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Correlators in simultaneous measurement of non-commuting
qubit observables
Juan Atalaya1, Shay Hacohen-Gourgy2,3,4, Leigh S. Martin2,3, Irfan Siddiqi2,3 and Alexander N. Korotkov1

One of the hallmarks of quantum mechanics is the impossibility of simultaneous measurement of non-commuting observables with
projective measurements. This, however, can be circumvented by using continuous quantum measurements. Here we investigate
the temporal correlations of the output signals of detectors continuously and simultaneously measuring the qubit observables σz
and σz cosφ+ σx sinφ, for various angles φ. Using the quantum Bayesian formalism, we obtain analytical expressions for the
correlators, which we find to be in good agreement with those obtained from experimentally measured output signals. The
agreement is particularly good for cross-correlators, even at times shorter than the cavity modes decay time. We further discuss
how the correlators can be applied for parameter estimation, and use them to infer a small residual qubit Hamiltonian arising from
calibration inaccuracy in the experimental data. Our work opens up new possibilities to perform quantum metrology based on
temporal correlations of measured data.
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INTRODUCTION
Continuous quantum measurements (CQMs) have become a
unique platform to explore fundamental aspects of quantum
phenomena and have potential applications to quantum informa-
tion science. They have been discussed theoretically in various
contexts (e.g.,1–10), and in the past decade superconducting qubits
have become the main experimental system for the realization of
CQMs.11–17 CQMs are shedding new light on our understanding of
the quantum measurement process, and there is also a growing
interest in CQM applications, including quantum feedback,13,16,18–
20 rapid state purification,21 preparation of entangled states,22–24

and continuous quantum error correction.25,26

While a simultaneous measurement of non-commuting obser-
vables is impossible with instantaneous projective measurements,
nothing theoretically forbids such a measurement using CQMs.
(This is so because a CQM can be regarded as a series of
infinitesimally weak quantum measurements, and partial mea-
surements of non-commuting observables become commuting
with each other in the limit of infinitesimally weak strength.) Aside
from new physics, such a protocol may open up new areas of
applications, inaccessible to projective measurements. The theo-
retical discussion of a simultaneous measurement of incompatible
observables has a long history.27–30 For the measurement of non-
commuting observables of a qubit, statistics of time-integrated
detector outputs and fidelity of state monitoring directly via time-
integrated outputs has been analyzed in ref. 31. The evolution of
the qubit state due to simultaneous measurement of incompatible
variables has been described theoretically in ref. 32, and has been
recently demonstrated experimentally in ref. 33.
In this work, we focus on the temporal correlations of the

output signals from two linear detectors measuring continuously
and simultaneously the qubit observables σz and σφ≡ σz cosφ+ σx

sinφ, where σx and σz are the Pauli matrices and φ is an angle
between the two measurement directions on the Bloch sphere
(Fig. 1). The experimental setup is described in detail in ref. 33; it is
based on a Rabi-rotated physical qubit, which is measured
stroboscopically34 using symmetric sideband pumping of a
coupled resonator, so that σz and σφ for an effective rotating-
frame qubit are being measured. Description of such a measure-
ment based on the theory of quantum trajectories8,9,35,36 has been
developed in ref. 33. In this work we will use a simpler approach
based on quantum Bayesian theory.10,37–39 The quantum Bayesian
description of the rotating-frame experiment33 is developed in
Supplementary Note 1.
We will also show that the considered correlators can be used

as a sensitive tool for parameter estimation. This scheme is
different from conventional quantum metrology schemes (e.g.,
see ref. 40 and references therein) because it is not necessary to
initialize the qubit state; in fact, the considered correlators are
insensitive to the initial state even before the steady state is
formed. Furthermore, the continuous measurement capability
may enable monitoring of correlators in real time to perform
parameter estimation of slowly time-varying parameters. Access to
two different measurement channels (corresponding to σz and σφ)
also enhances the parameter estimation capability by circumvent-
ing the ubiquitous problem of spurious slow fluctuations of the
measurement signals offset, affecting mainly self-correlators but
not much cross-correlators, since noise in different amplifiers is
usually not correlated. We will demonstrate such correlator-based
parameter estimation scheme by finding a small frequency
mismatch, ~ΩR, between the frequency of stroboscopic measure-
ment and the Rabi-oscillations frequency, using the cross-
correlator for φ= π/2.

