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ABSTRACT

We discuss the operation of the one-qubit quantum feedback loop, which may be used for initialization of a qubit
in a solid-state quantum computer. The continuous monitoring of a quantum state, which makes the feedback
possible, is done by means of a weak continuous measurement and processing of the obtained information via
quantum Bayesian equations. The properly designed quantum feedback loop can keep the desired phase of a
single-qubit quantum coherent oscillations for infinitely long time, even in presence of a dephasing environment.
Various nonidealities reduce the fidelity of the feedback synchronization. We report our study of the effects of
finite available bandwidth and time delay on the one-qubit quantum feedback performance, and also discuss the
effect of environment-induced dephasing.
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1. INTRODUCTION

Protection of quantum information against decoherence is the most challenging task in quantum computation
and quantum information processing.? Quantum error correction® is considered at present as the main way
to solve this problem. Quantum error correction can be considered as a kind of quantum feedback procedure
in which the results of some measurements are used to control the further evolution of the quantum system. In
contrast to usual in engineering continuous feedback control, this procedure is rather a discrete feedback based
on periodic instantaneous “strong” projective measurements.* Nevertheless, continuous quantum feedback can
also be used for quantum error correction.? Another, more natural, application of continuous quantum feedback
is for initialization of qubits in a quantum computer in order to protect the qubits from decoherence before the
start of computation.

In physical reality no measurement is instantaneous and of infinite precision.® It is especially true in the

solid-state domain where the measurement is typically weak and continuous in time.” Still, given a continuous
measurement record I(t) (for example, a noisy detector current) it is possible to update continuously our knowl-
edge about the system using quantum Bayesian equations.®? The gradual acquisition of information implies
that the collapse also happens gradually, while the monitored quantum state undergoes stochastic evolution that
reflects the stochasticity of the continuous measurement record. The approach of continuous quantum monitor-
ing via continuous measurement was well developed in quantum optics a decade ago'®!! as the formalism of
quantum trajectories. Recently it was also applied to the solid-state problems'? and shown to be equivalent'?
to the Bayesian formalism.®

The Bayesian formalism has been used for the analysis of the quantum feedback control of a solid-state
qubit.!? It has been shown that the fidelity of maintaining quantum coherent (Rabi) oscillations for an infinitely
long time may reach 100% if an ideal (with 100% quantum efficiency) solid-state detector is used. It has been
also shown that the quantum feedback can operate even in presence of dephasing due to environment, so that
this procedure can be naturally used for the qubit initialization in a solid-state quantum computer. Initialization
of fully entangled pair of solid-state qubits using continuous measurement has been analyzed in Ref.'* . The
proposed there procedure needs to use the discrete feedback since the probability of obtaining the entangled
state in one run is less than 100% and also since the two-qubit state may switch to a non-entangled state due to
various imperfections.

In this paper we study the one-qubit quantum feedback and extend the results of Ref.!? . In particular, we an-
alyze the performance of the quantum feedback loop in presence of a significant decoherence due to environment,
study the effect of a finite bandwidth (which is modelled by averaging the detector signal with a rectangular
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time window), and analyze the feedback loop operation in presence of time delay. Our results show that extra
decoherence and finite signal bandwidth worsen the performance of the feedback loop; however, the loop does
not loose the stability of operation. In contrast, there is a stability threshold for the feedback in presence of a
time delay, above which the loop operation becomes unstable.

2. MODEL DESCRIPTION

As the main example of the continuously measured qubit we consider a double quantum dot (DQD) measured by
a low-transparency quantum point contact (QPC).15 All parts of this setup have been demonstrated experimen-
tally.'® (A somewhat similar setup is the single-Cooper-pair box measured by a single electron transistor (SET)
— see, e.g. experiments!'” .) We assume that the DQD is occupied by a single electron and represents a qubit.
On the contrary, the QPC is a system with many degrees of freedom and one may consider the detector output
(noisy detector current I(t)) as a (quasi) classical quantity (the values of the noise at different moments of time
are not correlated). If the electron is in dot 2, which is closer to the QPC (we denote the corresponding localized
state as |2)) then the QPC barrier is higher and so the average current I, through the QPC is smaller then
the average current I; corresponding to the electron location in dot 1 (state |1)). Therefore, from the detector
current one gets information about the electron location. Typical solid-state realization implies weak response
of the detector: AT =1, — I < Iy = (I + I2)/2. Due to presence of current noise, a finite measurement time
t > Tmeas = 250/(AI)? is necessary to distinguish between the two average currents (Sp = 2ely is the detector
current spectral density). For a weakly responding detector many electrons [Timeqs/(e/Io) > 1] pass through the
detector during 7,,cqs, and the current can be considered as continuous on the measurement time scale.

