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Niels Bohr:
“If you are not confused by
quantum physics then you 
haven’t really understood it”

Richard Feynman:
“I think I can safely say that nobody
understands quantum mechanics”
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Quantum mechanics =
Schroedinger equation

+
collapse postulate

1) Probability of measurement result   pr =

2) Wavefunction after measurement   =

2| | |rψ ψ〈 〉
rψ

• State collapse follows from common sense
• Does not follow from Schr. Eq. (contradicts; Schr. cat,

random vs. deterministic)

What if measurement is continuous?
(as practically always in solid-state experiments)
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Einstein-Podolsky-Rosen (EPR) paradox
Phys. Rev., 1935

In a complete theory there is an element corresponding to each element 
of reality.  A sufficient condition for the reality of a physical quantity is the 
possibility of predicting it with certainty, without disturbing the system.

1 2 2 1( , ) ( ) ( )n nnx x x u xψ ψ=∑
1 2 1 2 1 2( , ) exp[( / ) ( ) ] ~ ( )x x i x x p dp x xψ δ

∞

−∞
= − −∫ =

1x 2x Measurement of particle 1 
cannot affect particle 2,
while QM says it affects
(contradicts causality)

(nowadays we call it entangled state)

=>  Quantum mechanics is incomplete

Bohr’s reply (seven pages, one formula: ∆p ∆q ~ h)(Phys. Rev., 1935)
It is shown that a certain “criterion of physical reality” formulated … 
by A. Einstein, B. Podolsky and N. Rosen contains an essential 
ambiguity when it is applied to quantum phenomena.

Crudely: No need to understand QM, just use the result
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Bell’s inequality (John Bell, 1964)

1 2 1 2
1 ( )
2

ψ = ↑ ↓ − ↓ ↑

Perfect anticorrelation of mea-
surement results for the same 
measurement directions, a b=

GG

a b

(setup due to David Bohm)

Is it possible to explain the QM result assuming local realism 
and hidden variables  or collapse “propagates” instantaneously 
(faster than light, “spooky action-at-a-distance”)?

( , ) 1, ( , ) 1A a B bλ λ= ± = ±
GG (deterministic result with

hidden variable λ)
Assume:

Then: | ( , ) ( , ) | 1 ( , )P a b P a c P b c− ≤ +
G GG G G G

( ) ( ) ( ) ( )P P P P P≡ ++ + − − − +− − − +where

( , )P a b a b= −
G GG Gi 0.71 1 0.71≤ − violation!QM: For 0°, 90°, and 45°:

Experiment (Aspect et al., 1982; photons instead of spins, CHSH):
yes, “spooky action-at-a-distance”
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What about causality?
Actually, not too bad: you cannot transmit your own information 

choosing a particular measurement direction a
a Result of the other  

measurement does not
depend on direction a

Randomness saves causality
or

Collapse is still instantaneous: OK, just our recipe, 
not an “objective reality”, not a “physical” process

Consequence of causality: No-cloning theorem

You cannot copy an unknown quantum state
Otherwise get information on direction a (and causality violated)

Wootters-Zurek, 1982; Dieks, 1982; Yurke

Proof:

Application: quantum cryptography
Information is an important concept in quantum mechanics
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Quantum measurement 
in solid-state systems

No violation of locality – too small distances

However, interesting informational aspects 
of continuous measurement (gradual collapse)

Starting point: qubit

detector
I(t)

What happens to a solid-state qubit (two-level system)
during its continuous measurement by a detector?

