PQE'05, Snowbird, UT, 01/04/2005

Quantum feedback control in solid-state mesoscopics

Alexander Korotkov

University of California, Riverside

Outline:

- Introduction
 - Quantum feedback in optics
 - Bayesian formalism for solid-state quantum measurements
- Non-decaying coherent (Rabi) oscillations in a qubit
 - Bayesian feedback: R.Ruskov-A.K., PRB 66, 041401(R) (2002)
 - Simple feedback: A.K., cond-mat/0404696
- QND squeezing of a nanomechanical resonator R.Ruskov-K.Schwab-A.K., cond-mat/0406416, cond-mat/0411617

Support:

Alexander Korotkov

Quantum feedback in optics

Recent experiment: Science 304, 270 (2004) (Mabuchi's group, Caltech)

Real-Time Quantum Feedback Control of Atomic Spin-Squeezing

JM Geremia,* John K. Stockton, Hideo Mabuchi

Real-time feedback performed during a quantum nondemolition measurement of atomic spin-angular momentum allowed us to influence the quantum statistics of the measurement outcome. We showed that it is possible to harness measurement backaction as a form of actuation in quantum control, and thus we describe a valuable tool for quantum information science. Our feedbackmediated procedure generates spin-squeezing, for which the reduction in quantum uncertainty and resulting atomic entanglement are not conditioned on the measurement outcome.

First detailed theory: H.M. Wiseman and G.J. Milburn,

Phys. Rev. Lett. 70, 548 (1993)

Similar subject in solid state is delayed by 5-10 years, still theory only

Alexander Korotkov

Quantum feedback of a solid-state qubit for non-decaying Rabi oscillations

Goal: maintain coherent (Rabi) oscillations in a qubit for arbitrarily long timeResult: yes, possible!

Potential implementations:

qubit: double quantum dot occupied by one electron

detector: quantum point contact (QPC)

qubit: Cooper-pair box

detector: single-electron transistor (SET)

qubit and detector have been demonstrated experimentally

Buks *et al*., Nature (1998) Sprinzak *et al*., PRL (1999) Hayashi *et al*., PRL (2003)

Nakamura *et al*., Nature (1999) Vion *et al*., Science (2002) Pashkin *et al*., Nature (2003)

Alexander Korotkov

What happens to qubit state during measurement?

 $\begin{array}{c} \stackrel{H}{\longleftrightarrow} \circ \\ \stackrel{\bullet}{\bullet} \stackrel{\bullet}{e} \\ \stackrel{\bigcup}{\longrightarrow} I(t) \end{array}$ For simplicity (for a moment) consider evolution due to measurement only (assume qubit with infinite barrier, $H = \varepsilon = 0$)

"Orthodox" answer

"Conventional" (decoherence) answer (Leggett, Zurek)

 $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2} & \frac{\exp(-\Gamma t)}{2} \\ \frac{\exp(-\Gamma t)}{2} & \frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$

qubit
density
matrix:
$$\begin{pmatrix} 1 & 1 \\ 2 & 2 \\ 1 & 2 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 $\rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

1> or |2>, depending on the result

no measurement result! ensemble averaged

Orthodox and decoherence answers contradict each other!

applicable for:	Single quantum systems	Continuous measurements
Orthodox	yes	no
Conventional (ensemble)	no	yes
Bayesian	yes	yes

Bayesian formalism describes gradual collapse of single quantum systems Noisy detector output I(t) should be taken into account

Alexander Korotkov ————— University of California, Riverside

Ideal detector (η =1) does not decohere a single qubit; then random evolution of qubit *wavefunction* can be monitored

Theoretically, quantum point contact is an ideal detector (η=1), experimentally, η~0.8 demonstrated (Buks *et al*., 1998)

Similar formalisms developed earlier. Key words: Imprecise, weak, selective or conditional measurements, POVM, Quantum trajectories, Quantum jumps, Restricted path integral, etc. Alexander Korotkov — University of California, Riverside —

Measured spectrum of qubit coherent oscillations

What is the spectral density $S_I(\omega)$ of detector current?