The qubit is characterized by the Hamiltonian Hgp = €/2 (a£a2 — a{al) + H (aJ{a2 + a;al), where € is the
energy asymmetry parameter, H characterizes the strength of tunneling between the two states, while GJ{J and
a1, are the corresponding creation and annihilation operators. The standard Hamiltonian evolution leads to
quantum coherent (Rabi) oscillations'® with the Rabi frequency Q = (4H? + £2)'/2/h. However, the qubit
interaction with environment gradually destroys the oscillations” that leads to the non-oscillating fully mixed
stationary state.

To describe the effect of continuous measurement onto the qubit state evolution, we use the quantum Bayesian
formalism.?” Within this formalism the effect of measurement during small time dt is calculated by applying the
Bayes formula from the classical probability theory!'® to the diagonal elements of the qubit density matrix p;j,
while for an ideal measurement the degree of qubit coherence is conserved (in particular, a pure state remains
pure). The procedure is a straightforward generalization of the “orthodox” projection postulate? to the case
of continuous measurement. In the corresponding Bayesian stochastic differential equations for p;;, the unitary
part due to the Hamiltonian of the system is supplemented with non-unitary evolution that explicitly contains
the measurement record I(t):

) ) H 2AT

P11 = —p22 = —2 7 Im p12 + p11p22 S [1(t) = Io], (1)
0

. .E H Al

pr2 =13 prz+14- (p11 = p22) — (p11 — Pzz)s—o [L(t) = o] pra = P12, (2)

where 7 = 4 + 7. is the dephasing rate due to detector nonideality (y4) and coupling with the environment (7. ).
The dephasing rate y4 = (7! — 1)(AI)?/4S, depends on the detector efficiency (ideality) n and vanishes in the
ideal case n = 1, which corresponds to a detector with quantum-limited sensitivity. Theoretically, the QPC is
an ideal detector? and the SET may also reach the quantum ideality limit.2% 2! Individual realizations of the
measurement process can be simulated using the formula

I(t) — In = (p11 — p22)AI/2 + (1), (3)

where £(t) is the pure white noise with spectral density S = So. If the Eqs.(1)—(2) are averaged over &£(t) (the
above equations are written in the Stratonovich form??), then we obtain usual ensemble-averaged equations:
terms proportional to Al will disappear and v will be replaced by ensemble averaged dephasing rate I' =
v+ (AI)?/4S, that is larger than v because of different evolution of the ensemble members due to random I(t).
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Figure 1. (a) (left panel) Schematic of continuous quantum feedback loop maintaining the desired phase of quantum
coherent oscillations of a qubit. (b) (right panel) Correlation function K. (7) of the qubit coherent oscillations for C =1
and feedback factors F' = 0 (thin solid line), 0.05 (thick solid line), and 0.5 (dashed line).

3. ONE-QUBIT QUANTUM FEEDBACK CONTROL

A closed feedback loop (Fig. 1a) can be organized by monitoring the qubit evolution using the actual measurement
result I(t) plugged into Eqgs. (1)—(2). The difference between the monitored qubit state and a desired state is
used to determine the varying in time correction to the qubit’s Hamiltonian, intended to decrease this difference.
As in Ref.!? | we consider the case of a symmetric qubit, ¢ = 0 (the asymmetry parameter for a charge qubit may
be easily set to zero in an experiment), and so the desired evolution is pg11(t) = 1 — pa,22(t) = [1 + cos(2¢)]/2,
pa,i2(t) = pj o (t) = isin(Qt)/2, where the frequency is 2 = 2H/h. The phase difference Ag = ¢ — ¢y (|AB| <
7) between the monitored value ¢(t) = arctan{2Impi2(t)/[p11(t) — p22(t)]} and the desired phase ¢o(t) =
Ot (mod 27) is treated as the difference (“error”) signal, and is used to control the qubit parameter H (changing
the barrier height of the DQD). A linear control is studied!?:

Hpy=(1- F x A@)H, (4)

where F' is the dimensionless feedback factor. Qualitatively, the feedback is designed to compensate the phase
difference that arises in the process of measurement. If A¢ > 0, then Hy, < H and the frequency of oscillations
decreases, thus reducing the phase difference. The case of negative A¢ is similar.

