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Proposal of quantum feedback setup

(problem to be discussed) , ¢ 014 matios04696)
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Goal: maintain coherent (Rabi) oscillations in a qubit for arbitrary long time

Idea: use quadrature components of the detector current /(t) for monitoring
of the oscillation phase (as in a classical feedback!)

Result: works surprisingly well (fidelity up to 95%)
2DEG implementation:

qubit: double quantum dot been demonstrated experimentally:

DQD qubit and QPC detector have
. ey H
occupied by one electron g

Buks et al., Nature (1998)
detector: quantum point U Sprinzak et al., PRL (1999)

> .
contact (QPC) M\ 10 Hayashi et al., PRL (2003)
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Quantum feedback in optics

Recent experiment: Science 304, 270 (2004)

Real-Time Quantum Feedback e
Control of Atomic

Feedback
Controller

AFy * Squeezed

- - State Computer
Spin-Squeezing
IM Geramia,® Jehn K. Stockten, Hidee Mabuchi
‘E’ Coherent QND Probe
Real-time feedback performed during a quantum nondemalition measurement st reser

of atomic spin-angular momentum allowed us to influence the quantum sta-
tistics of the measurement outcome We showed that itis possible to hamess
measurement backaction as a form of actuation in quantum contral, and thus
wie describe a valuable tool for quantum information scence, Our fesdback-
mediated procedure generates spin-squeszing, forwhich the reduction in quan-
tum uncertainty and resulting atomic entanglement are not conditioned on the
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H.M. Wiseman and G. J. Milburn,
Phys. Rev. Lett. 70, 548 (1993)
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. What happens to a qubit state during measurement?
0<«<—>0

ce \J For simplicity (for a moment) H=g=0, infinite barrier (frozen qubit),

? I®  evolution due to measurement only

“Orthodox” answer “Conventional” (decoherence) answer (Leggett, Zurek)
\
11 (10 11 1 exp(—T?) 1
2 5 00 5 5 > 5, 5
2 2 - J 2 2 R 2 2 R 2
111 - (00 11 exp(-T) 1 0o 1
2 2 0 1) 2 2 2 2 2
|1> or |2>, depending on the result no measurement result! ensemble averaged

Orthodox and decoherence answers contradict each other!

applicable for: | Single quantum systems | Continuous measurements
Orthodox yes no
Conventional (ensemble) no yes
Bayesian yes yes

Bayesian formalism describes gradual collapse of single quantum systems
Noisy detector output /(f) should be taken into account
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. Bayesian formalism for a single qubit

O0<—>0O
A £
¥ Aoy =£(cle, =cley) +H(cle, +cie,)

U

T 1) - 11, 12) > I, AI=I -1, , Iy=(I{+1,)/2, §;— detector noise
1(?)

{Ibn = _Ibzz =2HIm p, +0,,0, QAN /S)HI(2) —1,]

1.012 =0, YiH (P — Py) + P (O — PN /SPHI(2) —1)] —yAQ,

A.K., 1998
y=r-(AI) /4S,, I —ensemble decoherence

n=1-y/T =(AI)* /4S8, - detector ideality (efficiency), 7 <100%
I(t)—1, =(py, =P DI /2 +§(2), Sf =S, Averaging over {(t) = master equation

|deal detector (n=1) does not decohere a single qubit;
then random evolution of qubit wavefunction can be monitored

Theoretically, quantum point contact is an ideal detector (n=1),
experimentally, n~0.8 demonstrated (Buks et al., 1998)

Similar formalisms developed earlier. Key words: Imprecise, weak, selective, or conditional
measurements, POVM, Quantum trajectories, Quantum jumps, Restricted path integral, etc.
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Bayesian quantum feedback of a qubit

Since qubit state can be monitored, the feedback is possible!

desired evolution

feedback \l;

control stage signal |comparison
(barrier height) circuit

Pij(t)

Ruskov & A.K., 2001

Goal: maintain desired phase of coherent (Rabi) oscillations
in spite of environmental dephasing (keep qubit “fresh”)

Idea: monitor the Rabi phase @by continuous measurement and apply
feedback control of the qubit barrier height, AH.z/H = —-FxAg@

To monitor phase @ we plug detector output /(t) into Bayesian equations __
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Performance of quantum feedback
(no extra environment)

Qubit correlation function Fidelity (synchronization degree)
C=1,n=1, F=0,0.05,0.5 B I e | e
0.50-11111111111115 %0.8—_
o T
E oo (UL g
S NN g
=AM
-0.50 +— I — ' A 0.0
" m P "M F (feedback factor)
Kz(r)=COSZQt eXp[mLF(e_ZFHT/h —1)} C=n(A?/S H — coupling