Assume classical output, eV » $\hbar\Omega$ $\varepsilon = 0$, $\Gamma = \eta^{-1} (\Delta I)^2 / 4S_0$ $S_I(\omega) = S_0 + \frac{\Omega^2 (\Delta I)^2 \Gamma}{(\omega^2 - \Omega^2)^2 + \Gamma^2 \omega^2}$ Spectral peak can be seen, but peak-to-pedestal ratio $\leq 4\eta \leq 4$

(result can be obtained using various methods, not only Bayesian method)

Weak coupling, $\alpha = C/8 \ll 1$ $S_{I}(\omega) = S_{0} + \frac{\eta S_{0}\varepsilon^{2} / H^{2}}{1 + (\omega\hbar^{2}\Omega^{2} / 4H^{2}\Gamma)^{2}} + \frac{4\eta S_{0}(1 + \varepsilon^{2} / 2H^{2})^{-1}}{1 + [(\omega - \Omega)\Gamma(1 - 2H^{2} / \hbar^{2}\Omega^{2})]^{2}}$

A.K., LT'99 **Averin-A.K., 2000** A.K., 2000 **Averin, 2000** Goan-Milburn, 2001 Makhlin et al., 2001 **Balatsky-Martin**, 2001 **Ruskov-A.K., 2002** Mozyrsky et al., 2002 Balatsky et al., 2002 Bulaevskii et al., 2002 Shnirman et al., 2002 Bulaevskii-Ortiz, 2003 Shnirman et al., 2003

Contrary: Stace-Barrett, 2003 (PRL 2004)

Bayesian quantum feedback of a qubit

Since qubit state can be monitored, the feedback is possible!

Goal: maintain desired phase of coherent (Rabi) oscillations in spite of environmental dephasing (keep qubit "fresh")

Idea: monitor the Rabi phase ϕ by continuous measurement and apply feedback control of the qubit barrier height, $\Delta H_{FB}/H = -F \times \Delta \phi$

To monitor phase ϕ we plug detector output I(t) into Bayesian equations

Alexander Korotkov

Performance of quantum feedback (no extra environment)

Qubit correlation function $C=1, \eta=1, F=0, 0.05, 0.5$ 0.50 0.25 0.00 -0.25 0.00 -0.25 0.00 -0.50 0 -0.50 0 $T_{\Omega/2\pi}^{10} = \frac{\cos \Omega t}{2} \exp \left[\frac{C}{16F}(e^{-2FH\tau/\hbar}-1)\right]$ (for weak coupling and good fidelit

(for weak coupling and good fidelity)

Detector current correlation function

$$K_{I}(\tau) = \frac{\left(\Delta I\right)^{2}}{4} \frac{\cos \Omega t}{2} \left(1 + e^{-2FH\tau/\hbar}\right)$$
$$\times \exp\left[\frac{C}{16F} \left(e^{-2FH\tau/\hbar} - 1\right)\right] + \frac{S_{I}}{2} \delta(\tau)$$

Alexander Korotkov

Fidelity (synchronization degree)

For ideal detector and wide bandwidth, fidelity can be arbitrary close to 100% $D = \exp(-C/32F)$

Ruskov & Korotkov, PRB 66, 041401(R) (2002) University of California, Riverside

Suppression of environment-induced decoherence by quantum feedback

Big experimental problems:

- necessity of very fast real-time solution of the Bayesian equations
- wide bandwidth (>>Ω, GHz-range) of the line delivering noisy signal *I*(*t*) to the "processor"

Alexander Korotkov

Simple quantum feedback of a solid-state qubit

Idea: use two quadrature components of the detector current *l*(*t*) to monitor approximately the phase of qubit oscillations (a very natural way for usual classical feedback!)

$$X(t) = \int_{-\infty}^{t} [I(t') - I_0] \cos(\Omega t') \exp[-(t - t')/\tau] dt$$

$$Y(t) = \int_{-\infty}^{t} [I(t') - I_0] \sin(\Omega t') \exp[-(t - t')/\tau] dt$$

$$\phi_m = -\arctan(Y/X)$$

(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth $(1/\tau \sim \Gamma_d << \Omega)$

Anticipated problem: without feedback the spectral peak-to-pedestal ratio <4, therefore not much information in quadratures

(surprisingly, situation is much better than anticipated!)

Alexander Korotkov — University of California, Riverside

Simple quantum feedback

How to verify feedback operation experimentally?

Simple: just check that in-phase quadrature $\langle X \rangle$ of the detector current is positive $D = \langle X \rangle (4/\tau \Delta I)$

 $\langle X \rangle$ =0 for *any* non-feedback Hamiltonian control of the qubit

Alexander Korotkov — University of California, Riverside

Effect of nonidealities

- nonideal detectors (finite quantum efficiency η) and environment
- qubit energy asymmetry $\boldsymbol{\epsilon}$
- frequency mismatch $\Delta \Omega$

Quantum feedback still works quite well

Main features:

- Natural, practically classical feedback setup
- Narrow bandwidth $(1/\tau \sim \Gamma <</\Omega)$
- Fidelity F_0 up to ~95% achievable (D~90%)
- \bullet Robust to asymmetry ϵ and frequency shift $\Delta \Omega$
- Small detector efficiency (ideality) $\eta \sim 0.1$ still OK
- Simple verification: positive in-phase quadrature $\langle X \rangle$

Simple enough for real experiment!