How qubit evolution is related to the noisy detector
output I(t)?
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Superconducting “charge” qubits

Single Cooper
pair box

Quantum coherent (Rabi) oscillations

2e

Vg

n+1

n
EJ

2
2(2 )ˆ ( )

2
(| 1 | | 1 |)

2

ˆ
J

g
eH n
CE n n n n

n
〉 〈 + + + 〉 〈

= -

-

Nakamura, Pashkin, Tsai (Nature, 1998)

2 gn

∆t (ps)

Vion et al. (Devoret’s group); Science, 2002
Q-factor of coherent (Rabi) oscillations = 25,000
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Superconducting “charge” qubits (2)
Duty, Gunnarsson, Bladh,

Delsing, PRB 2004
Guillaume et al. (Echternach’s 

group), PRB 2004

2e

Vg V I(t)

Cooper-pair box
measured by single-
electron transistor 
(SET)
(actually, RF-SET)

Setup can be used 
for continuous 
measurements

All results are averaged over many measurements (not “single-shot”) 
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Semiconductor (double-dot) qubit
T. Hayashi et al., PRL 2003

Detector is not separated similar to Nakamura-98, 
also possible to use a separate detector
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“Which-path detector” experiment

2 2( )
(1 )

( )
4 I

eV T
h T T

I
S

∆Γ = = ∆
−

∆I – detector response,  SI – shot noise

Buks, Schuster, Heiblum, Mahalu, 
and Umansky,  Nature 1998

Dephasing rate:

The larger noise, the smaller dephasing!!!

(∆I)2/4SI ~ rate of “information flow”

τm= 2SI /(∆I)2  – “measurement time”Theory: Aleiner, Wingreen,
and Meir, PRL 1997 (Shnirman-Schon, 1998)
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The system we consider: qubit + detector

eH

I(t)
Double-quantum-qot (DQD) and

quantum point contact (QPC)

qubit

detector
I(t)

2e

Vg V

I(t)

Cooper-pair box (CPB) and
single-electron transistor (SET)

H = HQB + HDET + HINT

ε – asymmetry, H – tunnelingHQB = (ε/2)(c1
+c1– c2

+c2) + H(c1
+c2+c2

+c1)

Ω = (4H 2+ε2)1/2/Ñ – frequency of quantum coherent (Rabi) oscillations

Two levels of average detector current: I1 for qubit state |1〉,  I2 for |2〉
Response: ∆I= I1–I2 Detector noise: white, spectral density SI

† † † †
, ( )DET r r r r rl l l l ll r l rH E a a E a a T a a a a= + ++∑ ∑ ∑

† † † †
1 1 2 2, ( ) ( )INT r rl ll rH T c c c c a a a a= ∆ − +∑ 2IS eI=

DQD and QPC
(setup due to 
Gurvitz, 1997)
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1 01 1
0 02 2

1 1 0 0
2 2 0 1

       
 

        

/
2

What happens to a qubit state during measurement?
e

H

I(t)
For simplicity (for a moment) H=ε=0 (infinite barrier),
evolution due to measurement only

“Orthodox” answer
1 1 1 exp( ) 1 0
2 2 2 2 2
1 1 exp( ) 1 10
2 2 2 2 2

t

t

−Γ     
     
     

−Γ          
     

→ →

|1> or |2>, depending on the result

“Conventional” (decoherence) answer (Leggett, Zurek)

no measurement result!  ensemble averaged

Orthodox and decoherence answers contradict each other!

yesyesBayesian, 1998

yesnoConventional (ensemble)

noyesOrthodox
Continuous measurementsSingle quantum systemsapplicable for:

Bayesian formalism describes gradual collapse of a single quantum system
Noisy detector output I(t) should be taken into account
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Bayesian formalism for a single qubit
e

H

I(t) |1Ò Æ I1,  |2Ò Æ I2 ∆I=I1-I2 , I0=(I1+I2)/2,   SI – detector noise

† † † †
1 1 2 2 1 2 2 1

ˆ ( ) ( )
2QBH c c c c H c c c cε= − + +

(A.K., 1998)

12 11 22 011 22

12 11 22 12 11 22 0 1212

2( / ) Im (2 / )[ ]

( / ) ( / ) ( ) ( ) ( / )[ ]

( )

( )