;' - available bandwidth

for weak coupling and good fidelit
( Ping J 2 F - feedback strength

Detector current correlation function D=2(TrPp ., —1
K,(7) = (AI)* cosQt (1 +¢~2FHTIRY For ideal detector and wide bandwidth,
4 2 fidelity can be arbitrary close to 100%
Xexp{m%(e_ZFH”h _1)} _,_%5(,) D = exp(—C/32F)

Ruskov & Korotkov, PRB 66, 041401(R) (2002)
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D (synchronization degree)

Suppression of environment-induced
decoherence by quantum feedback
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Big experimental problems:

* necessity of very fast real-time solution
of the Bayesian equations

e wide bandwidth (>>Q, GHz-range) of the line
delivering noisy signal /(t) to the “processor”
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Simple quantum feedback of a solid-state qubit

(A.K., cond-mat/0404696)
H=H,[1-Fx g (0]

Hqp=HOy | control ¢ Goal: maintain coherent
qubit X (Rabi) oscillations for
C<<t 1 J(9) [1XC0s(Q), T-average[—=S | ¢, arbitrary long time
detector > Y|&o L
xsin(Q7), T-average [ ® P11-P2=c0s(Q1), py,=i sin(Q1)/2

Idea: use two quadrature components of the detector current /(f)
to monitor approximately the phase of qubit oscillations
(a very natural way for usual classical feedback!)

X(0)= [ _[1(t") - 1,] cos(") exp[~(¢ —1')/ 7] di
Y(0)=[|_[1(t") - 1] sin(Qt") exp[~(t ")/ 7] di

(similar formulas for a tank circuit instead of mixing with local oscillator)

= —arctan (Y / X)

D

Advantage: simplicity and relatively narrow bandwidth (1/7 ~T ; << Q)

Anticipated problem: without feedback the spectral peak-to-pedestal ratio <4,
therefore not much information in quadratures

(surprisingly, situation is much better than anticipated!)
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Accuracy of phase monitoring via quadratures

APrms

no feedback yet
( y ) weak coupling C<<1
_20 41—t 11111 IR (N SR NN (T SN S SR SRR
> 12 i
V3 _ 2 -
o WMg=4S/ah= 1 t[aD¥S{=| 2.16 i
3 1.5 C - dimensionless coupling [ ‘S A
© 1.0 - -~ llllcolria_t.e(.i.n_(.)l.sf—- e C=0.1
e e[ Q-tl_ 1 i
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©05- - distributions) 8
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T[(AD%/S;] (averaging time) AQ

Best approximation
(X2+Y2)=(S,/A1)?

(2/5)(4112-1)=2.16

do/dt =—11(t) —1,]sin(Qt + @ (AN /S;) (actual phase shift, ideal detector)

dg, /dt = —[1(¢t) —1,]sin(Qr + (qn)/(X2 + Yz)l/2 (observed phase shift)

Noise enters the actual and observed phase evolution in a similar way
Quite accurate monitoring! cos(0.44)=0.9
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Noise improves the monitoring accuracy!
(purely quantum effect, “reality follows observations)




Simple quantum feedback

2 weak coupling C
g D — feedback
= efficiency
= 1)552}2'—1
< —
A

. ~ )
k/i {7 fidelity for different averaging 1 | Dimax = 90%
2 0.0 ————T———— (Fq = 95%)

0.0' o 0.1 0.2 0.3 0.4
F/C (feedback strength)

How to verity feedback operation experimentally?

Simple: just check that in-phase quadrature (X)
of the detector current is positive D =(X)(4/7AI)

(X)=0 for any non-feedback Hamiltonian control of the qubit
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Effect of nonidealities

- nonideal detectors (finite = 77— = C=0'1 —
quantum efficiency n) 2 1 ' i
. Q 08- T[AD¥S=1 [
and environment 'O - i
- qubit energy asymmetry e  © 06 -
- frequency mismatch AQ ‘Eg 04_’ 7 T = I
o Toooa i T
Quantum feedback - i
still works quite well L "7 i
Q & ————T—T7
. 0.0 0.2 0.4 0.6 0.8
Main features: F/C (feedback strength)

* Fidelity F, up to ~95% achievable (D~90%)

* Natural, practically classical feedback setup

* Averaging T~1/>>1/Q (narrow bandwidth!) Simple enough
e Detector efficiency (ideality) N~0.1 still OK experiment?!
e Robust to asymmetry € and frequency shift AQ

e Simple verification: positive in-phase quadrature (X)
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Conclusion

Very straightforward, practically classical feedback idea
(monitoring the phase of oscillations via quadratures)
works well for the qubit coherent oscillations

Price for simplicity is a less-then-ideal operation
(fidelity is limited by ~95%)

Feedback operation is much better than expected

Relatively simple experiment (simple setup, narrow
bandwidth, inefficient detectors OK, simple verification)
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