QND squeezing of a nanomechanical resonator

Ruskov, Schwab, Korotkov, cond-mat/0406416, $\hat{H}_0 = \hat{p}^2 / 2m + m\omega_0^2 \hat{x}^2 / 2$ cond-mat/0411617 $\hat{H}_{DET} = \sum_{l} E_l a_l^{\dagger} a_l + \sum_{r} E_r a_r^{\dagger} a_r + \sum_{l,r} (M a_l^{\dagger} a_r + H.c.)$ $\hat{H}_{INT} = \sum_{l,r} (\Delta M \hat{x} a_l^{\dagger} a_r + H.c.)$ Experimental status: $\omega_0 / 2\pi \sim 1$ GHz ($\hbar \omega_0 \sim 80$ mK), Roukes' group, 2003 $\Delta x / \Delta x_0 \sim 5$ [SQL $\Delta x_0 = (\hbar / 2m\omega_0)^{1/2}$], Schwab's group, 2004

Continuous monitoring and quantum feedback can cool nanoresonator down to the ground state (Hopkins, Jacobs, Habib, Schwab, PRB 2003)

New feature: Braginsky's stroboscopic QND measurement using modulation of detector voltage \Rightarrow squeezing becomes possible

Potential application: ultrasensitive force measurements

Other most important papers:

Doherty, Jacobs, PRA 1999 (formalism for Gaussian states) Mozyrsky, Martin, PRL 2002 (ensemble-averaged evolution)

Alexander Korotkov

Stroboscopic QND measurements

Quantum nondemolition (QND) measurements (Braginsky-Khalili book) (a way to suppress measurement backaction and overcome standard quantum limit) Idea: to avoid measuring the magnitude conjugated to the magnitude of interest

Standard quantum limit

Example: measurement of $x(t_2)-x(t_1)$

First measurement: $\Delta p(t_1) > \hbar/2\Delta x(t_1)$, then even for accurate second measurement inaccuracy of position difference is $\Delta x(t_1) + (t_2 - t_1)\hbar/2m\Delta x(t_1) > (t_2 - t_1)\hbar/2^{1/2}m$

Stroboscopic QND measurements (Braginsky et al., 1978; Thorne et al., 1978)

Idea: second measurement exactly one oscillation period later is insensitive to Δp (or $\Delta t = nT/2$, $T=2\pi/\omega_0$)

Difference in our case:

- continuous measurement
- weak coupling with detector
- quantum feedback to suppress "heating"

Alexander Korotkov

Bayesian formalism for continuous measurement of a nanoresonator

 $\hat{H}_{0} = \hat{p}^{2} / 2m + m\omega_{0}^{2} \hat{x}^{2} / 2$ $\hat{H}_{DET} = \sum_{l} E_{l} a_{l}^{\dagger} a_{l} + \sum_{r} E_{r} a_{r}^{\dagger} a_{r} + \sum_{l,r} (M a_{l}^{\dagger} a_{r} + H.c.)$ $\hat{H}_{INT} = \sum_{l,r} (\Delta M \hat{x} a_{l}^{\dagger} a_{r} + H.c.)$ Current $I_{x} = 2\pi (M + \Delta M x)^{2} \rho_{l} \rho_{r} e^{2} V / \hbar = I_{0} + k x$ Detector noise $S_{x} = S_{0} \equiv 2eI_{0}$ Recipe: quantum Bayes procedure

Nanoresonator evolution (Stratonovich form), same equation as for qubits: $\frac{d\rho(x,x')}{dt} = \frac{-i}{\hbar} [\hat{H}_0,\rho] + \frac{\rho(x,x')}{S_0} \left\{ I(t)(I_x + I_{x'} - 2\langle I \rangle) - \frac{1}{2} (I_x^2 + I_{x'}^2 - 2\langle I^2 \rangle) \right\}$ $\langle I \rangle = \sum I_x \rho(x,x), \quad I(t) = I_x + \xi(t), \quad S_{\xi} = S_0$

Ito form (same as in many papers on conditional measurement of oscillators):

$$\frac{d\rho(x,x')}{dt} = \frac{-i}{\hbar} [\hat{H}_0,\rho] - \frac{k^2}{4S_0\eta} (x-x')^2 \rho(x,x') + \frac{k}{S_0} (x+x'-2\langle x \rangle) \rho(x,x') \xi(t)$$