Received: 27 September 2017 Revised: 3 August 2018 Accepted: 7 August 2018

1Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA; 2Quantum Nanoelectronics Laboratory, Department of Physics, University
of California, Berkeley, CA 94720, USA and 3Center for Quantum Coherent Science, University of California, Berkeley, CA 94720, USA
Correspondence: Juan Atalaya (jatalayachavez@ece.ucr.edu)
4Present address: Department of Physics, Technion, Haifa 3200003, Israel

www.nature.com/npjqi

Published in partnership with The University of New South Wales

https://doi.org/10.1038/s41534-018-0091-1
mailto:jatalayachavez@ece.ucr.edu
www.nature.com/npjqi


The goals of this paper are (i) calculation of the time-correlators
for the output signals measuring σz and σφ, and their comparison
with experimental data, and (ii) demonstration that these
correlators may be a useful tool for sensitive parameter estimation
in an experiment. The considered correlators are also important in
the analysis of quantum error detection and correction based on
simultaneous measurement of non-commuting operators.41 We
note that the analyzed output signal correlators are different from
qubit-state correlators.42

RESULTS
Quantum Bayesian theory
A simultaneous continuous measurement (Fig. 1) of the qubit
observables σz and σφ by two linear43 (non-switching) detectors
produces noisy output signals Iz(t) and Iφ(t), respectively.

32,37–39

IzðtÞ ¼ Tr σzρðtÞ½ � þ ffiffiffiffi
τz

p
ξzðtÞ; (1)

IφðtÞ ¼ Tr½σφρðtÞ� þ ffiffiffiffiffi
τφ

p
ξφðtÞ; (2)

where ρ(t) is the qubit density matrix and τz and τφ are the
“measurement” (collapse) times needed for an informational
signal-to-noise ratio of 1 for each channel. Note the chosen
normalization for Iz and Iφ. In the Markovian approximation, the
noises ξz and ξφ are uncorrelated, white, and Gaussian with two-
time correlators

ξzðtÞξzðt0Þh i ¼ ξφðtÞξφðt0Þ
� � ¼ δðt � t0Þ (3)

and ξzðtÞξφðt0Þ
� �

= 0. The qubit state is characterized in the Bloch-
sphere representation as ρðtÞ≡ 1þ xðtÞσx þ yðtÞσy þ zðtÞσz

� �
=2.

The experimental method of simultaneous measurement of σz and
σφ for the effective qubit is rather involved (see Methods and
ref. 33); however, its theoretical description can be based on the
standard quantum Bayesian approach for the circuit QED
measurement. Note that the measured operator “direction” φ is
determined by a phase shift between the applied sideband tones,
so parameters of the σφ-measurement channel do not depend on
φ. Each of the two channels uses a separate phase-sensitive
amplifier, with the amplified quadrature determined by the phase
of the local oscillator (parametric pumping). Here we assume that
in each channel, the optimal (informational) quadrature is
amplified, so that the qubit evolution due to measurement is
not affected by the phase backaction related to fluctuations in the
orthogonal (non-informational) quadrature.35–39 Then there is only
the quantum informational backaction, which for measurement of
σz and σφ is described

32,37–39 by the evolution equations (in the Itô

interpretation, see Supplementary Note 1)

_x ¼ �Γzx � Γφ cosφ x cosφ� z sinφð Þ � τ
�1=2
z xz ξz

�τ
�1=2
φ xzcosφ� 1� x2ð Þsinφ½ �ξφ;

(4)