Let us start with the case of ideal detector, = 1, no environment dephasing, v, = 0, infinite bandwidth of the
line carrying detector current, 7, = 1/Aw = 0, and absence of any time delay, 74 = 0. Figure 1b shows an example
of the feedback performance for moderately weak coupling between qubit and detector: C = h(AI)?/SoH =1
(the Q-factor of oscillations?? is equal to 8/C, so C = 1 is still a weak coupling). The correlation function
K.(r) = (2(t + 7)z(t)) shown in Fig. 1b [2(t) = p11 — poo] is calculated numerically using the Monte Carlo
simulations® of the measurement process for several feedback factors: F = 0, 0.05, and 0.5. The correlation
function decays to zero without feedback, while for finite feedback factor the correlations remain for infinitely
long time. It means the quantum feedback loop really provides the synchronization of quantum oscillations with
a classical oscillating signal [full synchronization would correspond to K, (1) = cos(27)/2].

Analytical analysis has been performed in the ideal case v4 = 7. = 0, when the qubit state eventually becomes
pure’ (even though the phase of qubit oscillations slowly “diffuses” in time). Simplifying the Bayesian equations
(1)—(2) and using the linear control, Eq.(4), we derive stochastic non-linear equation for the phase difference:

d

. AT (A
aAq&: —smg{)S—O <— cos ¢ + £(t)

2FH
2

= A0, Q

which assumes the absence of 27 phase slips. Since we are mainly interested in the weak coupling regime
(C/8 < 1), the first term in parentheses can be neglected. An averaging of the random term over sin ¢ (for weak
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coupling we assume almost harmonic evolution) leads to the simplified equation

d ~ 2FH
p Agp =E(t) - 5 Ag, (6)

where £(t) is an effective white noise with spectral density Sg=(AI )?/2Sp. This equation describes a particle
diffusion in the parabolic potential. The corresponding Fokker-Planck equation has an exact solution which is
used to calculate the correlation function K, (7) = (cos[A¢(t) — A¢(t + 7)]) cos Q7/2. In this way we obtain the

analytical expression

cos (1 C _oFHr
Ko(r) = S0 o {lﬁ—F (e 2 /h—l)}, ™)

2

which fits well the Monte-Carlo results when C/8 <« 1 and C/16F < 1 (weak coupling and moderate or good
synchronization).

Besides the correlation function, we have studied one more characteristic, D, of the synchronization degree.
We define D as the time-average scalar product of the unity-length vector on the Bloch sphere corresponding
to the desired state, and the vector corresponding to the actual state of the qubit. The equivalent definition is
D = 2(Trppg) — 1, where pg is the density matrix of the desired pure state. The usual definition of fidelity is
equal to (D + 1)/2. We use D instead of fidelity because for complete absence of synchronization D = 0, while
the fidelity is still 0.5. Perfect synchronization corresponds to D = 1. Upper solid lines in Fig. 2a and Fig. 3 show
the dependence of D on the feedback factor F for C =1, 7, = 0, and v = 0. One can see that D is proportional
to F for small F' (“soft” onset of the synchronization) and D is asymptotically approaching 1 at large F. The
analytical result

D = exp(—C/32F) (8)

(dashed line in Fig. 3) which follows from Eq. (7), is very close to the numerical results at moderate and good
synchronization.

Notice that our result on the possibility of full synchronization is not quite obvious, since the process of
measurement changes the qubit state in a random manner, and in some sense the amount of disturbance is
equal to the amount of acquired information. Nevertheless, as we will see in the next subsection, the efficient
synchronization of qubit coherent oscillations is possible even in the presence of dephasing environment if the
coupling with the environment is much smaller than the coupling with the detector, and the detector is nearly
ideal.