Alexander Korotkov — University of California, Riverside

Evolution of Gaussian states

Assume Gaussian states (following Doherty-Jacobs and Hopkins-Jacobs-Habib-Schwab), then $\rho(x,x')$ is described by only 5 magnitudes: $\langle x \rangle, \langle p \rangle$ - average position and momentum (packet center), $D_{x'}, D_{p'}, D_{xp}$ – variances (packet width) Assume large *Q*-factor (then no temperature)

Voltage modulation $f(t)V_0$: $k = f(t)k_0$, $I_x = f(t)(I_{00} + k_0x)$, $S_I = |f(t)|S_0$ Then coupling (measurement strength) is also modulated in time:

$$C = |f(t)| C_0, \quad C = \hbar k^2 / S_I m \omega_0^2 = 4 / \omega_0 \tau_{meas}$$

Packet center evolves randomly and needs feedback (force *F*) to cool down $d\langle x \rangle / dt = \langle p \rangle / m + (2k_0 / S_0) \operatorname{sgn}[f(t)] D_x \xi(t)$ $d\langle p \rangle / dt = -m\omega_0^2 \langle x \rangle + (2k_0 / S_0) \operatorname{sgn}[f(t)] D_{xp} \xi(t) + F(t)$

Packet width evolves deterministically and is QND squeezed by periodic f(t)

$$d\langle D_{x} \rangle / dt = (2/m)D_{xp} - (2k_{0}^{2}/S_{0}) | f(t) | D_{x}^{2}$$

$$d\langle D_{p} \rangle / dt = -2m\omega_{0}^{2}D_{xp} + (k_{0}^{2}\hbar^{2}/2S_{0}\eta) | f(t) | - (2k_{0}^{2}/S_{0}) | f(t) | D_{xp}^{2}$$

$$d\langle D_{xp} \rangle / dt = (1/m)D_{p} - m\omega_{0}^{2}D_{x} - (2k_{0}^{2}/S_{0}) | f(t) | D_{x}D_{xp}$$

Alexander Korotkov — University of California, Riverside

Ruskov-Schwah-Korotkov Squeezing obviously oscillates in time, maximum squeezing at maximum voltage, momentum squeezing shifted in phase by $\pi/2$.

$$S \equiv \max_t \left(\Delta x_0 \right)^2 / D_x$$

Analytics (weak coupling):

$$S(2\omega_0) = \sqrt{3\eta}, \quad \Delta\omega = 0.36\omega_0 C_0 / \sqrt{\eta}$$

 η - detector efficiency, C_0 – coupling $\Delta x_0 = (\hbar/2m\omega_0)^{1/2}$ – ground state width $D_{\mathbf{x}} = (\Delta x)^2, \ D_{\langle \mathbf{x} \rangle} = \langle \langle \mathbf{x} \rangle^2 \rangle - \langle \langle \mathbf{x} \rangle \rangle^2$

Quantum feedback:

$$F = -m\omega_0 \gamma_x \langle x \rangle - \gamma_p \langle p \rangle$$

(same as in Hopkins *et al.*; without modulation it cools the state down to the ground state) Feedback is sufficiently efficient, $D_{\langle \chi \rangle} \ddot{U} D_{\chi}$

Squeezing up to 1.73 at $\omega = 2\omega_0$

Squeezing by stroboscopic (pulse) modulation

Squeezing by stroboscopic modulation

Analytics (weak coupling, short pulses)

Maximum squeezing

 $S(2\omega_0/n) = \frac{2\sqrt{3\eta}}{\omega_0 \delta t} \qquad \Delta \omega = \frac{4C_0(\delta t)^3 \omega_0^4}{\pi n^2 \sqrt{3n}}$

Linewidth

C₀ – dimensionless coupling with detector δt – pulse duration, $T_0 = 2\pi/\omega_0$ η – quantum efficiency of detector

Squeezing requires $\sim \sqrt{3\eta} / C_0 (\omega_0 \delta t)^2$ pulses

Finite Q-factor and finite temperature limit maximum squeezing $\rm S_{max}$ $S_{\text{max}} = \frac{3}{4} \left[\frac{\sqrt{\eta} C_0 Q}{\coth(\hbar \omega_2 / 2T)} \right]^{1/3}$

(So far in experiment $\eta^{1/2}C_0Q \sim 0.1$)

University of California, Riverside

Verification of nanoresonator squeezing

Conclusion

- Quantum feedback in solid state is a relatively new subject, while in optics already demonstrated
- Quantum feedback can maintain non-decaying Rabi oscillations in a solid-state qubit with 100% fidelity
- A relatively simple experiment for non-decaying Rabi oscillations in a qubit is proposed (fidelity is limited to ~95%)
- Stroboscopic QND measurement and quantum feedback of a nanomechanical resonator produces squeezed state and is useful for ultrasensitive force detection

Alexander Korotkov