NPMS, Maui, 11.28.05

Quantum feedback of solid-state qubits

Qin Zhang,¹ Rusko Ruskov,² and <u>Alexander Korotkov¹</u> ¹University of California, Riverside and ²Penn State University

Support:

Alexander Korotkov

cond-mat/0507011 PRB 71, 201305(R) (2005)

Measured spectrum of qubit coherent oscillations

Assume classical output, eV » $\hbar\Omega$

$$\varepsilon = 0, \quad \Gamma = \eta^{-1} (\Delta I)^2 / 4S_0$$
$$S_I(\omega) = S_0 + \frac{\Omega^2 (\Delta I)^2 \Gamma}{(\omega^2 - \Omega^2)^2 + \Gamma^2 \omega^2}$$

Spectral peak at weak coupling, peak-to-pedestal ratio $\leq 4\eta \leq 4$

A.K., LT'99 Averin-A.K., 2000 A.K., 2000 **Averin, 2000** Goan-Milburn, 2001 Makhlin et al., 2001 **Balatsky-Martin**, 2001 **Ruskov-A.K.**, 2002 Mozyrsky et al., 2002 Balatsky et al., 2002 Bulaevskii et al., 2002 Shnirman et al., 2002 Bulaevskii-Ortiz, 2003 Shnirman et al., 2003

Contrary: Stace-Barrett, 2003 (PRL 2004)

Alexander Korotkov

 $\eta = 1 - \gamma / \Gamma = (\Delta I)^2 / 4S_I \Gamma$ - detector ideality (efficiency), $\eta \le 100\%$

Ideal detector (η =1) does not decohere a single qubit; then random evolution of qubit *wavefunction* can be monitored

For simulations: $I(t) - I_0 = (\rho_{22} - \rho_{11})\Delta I / 2 + \xi(t), \quad S_{\xi} = S_I$

Averaging over $\xi(t)$ i conventional master equation

Similar formalisms developed earlier. Key words: Imprecise, weak, selective, or conditional measurements, POVM, Quantum trajectories, Quantum jumps, Restricted path integral, etc.
 Names: Davies, Kraus, Holevo, Mensky, Caves, Gardiner, Carmichael, Plenio, Knight, Walls, Gisin, Percival, Milburn, Wiseman, Onofrio, Habib, Doherty, etc. (incomplete list)

Alexander Korotkov — University of California, Riverside

Performance of Bayesian quantum feedback (no extra environment)

Detector current correlation function

$$K_{I}(\tau) = \frac{(\Delta I)^{2}}{4} \frac{\cos \Omega t}{2} (1 + e^{-2FH\tau/\hbar})$$
$$\times \exp\left[\frac{C}{16F} (e^{-2FH\tau/\hbar} - 1)\right] + \frac{S_{I}}{2} \delta(\tau)$$

Alexander Korotkov

Fidelity (synchronization degree)

For ideal detector and wide bandwidth, fidelity can be arbitrarily close to 100% $D = \exp(-C/32F)$

Ruskov-Korotkov, PRB 66, 041401(R) (2002)

Effect of non-ideal detector and extra environment

Effective ideality of measurement he

Zhang-Ruskov-Korotkov, 2005

Effect of qubit parameter deviations (ϵ , H)

Feedback operation is robust against small unknown deviations of qubit parameters

Alexander Korotkov

Effect of finite bandwidth

Averaging of the detector signal over time τ_a (using rectangular or exponential window) leads to information loss and therefore to the decrease of feedback fidelity D.

For good feedback performance the averaging time τ_a should be much smaller than Rabi period $T=2\pi/\Omega$ (signal bandwidth >> Rabi frequency)

Alexander Korotkov

Effect of feedback loop delay

F – feedback strength τ_d – loop delay T=2 π/Ω – Rabi period C – detector coupling

Feedback loop becomes unstable ("oversteering") at $F\tau_d/T > 1/4$

Alexander Korotkov

Control of energy-asymmetric qubit ($\epsilon \neq 0$)

Even an asymmetric qubit can be efficiently feedback-controlled using only *H*-modulation Now two degrees of freedom for deviation: $\Delta \phi$ and Δr

New controller:

Alexander Korotkov

So, Bayesian quantum feedback of a qubit works very well, but ...

Difficult experimental problems:

- necessity of very fast real-time solution of the Bayesian equations
- wide bandwidth (>>Ω, GHz-range) of the line delivering noisy signal *l*(*t*) to the "processor"

Simple quantum feedback of a solid-state qubit

(A.K., PRB-2005)

Goal: maintain coherent (Rabi) oscillations for arbitrary long time

Idea: use two quadratures of the detector current *I(t)* to monitor the phase of qubit oscillations (just as in usual classical feedback!)

$$X(t) = \int_{-\infty}^{t} [I(t') - I_0] \cos(\Omega t') \exp[-(t - t')/\tau] dt$$

$$Y(t) = \int_{-\infty}^{t} [I(t') - I_0] \sin(\Omega t') \exp[-(t - t')/\tau] dt$$

$$\phi_m = -\arctan(Y/X)$$

(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth $(1/\tau \sim \Gamma_d << \Omega)$

Surprisingly, works well in spite of being so simple!

Alexander Korotkov — University of California, Riverside

Accuracy of phase monitoring via quadratures (no feedback yet)

Noise improves the monitoring accuracy! (purely quantum effect, "reality follows observations")

Quite accurate monitoring! $cos(0.44) \approx 0.9$

Simple quantum feedback

How to verify feedback operation experimentally? Simple: just check that in-phase quadrature $\langle X \rangle$ of the detector current is positive $D = \langle X \rangle (4/\tau \Delta I)$

 $\langle X \rangle$ =0 for any non-feedback Hamiltonian control of the qubit

Alexander Korotkov — University of California, Riverside

Effect of nonidealities

- nonideal detectors (finite quantum efficiency η) and environment
- qubit energy asymmetry $\boldsymbol{\epsilon}$
- frequency mismatch $\Delta \Omega$

Quantum feedback still works quite well

Main features:

- Fidelity F_0 up to ~95% achievable (D~90%)
- Natural, practically classical feedback setup
- Averaging $\tau \sim 1/\Gamma >> 1/\Omega$ (narrow bandwidth!)
- Detector efficiency (ideality) $\eta\!\sim\!0.1$ still OK
- \bullet Robust to asymmetry ϵ and frequency shift $\Delta \Omega$
- Simple verification: positive in-phase quadrature $\langle X \rangle$

Alexander Korotkov

University of California, Riverside

Simple enough experiment?!

Alexander Korotkov

Quantum feedback in optics

Recent experiment: Science 304, 270 (2004) Real-Time Quantum Feedback Control of Atomic Spin-Squeezing

JM Geremia,* John K. Stockton, Hideo Mabuchi

Real-time feedback performed during a quantum nondemolition measurement of atomic spin-angular momentum allowed us to influence the quantum statistics of the measurement outcome. We showed that it is possible to harness measurement backaction as a form of actuation in quantum control, and thus we describe a valuable tool for quantum information science. Our feedbackmediated procedure generates spin-squeezing, for which the reduction in quantum uncertainty and resulting atomic entanglement are not conditioned on the measurement outcome.

First detailed theory: H.M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70, 548 (1993)

Alexander Korotkov

Conclusion

- Quantum evolution can be continuously controlled by a feedback loop
- Bayesian feedback of a qubit can maintain Rabi oscillations in a qubit with nearly 100% fidelity
- Simple (practically classical) quadrature-based feedback works well for a qubit; relatively simple experiment

Alexander Korotkov