3.1. Quantum Feedback Control in the Presence of Environmental Dephasing

An important feature of the quantum feedback is the ability to suppress the effect of the qubit dephasing caused
by interaction with the environment (see Fig. 1a). This can be used, for example, for qubit initialization in a
solid-state quantum computer. Solid lines in Fig. 2a show the dependence D(F') for several magnitudes of the
dephasing due to environment, d. = 0, 0.1, and 0.5, where d. = 7. /[(AI)?/4S,] is the ratio between the qubit
coupling to the environment and to the detector. (We still assume an ideal detector; however, it is very simple
to include finite detector efficiency 7 just using the total dephasing dy,¢ = d. +n~* — 1 instead of d..) First of
all, we see that the feedback still maintains the qubit phase synchronization for infinitely long time. However,
for finite d, the degree of synchronization D saturates at a level less than unity. The dots in Fig. 2b show the
saturation value D,,q, as a function of d, for C =1, 7, = 0, and 7 = 1. A linear dependence is found at small
de: Doz ~1—0.5d,.. A little better formula

Doz ~1—0.5d./(1 +d,) (9)

[shown by dashed line in Fig. 2b] works reasonably well up to d. < 1. (We have also studied the cases C = 1/2
and C = 2, and found that the same formula still works well). These results show that the feedback loop can
efficiently suppress the qubit dephasing due to the coupling to the environment if this coupling is much weaker
than the qubit coupling to a nearly ideal detector. Surprisingly, our numerical simulations show that even if the
dephasing is an order of magnitude stronger than coupling to a nearly ideal detector, the feedback still provides
significant (~ 40%) synchronization of quantum coherent oscillations.

Proc. of SPIE Vol. 5436 165



1.00 PR T [N TN T O NN TN Y SN T AT N1 1.0 P I I (T ST NI AT (NI I N
,8? : : ’C\ T ‘e C:]. -
3 . [ & 08+ -1 -
-g’ 0.95 — L = | o n o I
c ] B N ® - T4
(=] B - c L
% B L & 0.6 1.00 O -
N b o = ~
' 0.90 - O o L -
£ ] L g‘ 0.4 S~ ° ° . S
'8 ] C Z - Ne r q
c § ~ [ L
] B é S
2 o085 - E 02 ~o -
i ] i 1 %% 0.05 0.10 I
0.80 7 I 0.0 L T | L |' LI T LI N B
o 10 0 1 2 3 4 5 6 7 8 9 10
F (feedback factor) de (dephasing due to environment)

Figure 2. (a) (left panel) D(F) dependence for C = 1, 7, = 0, and several magnitudes of dephasing due to environment:
de =0,0.1, and 0.5. Dashed and dotted lines correspond to de = 0 and limitation of Hy, by 0 and H/2, respectively. (b)
(right panel) Dots: synchronization degree Dyq. at large feedback factors, as a function of dimensionless dephasing d.
due to environment. Dashed line: fitting formula Dpar ~ 1 —0.5de /(1 + de). Inset shows a blow-up of the low-d. region.

Notice that the solid lines shown in Fig. 2a as well as dots in Fig. 2b are calculated assuming the feedback
control of the tunnel matrix element Hy, = H(1 — F x A¢) even when Hj, becomes negative (this is also
an assumption for the analytical results). To eliminate this unphysical assumption, we have also performed
numerical calculations with restriction Hy, > 0 and with restriction Hy, > H/2. This leads to rather minor
modifications of the presented results (see dashed and dotted lines in Fig. 2a). However, an important difference
is that with the Hyy, restriction D(F') goes down at large F', so the optimum Dj,,, is achieved at some finite
value of F.

