UCR, Industry day, 10/27/04

Quantum feedback control for quantum computing

Alexander Korotkov

Dept. of Electrical Engineering, UCR

Outline:

- Quantum computing
- Paradox of quantum collapse
- Continuous quantum measurement
- Quantum feedback control

Acknowledgement: Rusko Ruskov (postdoc), Qin Zhang (grad. student)

Support:

Alexander Korotkov

Quantum computing (1)

- Exponential speedup for certain problems (difficult to solve, easy to check)
- Not a general-purpose computing

Most important mathematical problem (for practice): factorization of a number into primes

Classical algorithm: $\sim N^{1/2}$ operations (best: $\sim N^{1/3}$ operations) Example: $N \sim 2^{1024} \Rightarrow \sim 10^{150}$ operations (10 GHz x 10^{130} yrs) Age of Universe: 10^{10} yrs

Quantum algorithm: ~log²(N) operations (P. Shor – A. Kitaev)

Example: N~2¹⁰²⁴ \Rightarrow ~10⁶ operations (1 MHz x 1 sec)

Alexander Korotkov

Quantum computing (2)

Main idea: massive parallelization of quantum computation **qubit = quantum bit**

1000 bits $\Rightarrow 2^{1000}$ different numbers (states), only one at a time

- 1000 qubits $\Rightarrow 2^{1000}$ different states simultaneously (2¹⁰⁰⁰ computers in parallel)
- Why? Qubits can be in superposition of quantum states (weird feature of quantum world)

Quantum computer can break codes of any imaginable length But! Quantum cryptography is unbreakable (different subject)

Main problem in building a quantum computer: decoherence (just technical, but severe problem), at present up to 7 qubits

Alexander Korotkov

Collapse paradox in quantum physics, defeat of realism

Niels Bohr: "If you are not confused by quantum physics then you haven't really understood it"

Collapse paradox (main paradox of QM): Act of observation changes a quantum system

Two parts of a system still feel each other over distance (without any communication)

Alexander Korotkov

Richard Feynman: "I think I can safely say that nobody under-stands quantum mechanics"

1935: Einstein, Podolsky, Rosen (EPR) quantum theory cannot be correct
1964: J. Bell (theory) it can be checked, who was wrong: Bohr or Einstein
1982: A. Aspect et al. (experiment) quantum mechanics is right (Einstein was wrong)

In some sense causality is violated (cause and effect reversed in time) "spooky action at distance"

Continuous measurement of solid-state qubits

Double-quantum-qot and quantum point contact (QPC)

Cooper-pair box and single-electron transistor (SET) **Two SQUIDs**

Continuous measurement \Rightarrow **continuous collapse**

Alexander Korotkov

What happens to a qubit state during measurement?

For simplicity (for a moment) $H = \varepsilon = 0$, infinite barrier (frozen qubit), evolution due to measurement only

"Orthodox" answer

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \xrightarrow{\nearrow} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\xrightarrow{1} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

1> or |2>, depending on the result

"Conventional" (decoherence) answer (Leggett, Zurek)

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2} & \frac{\exp(-\Gamma t)}{2} \\ \frac{\exp(-\Gamma t)}{2} & \frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

no measurement result! ensemble averaged

Orthodox and decoherence answers contradict each other!

applicable for:	Single quantum systems	Continuous measurements
"Orthodox" (1920s)	yes	no
"Conventional" (1980s)	no	yes
Bayesian (A.K., 1998)	yes	yes

Bayesian formalism describes gradual collapse of single quantum systems Noisy detector output I(t) should be taken into account

Alexander Korotkov — University of California, Riverside

 $\begin{cases} d\rho_{11}/dt = -d\rho_{22}/dt = -2H \operatorname{Im} \rho_{12} + \rho_{11}\rho_{22} (2\Delta I/S_I)[I(t) - I_0] \\ d\rho_{12}/dt = i\epsilon\rho_{12} + iH(\rho_{11} - \rho_{22}) + \rho_{12}(\rho_{11} - \rho_{22})(\Delta I/S_I)[I(t) - I_0] - \gamma\rho_{12} \\ \gamma = \Gamma - (\Delta I)^2/4S_I, \quad \Gamma - \text{ensemble decoherence} \\ \eta = 1 - \gamma/\Gamma = (\Delta I)^2/4S_I\Gamma \quad - \text{detector ideality (efficiency)}, \eta \le 100\% \end{cases}$ For simulations: $I(t) - I_0 \rightarrow (\rho_{22} - \rho_{11})\Delta I/2 + \xi(t), \quad S_{\xi} = S_I$ Averaging over $\xi(t) \Rightarrow$ master equation

Ideal detector (η =1) does not decohere a single qubit (pure state remains pure), then random evolution of the qubit *wavefunction* can be monitored

Similar formalisms developed earlier. Key words: Imprecise, weak, selective, or conditional measurements, POVM, Quantum trajectories, Quantum jumps, Restricted path integral, etc.