_y ¼ � Γz þ Γφ
� �

y � τ�1=2
z yz ξz � τ�1=2

φ y zcosφþ x sinφ½ �ξφ; (5)

_z ¼ Γφ sinφ x cosφ� z sinφð Þ þ τ
�1=2
z ð1� z2Þξz

þτ
�1=2
φ ð1� z2Þ cosφ� xz sinφ½ �ξφ:

(6)

Here Γz and Γφ are the ensemble dephasing rates due to
measurement, so that the quantum efficiencies37–39 for the two
channels are ηz= 1/(2τzΓz) and ηφ= 1/(2τφΓφ). In the experiment
ηz ≈ 0.49 and ηφ ≈ 0.41 (note that ηφ is a characteristic of the
measurement channel and therefore does not depend on φ).
Equations (4)–(6) describe evolution of the effective qubit due

to measurement only. We also need to add terms due to unitary
evolution and due to decoherence not related to measurement.
We assume the Hamiltonian H= �h~ΩRσy=2, describing Rabi
oscillations about y-axis with frequency ~ΩR. In the experiment,
~ΩR =ΩR−Ωrf is a small (kHz-range) undesired mismatch between
the Rabi frequency ΩR of the physical qubit and rotating frame
frequency Ωrf defined by detuning of sideband pumps,33 see
Supplementary Note 1. Decoherence of the effective qubit arises
from the decoherence of the physical qubit, which is characterized
(in the laboratory frame) by energy relaxation time T1 and
dephasing time T2 [the pure dephasing rate is then
T�1
pd ¼ T�1

2 � 2T1ð Þ�1; note that T�1
1 may have a significant

contribution from qubit hybridization with leaking resonator, i.e.,
the Purcell effect]. To find decoherence of the effective (Rabi-
rotating-frame) qubit, we need to average physical decoherence
over fast rotations ΩR � T�1

2 . As derived in Supplementary Note 1,
the corresponding decoherence of the effective qubit (with added
unitary evolution) is

_x ¼ ~ΩRz � γx; _y ¼ �T�1
2 y; _z ¼ �~ΩRx � γz; (7)

γ ¼ T�1
1 þ T�1

2

� �
=2; (8)

Evolution of the effective qubit is described by adding terms from
Eqs. (4)–(6) and (7).

Correlators
Our goal is to calculate the two-time correlators, Kij(τ), for the
output signals,

KijðτÞ � hIjðt1 þ τÞ Iiðt1Þi; τ>0; i; j 2 fz;φg: (9)

Self- and cross-correlators correspond to i= j and i ≠ j,
respectively. The averaging in Eq. (9) is over an ensemble of
measurements with the initial qubit state ρin prepared at time
tin ≤ t1. We will see, however, that somewhat surprisingly, the
result does not depend on ρin, tin, and t1 (even during initial non-
steady-state regime), so Eq. (9) can also be understood as
averaging over time t1. Note that this statement is correct only
because of unital (symmetric) evolution in Eq. (7). We assume that
the parameters describing strength of measurement, decoher-
ence, and unitary evolution in Eqs. (4)–(7) do not change with
time. By assuming τ > 0, we avoid considering the trivial zero-time
contribution to the self-correlators, ΔKii(τ)= τiδ(τ).
As shown in Supplementary Note 2, calculation of the

correlators from Eqs. (1)–(7) is equivalent to the following recipe:44

we replace an actual continuous measurement at the (earlier) time
moment t1 with a projective measurement of σi, so that the
measurement result Ii(t1) is ±1 with probability {1 ± Tr[σi ρ(t1)]}/2,
and the qubit state collapses correspondingly to the eigenstate
1ij i or 0ij i of σi (σi 1ij i ¼ 1ij i, σi 0ij i ¼ � 0ij i). We emphasize that
this recipe does not assume a steady-state measurement process
and does not assume a unital evolution. The recipe gives the

̂

detector

detector

( )