3.2. Effect of Finite Detector Bandwidth

In this subsection we study the effect of the finite bandwidth Aw of the line carrying the detector current I(t).
This parameter may be critical for possible experiments. We assume that the detector signal I, (¢) available for
further processing is a weighted time average of the detector current with the time constant 7, ~ 1/Aw. Here we
study the model of averaging with a rectangular time window: I,(t) = 7, * f;ﬁm I(t")dt'. (The results for a more
realistic model of an exponential time window will be presented elsewhere.) We assume that for the feedback
operation I, (t) is still plugged into the Bayesian Eqgs. (1)—(2) so that the “available” density matrix p,(t) differs
from the “true” density matrix p(t). Correspondingly, the monitored phase of oscillations is different from the
actual phase. Besides the inaccuracy, we also expect some implicit time delay for the available phase ¢,, because
the information carried by the signal, effectively comes from past moments of time. In order to compensate for
this delay due to averaging, we use a modified error signal’®> A¢ = ¢, — Q(t — k7,). From a simple reasoning,
we would expect the optimum value k,p; = 1/2 for the rectangular time window, and indeed for small coupling
and not too large averaging time this value was found to provide the best operation of the feedback loop. Figure
3 shows the numerical results for the synchronization degree D calculated using k = 1/2. As expected, finite
bandwidth (finite averaging time 7,) worsens the performance of the quantum feedback loop. The dependence
D(F) saturates at large F' at a level which depends on 7, and becomes significantly less than 100% when 7, is
comparable to the oscillation period T = 27 /€2, in which case a significant loss of information obviously occurs.

The feedback performance depends on the chosen value of the compensation parameter x. It is easy to
show that D(x) dependence is a sinusoidal function with a period Ax = T'/7,, which can be parameterized as
D(k) = Diag co8[Q27, (K — Kopt)] (notice that the meaning of the notation Dy, is different from what was used
in the previous subsection). The idea of the proof is that the change of x is equivalent to the shift of the time
axis and therefore equivalent to the phase shift of p4(t) oscillations in the formula D = 2{pp,) — 1, while keeping
p(t) unchanged. It is important that both Dy,e, and kop: (as thus the complete D(x) dependence) can be found
within one run of the Monte-Carlo simulation by calculating two quadratures of p(t) oscillations.
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Figure 3. Dependence D(F) in the case when the detector current is averaged over the rectangular time window with
duration 7, for 7,/T = 0, 1/3, and 2/3. Compensation factor k = 1/2 is used. Analytical result D = exp(—C/32F)
(dashed line) almost coincides with the upper curve which assumes no averaging.
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Figure 4. (a) Dependence of the qubit synchronization degree D at large F' on the averaging time constant 7, for K =0
(thin solid line), k = 1/2 (dashed line) and k = Kopt (thick solid line). (b) Dependence of Dpaz (for £ = Kopt) on 7, for
several values of the qubit-detector coupling C.

Figure 4a shows the dependence of D at large F' (the saturation value with respect to F') on the averaging
time constant 7, for three choices of the parameter x: k = 0 (no compensation of the implicit time delay),
k = 1/2 (the most natural value used in Ref.'?), and k = ko (optimized value). One can see that D(x = 0)
can be significantly smaller than Dy,., = D(Kk = Kopt) at nonzero 7, that clearly shows the advantage of using
compensation. At 7, /T < 1 the curve for D(k = 1/2) is quite close to the curve for D,,q, (though they do not
coincide and the difference grows at larger coupling C), which confirms that k = 1/2 is a good choice. However,
at 1 < 7,/T < 2 (as well as at 2n — 1 < 7,/T < 2n with integer n) the choice k = 1/2 leads to the 7-shifted
oscillations; therefore D becomes negative.

One can see that besides the overall decrease of D,,,, with increasing 7,, the dependence D,,q.(7,) has
an oscillating behavior and approaches values close to zero at 7, = T', 2T, 3T, etc. This behavior is especially
pronounced at small coupling C and gradually smears with growing C as seen in Fig. 4b. A qualitative explanation
is the following. At small coupling the diffusion of the phase of the Rabi oscillations is slow, so the detector
signal I(t) has a sinusoidal contribution with long correlation time. Averaging of such signal with the rectangular
time window of duration equal to integer number of periods, practically cancels the oscillating contribution and
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Figure 5. (a) Comparison of the results for D(F) with time delay 74 = T (solid lines) and without delay (dashed lines)
for several values of the coupling C. (b) Dependence D(F'74/T) calculated using the simplified model based on Eq. (13).

leads to almost complete loss of information available for the feedback control. When 7, /T is larger than 1 but
not close to an integer, the signal from the integer number of periods is also practically lost, but the remaining
fractional part of the period still supplies some information used for the feedback. Notice that the oscillating
behavior of D,,q.(7,) is a consequence of the assumption of averaging with the rectangular time window and is
absent, for example, for averaging with the exponential window.