Names: E.B. Davies, K. Kraus, A.S. Holevo, C.W. Gardiner, H.J. Carmichael, C.M. Caves, M.B. Plenio, P.L. Knight, M.B. Mensky, D.F. Walls, N. Gisin, I.C. Percival, G.J. Milburn, H.M. Wiseman, R. Onofrio, S. Habib, A. Doherty, etc. (very incomplete list)

— Alexander Korotkov — University of California, Riverside -

Quantum feedback control of a solid-state qubit

Goal: maintain desired phase of coherent (Rabi) oscillations in spite of environmental dephasing (keep qubit "fresh") Use: qubit initialization is a quantum computer Idea: monitor the Rabi phase ϕ by continuous measurement and apply feedback control of the qubit barrier height, $\Delta H_{FB}/H = -F \times \Delta \phi$ Quantum feedback in quantum optics is discussed since 1993 (Wiseman-Milburn), recently first successful experiments in Mabuchi's group (2004).

Alexander Korotkov University of California, Riverside -

Performance of quantum feedback

(for weak coupling and good fidelity)

Detector current correlation function

$$K_{I}(\tau) = \frac{\left(\Delta I\right)^{2}}{4} \frac{\cos \Omega t}{2} \left(1 + e^{-2FH\tau/\hbar}\right)$$
$$\times \exp\left[\frac{C}{16F} \left(e^{-2FH\tau/\hbar} - 1\right)\right] + \frac{S_{I}}{2} \delta(\tau)$$

Alexander Korotkov

For ideal detector and wide bandwidth, fidelity can be arbitrary close to 100% $D = \exp(-C/32F)$

Ruskov & Korotkov, PRB 66, 041401(R) (2002) University of California, Riverside

Simple quantum feedback of a solid-state qubit

(A.K., cond-mat/0404696)

We want to maintain coherent (Rabi) oscillations for arbitrary long time, $\rho_{11}-\rho_{22}=\cos(\Omega t), \rho_{12}=i\sin(\Omega t)/2$

Idea: use two quadrature components of the detector current *l(t)* to monitor approximately the phase of qubit oscillations (a very natural way for usual classical feedback!)

$$X(t) = \int_{-\infty}^{t} [I(t') - I_0] \cos(\Omega t') \exp[-(t - t')/\tau] dt$$

$$Y(t) = \int_{-\infty}^{t} [I(t') - I_0] \sin(\Omega t') \exp[-(t - t')/\tau] dt$$

$$\phi_m = -\arctan(Y/X)$$

(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth $(1/\tau \sim \Gamma_d \ll \Omega)$

Anticipated problem: without feedback the spectral peak-to-pedestal ratio <4, therefore not much information in quadratures

(surprisingly, situation is much better than anticipated!)

Alexander Korotkov — University of California, Riverside

Alexander Korotkov — University of California, Riverside

Simple quantum feedback

- Fidelity F up to ~95% achievable (D~90%)
- Natural, practically classical feedback setup
- Averaging $\tau \sim 1/\Gamma >> 1/\Omega$ (narrow bandwidth!)
- Detector efficiency (ideality) η≤0.1 still OK
- Robust to asymmetry ϵ and frequency shift $\Delta \Omega$
- Very simple verification just positive in-phase quadrature $\langle X \rangle$
 - Alexander Korotkov

 $D \equiv 2F - 1$ $F \equiv \langle \operatorname{Tr} \rho(t) \rho_{des}(t) \rangle$ $D \simeq \langle X \rangle (4 / \tau \Delta I)$

X – in-phase quadrature of the detector current

Doable experiment? University of California, Riverside

Quantum feedback in optics

Recent experiment: Science 304, 270 (2004) Real-Time Quantum Feedback Control of Atomic Spin-Squeezing

JM Geremia,* John K. Stockton, Hideo Mabuchi

Real-time feedback performed during a quantum nondemolition measurement of atomic spin-angular momentum allowed us to influence the quantum statistics of the measurement outcome. We showed that it is possible to harness measurement backaction as a form of actuation in quantum control, and thus we describe a valuable tool for quantum information science. Our feedbackmediated procedure generates spin-squeezing, for which the reduction in quantum uncertainty and resulting atomic entanglement are not conditioned on the measurement outcome.

First detailed theory:

H.M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70, 548 (**1993**)

No experimental attempts of quantum feedback in solid-state yet (even theory is still considered controversial)

Experiments soon?

Alexander Korotkov

Summary

- Weird features of quantum world are the basis of quantum computing
- Extremely weird nature of quantum collapse can be put to use in a quantum computer
- Quantum feedback is possible in spite of collapse, feedback of a qubit is useful in a quantum computer
- Very difficult experiments; however, very important for both practice and philosophy

