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Some experiments on nanoresonators
LaHaye, Buu, Camarota, 
and Schwab, Science-2004

∆x = 5.8∆x0 3.8 fm/Hz1/2

Knobel, Cleland, Nature-2003

f = 117 MHz

2 fm/Hz1/2

∆x ~ 100 ∆x0

f = 20 MHz

Ming et al. (Roukes’ group), 
Nature-2003

f = 1.03 GHz
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QND squeezing of a nanomechanical resonator
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Continuous monitoring and quantum feedback can cool nanoresonator
down to the ground state (Hopkins, Jacobs, Habib, Schwab, 2003)

New feature: stroboscopic QND measurement using modulation 
of detector voltage ⇒ squeezing becomes possible

Potential application: ultrasensitive force measurements

cond-mat/0411617

Continuous monitoring heats up nanoresonator (Mozyrsky, Martin, 2002) 

(Somewhat similar for measurement 
by SET instead of QPC)
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Stroboscopic QND measurements
Quantum nondemolition (QND) measurements (Braginsky-Khalili book)
(a way to suppress measurement backaction and overcome standard quantum limit)
Idea: to avoid measuring the magnitude conjugated to the magnitude of interest

Standard quantum limit
Example: measurement of x(t2)-x(t1)
First measurement: ∆p(t1)>=/2∆x(t1), then even for accurate second measurement

inaccuracy of position difference is  ∆x(t1)+ (t2-t1)=/2m∆x(t1)> (t2-t1)=/21/2m

/ 2p x∆ > ∆=

Stroboscopic QND measurements (Braginsky et al., 1978; Thorne et al., 1978)

Idea: second measurement exactly one oscillation 
period later is insensitive to ∆poscillator

(or ∆t =nT/2, T=2π/ω0)

Difference in our case: • continuous measurement
• weak coupling with detector
• quantum feedback to suppress “heating”

1( )x t 2( )x t
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Bayesian formalism for continuous
measurement of a nanoresonator
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Recipe: quantum Bayes procedure

Nanoresonator evolution (Stratonovich form), same equation as for qubits:
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Evolution of Gaussian states

ρ
Assume Gaussian states (following Doherty-Jacobs

and Hopkins-Jacobs-Habib-Schwab), 
then ρ(x,x’) is described by only 5 magnitudes:

〈x〉, 〈p〉 - average position and momentum (packet center),
Dx, Dp, Dxp – variances (packet width)
Assume large Q-factor (then no temperature)

Voltage modulation  f(t)V0: 0 00 0 0( ) , ( ) ( ), | ( ) |Ixk f t k I f t I k x S f t S= = + =
Then coupling (measurement strength) is also modulated in time:

2 2
0 0 0| ( ) | , / 4 / measIC f t C C k S mω ω τ= = ==

Packet center evolves randomly and needs feedback (force F) to cool down
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Packet width evolves deterministically and is QND squeezed by periodic f(t)
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Squeezing by sine-modulation, V(t)=V0sin(ωt)

0

1

2

1 2 3 4 5 6 7 8

0.5

1

1.5

2

2.5

3

3.5

4

xxD D D〈 〉= +

0 / 2tω π

no modulation
with modulation

xD

xD〈 〉

0/ω ω
0.0 1.0 2.0 3.0 4.0

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

C = 0.1

(∆
x 0

 / ∆
x)

2

η  = 1
C = 1 η  = 0.8

η  = 0.5

Squeezing up to 1.73 at ω=2ω0

Dx=(∆x)2,  D〈x〉= 〈〈x〉
2〉 - 〈〈x〉〉2

∆x0= (=/2mω0)1/2 – ground state width

Squeezing obviously oscillates in time,
maximum squeezing at maximum voltage,
momentum squeezing shifted in phase by π/2. 

2
0max ( ) / xtS x D≡ ∆

Analytics (weak coupling):

0 0 0(2 ) 3 , 0.36 /S Cω η ω ω η= ∆ =

η - detector efficiency, C0 – coupling

Quantum feedback:

0 x pF m x pω γ γ= − 〈 〉 − 〈 〉

(same as in Hopkins et al.; without modulation
it cools the state down to the ground state)

Feedback is sufficiently efficient, D〈x〉ÜDx
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pulse modulation

Efficient squeezing at ω=2ω0/n
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Squeezing by stroboscopic (pulse) modulation
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Ruskov-Schwab-Korotkov
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Squeezing by stroboscopic modulation
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(So far in experiment  η1/2C0Q~0.1)
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Verification of nanoresonator squeezing
Procedure: 1) prepare squeezed state by stroboscopic measurement,

2) switch off quantum feedback
3) measure in the stroboscopic way 1
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For instantaneous measurements (δt→0) the variance of XN is
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= S – squeezing, 
∆x0 – ground state width

Distinguishable from ground state (S=1) in one run for Sà1 
(error probability ~S -1/2)

About twice worse for
continuous measurements
because of extra “heating”                             

Squeezed state is distinguishable in one run (with small 
error probability), therefore suitable for ultrasensitive
force measurement beyond standard quantum limit
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Conclusion

• Modulation of detector voltage with ω= 2ω0/n
periodically squeezes x-width of nanoresonator
state (“breathing mode”)

• Packet center is randomly “heated” by measurement; 
quantum feedback can cool it down

• Sine-modulation leads to a small squeezing (<1.73),
stroboscopic (pulse) modulation can lead to a strong
squeezing (>>1) even for a weak coupling with detector

• Potential application: ultrasensitive force measurement 
beyond standard quantum limit