3.3. Effect of Time Delay

In a realistic feedback network the time delay within the feedback loop may have a significant effect on the
feedback performance. In our case the process of solving the Bayesian equations in real time needed to monitor
the quantum state of the system is probably the major source of delay; there may be also some other contributions.
We model all of them with one parameter: the time delay 74. In this subsection we study the effect of time delay
assuming infinite bandwidth (7, = 0), ideal detector (n = 1), and absence of extra dephasing (7. = 0) in order
to separate the effects.

The result of the delay is that at a given time moment ¢ the available information (e.g., the monitored phase
¢ of the quantum oscillations) comes from some past moment ¢ —74. Correspondingly, our linear control equation
(4) becomes

Hpo(t) = [1 = F x Ag(t — 7)]H. (10)

Solid lines in Fig. 5a show the numerically calculated dependence of the synchronization degree D on the
feedback factor F' for the time delay equal to the Rabi period, 74 = 7', and several values of the coupling C.
For comparison, the dashed lines show the corresponding results without delay, 74 = 0. Obviously, the time
delay worsens the performance of the feedback loop, leading to smaller values of D. A new feature in the D(F')
dependence introduced by the delay is a sharp drop of the feedback performance at F' > 1/4 (which for our
parameters also means F'r4/T > 1/4), in contrast to the monotonous increase with F in absence of delay.

To understand the physical reason of this new feature, let us start with Eq. (5) modified by introducing the
delay into the feedback term:

d Al (AT 2FH
The simplification in the weak coupling limit, C < 1, leads to the equation similar to Eq. (6):

d
dt

Ag(t) = &) ~ 2 Ag(t — 7). (12)

168 Proc. of SPIE Vol. 5436



10l L T P S S S S
Vys tym=025 @ L o8] Ctyg/T=CTg/T  (b) [

| 0.6 —Tq/ T =0.25, B
L § C=1/9,1/3,1,3 L
- 0O 044 .. Tq/T=1, -

C'=1/36, V12, 1/4, 3/4

_0.2 | T T T | T T T | T T T | T T T | T T T _0.2 T T T | T T T | T T T | T T T | T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
Frg/T FTa/T

Figure 6. a) Dependence of D on F (scaled as F74/T) for the delay 74 = T'/4 and several values of the coupling
C, calculated using the full model (solid lines) and simplified model based on Eq. (12). (b) Full model results for the
D(F74/T) dependence for two sets of parameters (solid and dashed lines) related by the scaling transformation discussed
in the text.

As a first approximation, let us completely neglect the noise term 5 ; this results in a very simple differential
equation d(A@)/dt = —(2FH/h)A¢(t — 74). Introducing a new scaled time variable f = t/74, this equation can

be further reduced to
d - _ 2FHty . _ 2nF1y

d—£A¢>(t) = : Ap(t—1) = 7 Ag(t —1). (13)

Using the standard analysis, we try to find its solution in the form A¢(f) = Aexp(iot), which leads to the
equation i = —(2nF14/T) exp(—i®). Its first solution for real & occurs at @ = 7/2 and Fr4/T = 1/4, thus
separating the decaying in time behavior of A¢(f) at Fry/T < 1/4 and unstable (increasing in time) behavior
at larger F'rq/T.

This simple model explains the abrupt loss of the feedback loop stability at F'rq/T > 1/4 and corresponding
drop of the curves in Fig. 5a as a consequence of the “oversteering” due to too strong feedback. Figure 5b
shows D = (cos A¢) calculated numerically using Eq. (13). (D = 1 at Frq/T < 1/4 because A¢ = 0 is the
stable stationary solution.) Apparent similarity of this result with the results shown in 5a confirms the validity
of our simple analysis (the results should coincide in the limit C — 0). Notice that the nontrivial behavior at
Frq/T > 1/4 is due to modulo 27 definition of A¢ and assumed limitation |A¢| < 7.

