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Research accomplishments
since last review

• Finished research supported by previous 
NSA/ARDA/ARO project (quantum feedback, etc.)

• Developed basic theoretical approach to quantum back-
action during “fast” measurement of one phase qubit 

• Developed improved semiclassical theory for  
measurement cross-talk for measurement of two    
phase qubits

• Derived Bell-like inequalities in time (similar to Leggett-
Garg inequalities) for continuous measurement of a qubit
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Quantum back-action during “fast” 
measurement of a phase qubit
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(similar to “quantum-jump” approach in optics)
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Effect of remaining coherence after 
incomplete (too short) measurement

Protocol:
0) state preparation by rf pulse
1) incomplete measurement
2) additional rf pulse (θ-pulse)
3) measurement again (complete)
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Measurement cross-talk for 
measurement of two phase qubits

Origin of the cross-talk:
Measurement of the first qubit and its tunneling
into the deep well leads to damped oscillations,
which produce microwave voltage perturbing
the second qubit

Detrimental effect of the cross-talk: For initial state |10〉 the cross-talk 
may excite second qubit resulting in a wrong measurement result |11〉

Theoretical approaches for study of the cross-talk:
(a) Both qubits are modeled “classically”
(b) Second qubit is modeled quantum-mechanically, while first 

qubit evolution is still “classical” (reasonable since for the first 
qubit the quantum number is large, n~150)

(c)  Both qubits are modeled quantum-mechanically

So far we use and compare approaches (a) and (b)
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Both qubits considered “classically”

Eventual classical escape 
from well for T1>400 ns

Qubit anharmonicity makes energy 
transfer less efficient (good news)
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Numerical solution of Schroedinger
equation for the second qubit

Now second qubit is considered fully quantum-mechanically
(still “classical” approach for the first qubit)

Level populations vs. time
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Qubit potential barrier is 5×Ñωp (N=5)
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Measurement cross-talk in hybrid
(classical-quantum) approach

Mean energy is less than the barrier 
height, but still finite escape probability

(significant difference from 
classical consideration)

N=5

N=5
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Bell-like inequalities in time for 
continuous measurement of a qubit
(R. Ruskov, A. Korotkov, A. Mizel, cond-mat/0505094)

qubit detector I(t)
Continuous monitoring of a qubit

(charge, flux, or phase)

0 1 2( ) ( ) ( ), ( ) noise,
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Since |z|≤1, and assuming non-invasive measurability in case
of macro-realism (Leggett-Garg, 1985), we derive:
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can reach 23 ( / 2)
2

I∆ for weak continuous monitoring
Violation by factor up to 3/2
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Consequences for measured detector 
signal spectral density  
(Ruskov-Korotkov-Mizel, 2005)

qubit detector I(t)Quantum case
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(earlier result, 1999)

Area under the spectral peak is (∆I/2)2

Macro-realistic bounds (this work)
If single spectral peak of the same (Lorentzian) shape, then 

For any peak at non-zero frequency a weaker bound 
(still violated): area  ≤ (8/π2) (∆I/2)2
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(independent of detector efficiency)

Experimentally measurable violation of classical bound 
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Research topics for the next year

• Quantum-rigorous theory of the classical 
measurement cross-talk of phase qubits 

• Theoretical fidelity of one-shot measurements
of phase qubits 

• Quantum back-action for measurement of
phase qubits 

• Related problems of quantum measurement
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