( )

|1〉

|0〉

Fig. 1 We consider the simultaneous continuous measurement of
qubit observables σz and σφ, which differ by an angle φ on the Bloch
sphere, and calculate time-correlators for the output signals Iz(t) and
Iφ(t) resulting from this measurement
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correlator

KijðτÞ ¼ Tr σj ρav t1 þ τj1ið Þ� �
1þ Tr σi ρ t1ð Þ½ �ð Þ=2

�Tr σj ρav t1 þ τj0ið Þ� �
1� Tr σi ρ t1ð Þ½ �ð Þ=2; (10)

where ρav(t1+ τ|1i) is the ensemble-averaged density matrix at
time t1+ τ with the initial condition ρav(t1|1i)= 1ij i 1ih j; similarly,
ρav(t1+ τ|0i) starts with ρav(t1|0i)= 0ij i 0ih j. The evolution of ρav is
given by Eqs. (4)–(7) without noise, ξz= ξφ= 0 (because of the Itô
form), so that

_xav ¼ �Γzxav � Γφ cosφ xav cosφ� zav sinφð Þ þ ~ΩRzav � γxav; (11)

_yav ¼ � Γz þ Γφ
� �

yav � T�1
2 yav; (12)

_zav ¼ Γφ sinφ xav cosφ� zav sinφð Þ � ~ΩRxav � γzav: (13)

These equations have an analytical solution presented in
Supplementary Note 2 (note that the evolution of the y-coordinate
is not important in our analysis). Thus we obtain the following
correlators (alternative methods for the derivation are also
discussed in Supplementary Note 2):

KzzðτÞ ¼ 1
2

1þ Γz þ cosð2φÞΓφ
Γþ � Γ�

	 

e�Γ�τ þ 1

2
1� Γz þ cosð2φÞΓφ

Γþ � Γ�

	 

e�Γþτ ;

(14)

KzφðτÞ ¼
Γz þ Γφ
� �

cosφþ 2~ΩRsinφ

2 Γþ � Γ�ð Þ e�Γ�τ � e�Γþτ
� �þ cosφ

2
e�Γ�τ þ e�Γþτ
� �

;

(15)

Γ± ¼
Γz þ Γφ ± Γ2z þ Γ2φ þ 2ΓzΓφ cosð2φÞ � 4~Ω

2
R

h i1=2
2

þ T�1
1 þ T�1

2

� �
=2:

(16)

Because of the rotational symmetry, the results for the correlators
Kφφ(τ) and Kφz(τ) can be obtained from Eqs. (14) and (15) by
exchanging Γz↔ Γφ and φ→−φ. The rotational symmetry also
makes the correlators insensitive to a y-rotation in both
measurement directions, z→ φadd, φ→ φ+ φadd, by any angle
φadd.
We emphasize that the obtained correlators do not depend on

the qubit state ρ(t1) and therefore on ρin and tin (this property
would not hold in the presence of phase backaction or non-unital
evolution). We also emphasize that the correlators depend on Γz
and Γφ, but do not depend on τz and τφ and therefore on the
quantum efficiencies ηz and ηφ. Physically, this is because non-
ideal detectors can be thought of as ideal detectors with extra
noise at the output.37–39 Since the extra noises are uncorrelated
and have short (zero) correlation time, they only affect the zero-
time self-correlators Kii(0).
Let us discuss some special cases for the results (14)–(16). (i) At

small times, τ→+ 0, we obtain correlators

Kzzðþ0Þ ¼ 1; Kzφð0Þ ¼ Kφzð0Þ ¼ cosφ: (17)

(ii) For φj j � 1 and sufficiently small T�1
2 and ~ΩR, we have Zeno

pinning near the states 0j i and 1j i with rare jumps between them
with equal rates Γjump. This produces cross-correlator

45 Kzφ(τ) ≈ exp
(−2Γjumpτ) with jump rates

Γjump ¼ φ2ΓzΓφ þ ~Ω
2
R

2 Γz þ Γφ
� � þ T�1

1 þ T�1
2

� �
=4: (18)

