSION

To summarize, we have shown that in the ”slim” superlattices, static high-field domains should be
quantized, giving rise to periodic oscillations of the dc current in the superlattice. Such a quantization can
be realized in the superlattices with narrow minibands, provided that the voltage e/C associated with a
single electron is larger than the lower voltage boundary V4 of the NDR region in the barrier I—V curves.
This condition presumably can be satisfied in the superlattices with effective area below (0.1um)? and
period larger than 10 nm, for which ¢/C > 1 mV.

ACKNOWLEDGMENTS

Useful discussions with M. Reed are gratefully acknowledged. This work was supported by AFOSR
Grant No. 91-0445.

198/ SPIE Vol. 1676 (1992)

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



10.
11.

12.

13.
14.
15.
16.
17.

18.

19

REFERENCES

. D.V. Averin and K.K. Likharev, in: Mesoscopic Phenomena in Solids, ed. by B. Altshuler et al.
(Elsevier, Amsterdam, 1991), p. 173.

. Single Charge Tunneling, ed. by H. Grabert and M.H. Devoret (Plenum, New York, 1992), to be
published.

U. Meirav, M.A. Kastner, and S.J. Wind, Phys. Rev. Lett. 65, 771 (1990).

L.P. Kouwenhoven, N.C. van der Vaart, A.T. Johnson, W. Kool, C.J.P.M. Harmans, J.G. Williamson,
A.A M. Staring, and C.T. Foxon, Z. Phys. B 85, 367 (1991).

D.C. Glattli, C. Pasquier, U. Meirav, F.I.B. Williams, Y. Jin, and B. Etienne, Z. Phys. B 85, 375
(1991).

Bo Su, V.J. Goldman, and J.E. Cunningham, Science 255, 313 (1992).

. D.V. Averin, A.N. Korotkov, and K.K. Likharev, Phys. Rev. B 44, 6199 (1991).
C.W.J. Beenakker, Phys. Rev. B 44, 1646 (1991).

. A. Groshev, T. Ivanov, V. Valtchinov, Phys. Rev. Lett. 66, 1082 (1991).

D.V. Averin and A.N. Korotkov, J. Low Temp. Phys. 80, 173 (1990).

P.L. McEuen, E.B. Foxman, U. Meirav, M.A. Kastner, Y. Meir, N.S. Wingreen, and S.J. Wind, Phys.
Rev. Lett. 66, 1926 (1991).

K.K. Likharev, N.S. Bachvalov, G.S. Kazacha, and S.I. Serduykova, IEEE Trans. Magn. 25, 1436
(1989).

E.S. Borovitskaya and V.M. Genkin, Sov. Phys. Solid State 27, 475 (1985); 29, 1174 (1987).

B. Laikhtman, Phys. Rev. B 44, 11260 (1991).

L. Esaki and L.L. Chang, Phys. Rev. Lett. 33,495 (1974).

K.K. Choi, B.F. Levine, R.J. Malik, J. Walker, and C.G. Bethea, Phys. Rev. B 35, 4172 (1987).
Y. Kawamura, K. Wakita, and K. Oe, Jap. J. Appl. Phys. 26, L1603 (1987).

T.H.H. Vuong, D.C. Tsui, and W.T. Tsang, J. Appl. Phys. 66, 3688 (1989).

. P. Delsing, K.K. Likharev, L.S. Kuzmin, and T. Claeson, Phys. Rev. Lett. 63, 1861 (1989).

SPIE Vol. 1676 (1992) / 199

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



