Quantum back-action during "fast" measurement of a phase qubit

How quantum state changes in time?

Main idea (for simplicity $\gamma=0$):

$$\psi = \alpha | 0 \rangle + \beta | 1 \rangle \rightarrow \psi(t) = \begin{cases} |out\rangle, & \text{if switched} \\ \frac{\alpha | 0 \rangle + \beta e^{-\Gamma t/2} | 1 \rangle}{Norm}, & \text{if not switched} \\ \frac{Norm}{|out|^2 + |\beta|^2} e^{-\Gamma t} \end{cases}$$

continuous null-result collapse

(similar to optics, Dalibard *et al.*, PRL-92)

Alexander Korotkov — University of California, Riverside

Effect of remaining coherence after incomplete (too short) measurement

Protocol:

- 0) state preparation by rf pulse
- 1) incomplete measurement
- 2) additional rf pulse (θ -pulse)
- 3) measurement again (complete)

 $p = 1-\exp(-\Gamma t)$ – probability of state $|1\rangle$ switching after incomplete measurement

 φ – extra phase (z-rotation)

Formulas for ideal case

Step 1. Rabi pulse θ_0 prepares state $\cos(\theta_0/2)|0\rangle + \sin(\theta_0/2)|1\rangle$

Step 2. Incomplete measurement with strength $p=1-\exp(-\Gamma\tau)$ switches qubit with probability $P_1=p\sin^2(\theta_0)$. With probability $1-P_1$ the state becomes $\cos(\theta_m/2)|0\rangle+\sin(\theta_m/2)e^{-i\phi_m}|1\rangle$, where ϕ_m – accumulated phase shift in rotating frame (levels change) and

$$\theta_m = 2 \operatorname{atan}(\sqrt{1-p} \tan(\theta_0/2))$$

Step 3. Z-rotation φ and Rabi pulse θ .

Step 4. Complete measurement, switching probability P_2 .

Total switching probability
$$P_t = P_1 + P_2$$

$$P_t = 1 - \frac{1}{2} [1 - p \sin^2(\frac{\theta_0}{2})] [1 + \cos \theta_m \cos \theta - \sin \theta_m \sin \theta \cos(\varphi - \varphi_m)]$$

If ϕ_m is compensated ($\phi = \phi_m$) then maximum oscillation amplitude:

$$P_t = 1 - \frac{1}{2} [1 - p \sin^2(\frac{\theta_0}{2})] [1 + \cos(\theta_m + \theta)]$$

Alexander Korotkov — University of California, Riverside