(iii) In the case ~ΩR ¼ T�1
1 ¼ T�1

2 ¼ 0, we have full correlation for φ
= 0, Kzφ(τ)= Kzz(τ)= 1, full anticorrelation for φ= π, Kzφ(τ)=
−Kzz(τ)=−1, and no correlation for φ= π/2, Kzφ(τ)= 0, while
Kzz(τ)= e�Γφτ and Kφφ(τ)= e�Γzτ . (iv) In the case ~ΩR = 0, the cross-
correlator is symmetric, Kzφ(τ)= Kφz(τ), for any φ.

Comparison with experimental results
Experimental data have been taken in the same way as in
ref. 33(see also Methods). Experimental parameters correspond to
well-separated frequency scales, as needed for the theoretical
results, ðT�1

1 ; T�1
2 ; j~ΩRjÞ � ðΓz; ΓφÞ � ðκz; κφÞ � ΩR, with T1=

60 μs, T2,Ramsey= 30 μs (T2,echo= 40 μs), Γ�1
z ¼ Γ�1

φ = 1.3 μs, damp-
ing rates of the two measurement resonator modes κz/2π=
4.3 MHz and κφ/2π= 7.2 MHz, and ΩR ≈Ωrf= 2π × 40 MHz. For this
work we use 11 values for the angle φ between the Bloch-sphere
directions of simultaneously measured qubit observables: φn=
nπ/10, with integer n between 0 and 10. While φn is determined by
well-controlled phases of applied microwaves,33 the effective φ
includes a small correction δφ= (κφ− κz)/2ΩR ≈ 0.036 (see Sup-
plementary Note 1), so that φ= φn+ δφ. We have used about
200,000 traces per angle for the output signals~IzðtÞ and~IφðtÞ, each
with 5 μs duration and 4 ns sampling interval. The traces are
selected by heralding the ground state of the physical qubit at the
start of a run and checking that the transmon qubit is still within
the two-level subspace after the run (this procedure eliminates
about 15% of traces). The recorded signals~IiðtÞ are linearly related
to the normalized signals Ii(t) in Eqs. (1) and (2) as ~IiðtÞ=
ðΔ~Ii=2Þ IiðtÞ þ~Ioffi , where responses Δ~Ii have been calibrated using
ensemble-averaged h~IiðtÞi (see details in Supplementary Note 3),
giving in arbitrary units Δ~Iz = 4.0 and Δ~Iφ = 4.4. The offsets ~Ioffi are
approximately zeroed individually for each trace by measuring the
non-rotating physical qubit after each run. Additional offset
removal, j~Ioffi j ≈ 0.15–0.20, for all traces with the same φ is done
using h~IiðtÞi, see Supplementary Note 3. For calculating the
correlators, we average over the ensemble of ~200,000 traces and
additionally average over time t1 in Eq. (9) within the 0.5 μs range
1 μs ≤ t1 ≤ 1.5 μs (first 1 μs is not used to avoid transients in the
experimental procedure, and longer averaging reduces the range
for τ; we also used averaging over 1 μs duration with similar
results). Note that in the experiment the applied microwave
phases in the two measurement channels actually correspond to
angles ±φn/2; however, because of rotational symmetry, we still
label the first measured operator as σz and the second operator as
σφ. Also note that we use subscripts z and φ in various notations (
~Ii , κi, etc.) simply to distinguish the first (“z”) and second (“φ”)
measurement channels.
Figure 2a shows the agreement between the theory and the

experimental data, where the solid lines show the symmetrized
cross-correlator [Kzφ(τ)+ Kφz(τ)]/2 calculated from the experimen-
tal traces for 11 values of the angle φ, while the dashed lines
correspond to the theoretical result, Eq. (15). For the analytics we
used ~ΩR = 0; however, there is practically no dependence on ~ΩR
for the symmetrized cross-correlator, since the dependence comes
only via Eq. (16). Note that because of the Markovian assumption,
our theory is formally valid only for τ≳ κ�1