Since Eq. (13) has been obtained from Eq. (11) using two simplifying steps, it is interesting to analyze the
inaccuracy introduced by each of them. For this purpose we have also performed the numerical calculations
based on Eq. (12) which is the intermediate stage of simplification. The solid lines in Fig. 6a show the D(F)
dependence for the time delay 7, = T'/4 calculated using the full model based on Egs. (1)—(2) which correspond
to Eq. (11), while the dashed lines show the results using Eq. (12). Even at coupling C = 3 the difference between
the solid and dashed lines is still quite small, which means that this approximation step works really well, while
the second simplifying step [leading to Eq. (13) and Fig. 5b] introduces a stronger change of the results.

Since the effects of the finite bandwidth and extra dephasing are neglected in this subsection, the feedback
performance D is in general some function of three dimensionless parameters: coupling C, feedback factor F,
and dimensionless delay 74/7. However, as we know, in absence of delay and at weak coupling, the dependence
on F' comes mainly through the combination F/C, while the dependence on C itself is very weak [see Eq. (8)].
The effect of the time delay comes mainly through the combination F'r4/T [see Eq. (13)]. Therefore, we would
expect that in the parameterization

D = D(C, F/C, Fry/T) (14)

the dependence on the first argument is quite weak as long as C <« 1. A good feedback performance (D ~ 1)
in the small coupling case is expected when F/C > 1 and Frq/T < 1/4. Notice that it automatically implies
inequality C14/T < 1 which can be rewritten as 74 < Timeqs and has an obvious physical meaning.
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Parameterization Eq. (14) can be used to make the following prediction: in the weak coupling regime the
scaling transformation ¢ — aC, F = aF, 74/T — a '14/T (for arbitrary «) should not lead to a significant
change of D, since it does not change the combinations F/C and Fr4/T. (Notice that this transformation does
not change the combination C74/T = 274/ T Timeqs as well.) Figure 6b confirms this prediction. The corresponding
solid and dashed lines in Fig. 6b are related by the transformation with @ = 4 and show a good agreement with
each other.

4. CONCLUSION

In this paper we have studied the operation of the one-qubit quantum feedback loop designed to keep the quantum
coherent oscillations of a qubit for an infinitely long time, extending the results of Ref.!® . In the ideal case
(ideal detector, no extra environment, infinite bandwidth, no time delay) the theoretical fidelity of the feedback
reaches 100% at F' > C. (Fidelity F is equal to (D + 1)/2 where D is the qubit synchronization degree mostly
analyzed in this paper.) The imperfections obviously decrease the fidelity.

Interaction with dephasing environment as well as the detector nonideality, limit the fidelity approximately
as F ~1—0.25ds¢ at dioy < 1, where dyop = e /[(AI)?/4S0] +n~1 + 1 is the ratio of the total qubit coupling to
the dephasing sources (environment and the nonideal part of the detector) and the coupling to the ideal part of
the detector. Even at dy,; ~ 10 (very strong dephasing contribution) the feedback still operates with a significant
efficiency (D ~ 0.4, F ~0.7).

Analysis of the finite signal bandwidth has been performed using the model of signal averaging with a
rectangular time window. We have found that the best compensation of the implicit time delay due to averaging
is not always equal to one half of the window duration 7,, as was previously expected. The new calculation
algorithm allows us to find the best compensation factor and the corresponding fidelity in one simulation run.
For the model of rectangular time window the feedback performance is found to be very inefficient (D ~ 0) when
To is close to the integer number of oscillation periods 7.

The time delay 74 in the feedback loop also worsens the performance and may lead to the loss of the loop
stability at too strong feedback. From the simplified model we have found that the threshold of instability in
the case of weak coupling is F74/T = 1/4. The numerical simulations using the full model have confirmed this
result, though finite qubit-detector coupling C leads to the smearing of the threshold (instability does not develop
abruptly). In absence of other nonidealities except the delay, the resulting feedback fidelity is a function of three
parameters: coupling C, feedback strength F', and normalized time delay 74/T. An analysis of this function at
C < 1 leads to a conjecture of the scaling behavior (fidelity is approximately constant if parameters change as
C—aC, F— aF, 7;)/T — a 'r4/T), which has been confirmed numerically.
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