i ~ 30 ns; however, the
experimental results agree with the theory even at τ<κ�1

i
(experimental curves do not show any extra features in this
range, and they are also not expected theoretically). Figure 2b
shows the same symmetrized cross-correlator at τ= 0 as a
function of φ. The agreement between the theory (cosφ, line)
and the experiment (crosses) is also very good. Note a minor
discrepancy between the theory and experimental results in Fig.
2a for φ ≈ π, while there is no discrepancy at φ ≈ 0; the physical
difference between these two cases stems from different effective
initial states (see Supplementary Note 3), so that we expect the
largest contribution from transients for φ ≈ π.
The self-correlator Kzz(τ) as a function of τ is shown in Fig. 2c for

11 values of φ (results for Kφφ are similar). The agreement between
the theory (dashed lines) and experiment (solid lines) is in general
good, except for small τ (discussed below). A significant
discrepancy at relatively long τ for values of φ close to π/2 is
probably caused by slow variations in time of the signal offsets~Ioffi ,
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so that they are different from trace to trace and cannot be fully
removed. The corresponding slight increase of the correlators
become especially visible when Kzz is small (because of the
logarithmic scale), i.e., for φ close to π/2 and long τ. Note that the
lines in Fig. 2c come in pairs, corresponding to angles φn and π−
φn. The separation of the analytical lines in the pairs is due to δφ,
while separation of experimental lines is smaller, probably
indicating a smaller value of δφ (partial compensation could be
due to imperfect phase matching of applied microwaves or their
dispersion in the cable).
Looking at the experimental self-correlators Kzz(τ) and Kφφ(τ) at

small τ for φn= π/2 (Fig. 2d), we see that in contrast to the
theoretical results, there is a very significant increase of Kii(τ) at τ≲
0.1 μs. The discrepancy is due to the assumption of delta-
correlated noise in our theory, while in the experiment the
amplifying chain has a finite bandwidth (the Josephson para-
metric amplifiers have a half-bandwidth of 3.6 MHz and 10 MHz
for σz and σφ channels, respectively), and the output signals ~IiðtÞ
are also passed through analog filters with a quite sharp cutoff at
~25MHz (this cutoff produces clearly visible oscillations with
~40 ns period). Therefore, the theoretical delta-function contribu-
tion τi δ(τ) to Kii(τ) becomes widened in experiment. As shown in
Supplementary Note 4, it is interesting to note that, somewhat
counterintuitively, a finite bandwidth of measurement resonator
modes does not produce a contribution to Kii(τ) at 0 < τ≲ κ�1

i
when Γi � κi (κ�1

z ≈ 37 ns, κ�1
φ ≈ 22 ns). This can be understood by

considering a resonator without a qubit; then a finite bandwidth κi
does not affect the amplified delta-correlated vacuum noise, so
that only classical fluctuations of the resonator field (e.g., due to

parameter fluctuations or elevated resonator temperature) will
produce output fluctuations with 2/κi time scale. We have checked
that the lines in Fig. 2d do not contain noticeable exponential
contributions with decay time of 2/κi (small expected contribu-
tions with amplitude on the order of Γj/κi are below experimental
accuracy, see Supplementary Note 4). Note that there is no
contribution from the amplifier noise at small τ in Fig. 2a because
the noises in the two amplifiers are uncorrelated.

Estimation of residual ~ΩR

We now show that the antisymmetrized cross-correlator is a useful
tool and can be used to estimate small residual Rabi oscillations
frequency ~ΩR in the experiment. From Eq. (15) we find

KzφðτÞ � KφzðτÞ ¼ 2~ΩR sinφ
Γþ � Γ�

e�Γ�τ � e�Γþτ
� �

: (19)

Since in the case j~ΩRj � Γz;φ we can neglect ~ΩR in Eq. (16) for Γ±,
Eq. (19) gives a direct way to find ~ΩR from the experimental
antisymmetrized cross-correlator. The solid line in Fig. 3 shows
Kzφ(τ)− Kφz(τ) from the experimental data for φ= π/2. Fitting this
dependence on τ with Eq. (19) (dashed line), we find the value
~ΩR=2π ≈ 12 kHz, which is within the experimentally expected
range of frequency mismatch between ΩR and Ωrf. Note that the
overall shapes of the solid and dashed lines agree well with each
other. Estimation of ~ΩR via the antisymmetrized cross-correlation
is a very sensitive method and can be used to further reduce j~ΩRj
in an experiment, in which a direct measurement of 40 MHz Rabi
oscillations with a few kHz accuracy is a difficult task.

DISCUSSION
Using the quantum Bayesian theory for a simultaneous measure-
ment of non-commuting qubit observables, we obtained analy-
tical results for the self- and cross-correlators of the output signals
from the measurement. Their comparison with experimental
results shows a very good agreement. The correlators can be
used for sensitive parameter estimation, in particular, to estimate
and eliminate the mismatch between the Rabi oscillations and the
sideband frequency shift used for measurement.
Our theoretical method and results can be applied to a range of

related problems. In particular, in subsystem error detection/
correction codes operated with continuous measurements,41 the
error syndrome is based on correlators from measurement of a set
of non-commuting observables. Therefore, the analysis of

0

-1

1

[ s]

0

cos

(b)

+
(
)
/
2

/2 +

(a) +

1 2 30
-1

0

1

0

( )

( )

=
2
+

(d)

[ s]

101

100

0.25 0.50

(
)

/2 +

(c)

Solid: expt.
Dashed: theory

[ s]
1

100

10-1
0 2 3
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Fig. 3 Estimation of the residual Rabi frequency ~ΩR from the
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experimental results for φn= π/2, while dashed line represents Eq.
(19) with the fitted value ~ΩR=2π= 12 kHz. Averaging over ~200,000
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correlators is necessary for logical error analysis as well as for
diagnosis of spurious dynamics of gauge qubits and deviations of
monitored observables from intended observables. Our method
can also be extended to multi-time correlators46 and to
experimental systems with phase backaction. Another possible
application is to exploit continuous measurements to track slow
variations of Rabi frequencies due to 1/f noise. It may also be
possible to stabilize the Rabi frequencies by quantum feedback13

based on cross-correlators from several measurement channels.

METHODS
Experimental setup
The experimental setup is the same as the one used in the experiment,33

where full details can be found. For clarity we briefly describe the
experimental apparatus for simultaneously applying and controlling two
measurement observables. We use a transmon qubit placed inside an
aluminum cavity, such that it is dispersively coupled to the two lowest
modes of the cavity. The cavity has two outputs, each primarily coupled to
a different mode. The outputs of these modes are amplified using two
lumped-element Josephson parametric amplifiers (LJPA) operated in phase
sensitive mode. Each mode is then used to measure an observable of the
qubit, as described below. The apparatus is cooled to 30mK inside a
dilution refrigerator.
We drive Rabi oscillations ΩR/2π= 40MHz on the qubit by applying a

resonant microwave tone modulated by an arbitrary waveform generator.
In the frame rotating with ΩR, this produces an effective low frequency
qubit. To couple the effective qubit to the cavity modes for measurement,
we apply a pair of microwave sidebands to each mode. The sidebands are
detuned above and below the two cavity modes by ΩR, which leads to a
resonant interaction between the qubit Rabi oscillations and the mode.
This coupling may be understood as a stroboscopic measurement of the
qubit oscillations. The relative phase of the sidebands determines which
quadrature of the qubit oscillations is measured. This coupling causes the
cavity mode state to displace in a way that depends on the state of the
qubit. We couple to the internal cavity field using a small antenna that
protrudes into the cavity, allowing read out the cavity state as described
above. Quantum trajectory reconstructions are validated using post-
selection and tomographic measurements.
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