I

I

H I S I

i i H I S I

I t

I t

ρ ρ ρ ρ ρ

ρ ε ρ ρ ρ ρ ρ ρ γρ

• •

•

∆

+ ∆

= - = - + -

= + - - - -

=

= =

2

2

( ) / 4 ,

1 / ( ) / 4
I

I

I S

I S

γ
η γ η

Γ ∆ Γ −

Γ ∆ Γ − ≤

ensemble decoherence
detector ideality (efficiency), 100%

= -

= - =

Ideal detector (η=1) does not decohere a single qubit; 
then random evolution of qubit wavefunction can be monitored

For simulations: 0 22 11( ) = ( ) / 2 ( ), = II t I I t S Sξρ ρ ξ∆- - +

Averaging over ξ(t) ï conventional master equation

Similar formalisms developed earlier.  Key words: Imprecise, weak, selective, or conditional 
measurements, POVM, Quantum trajectories, Quantum jumps, Restricted path integral, etc.

Names: Davies, Kraus, Holevo, Mensky, Caves, Gardiner, Carmichael, Plenio, Knight, 
Walls, Gisin, Percival, Milburn, Wiseman, Onofrio, Habib, Doherty, etc. (incomplete list)
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Assumptions needed for 
the Bayesian formalism

• Detector voltage is much larger than the qubit energies involved
eV >> ÑΩ, eV >> ÑΓ (no coherence in the detector,

Ñ/eV << (1/Ω, 1/Γ); Markovian approximation)

• Small detector response, |∆I | << I0, ∆I=I1- I2, I0 = (I1+ I2)/2
Many electrons pass through detector before qubit evolves noticeably.
(Not a really important condition, but simplifies formalism.)

Coupling C ~ Γ/Ω is arbitrary [we define C = Ñ(∆I )2/SIH ]       

11 22 12 11 22 0

12 12 11 22 12 11 22 0 12

2= = 2 Im [ ( ) ]

= ( ) ( ) [ ( ) ]

I

I

d d H I I t I
dt dt S
d H Ii i I t I
dt S

ρ ρ ρ ρ ρ

ερ ρ ρ ρ ρ ρ ρ γρ

∆

∆
=

= =

- - + -

+ - + - - -
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“Quantum Bayes theorem“ (ideal detector assumed)

e
H

I(t)

|1>            |2>            

2

2

11 1 22 2

1 2

0
1 ( )

( , ) (0) ( , ) (0) ( , )
1( , ) exp[ ( ) / 2 ],

2
/ 2 , | | , /II i i

i i

I I t dt

P I P I P I

P I I I D
D

D S I I I S I

τ
τ
τ ρ τ ρ τ

τ
π

τ τ

≡

= +

= − −

= −

∫

� �

11 12

21 22

(0) (0)
(0) (0)

ρ ρ
ρ ρ

 
 
 

H = ε = 0
(“frozen” qubit)

( ) ( | )
( | )

( ) ( | )k kk

i i
i

P B P A B
P B A

P B P A B
=
∑

After the measurement during time τ, the probabilities 
should be updated using the standard Bayes formula:

Measurement (during time τ):

I
_

P

I1 I2

Iactual
_

2D1/2 2D1/2

Initial state:

2
11 1

11 2 2
11 1 22 2

12 12
22 111/2 1/2

12 22 12 22

(0) exp[ ( ) / 2 ]( )
(0) exp[ ( ) / 2 ] (0) exp[ ( ) / 2 ]

( ) (0) , ( ) 1 ( )
[ ( ) ( )] [ (0) (0)]

I I D
I I D I I D
ρρ τ

ρ ρ
ρ τ ρ ρ τ ρ τ

ρ τ ρ τ ρ ρ

+
- -

=
- - - -

= = -

Quantum Bayes
formulas:
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“Informational” derivation 
of the Bayesian formalism

Step 1. Assume H = ε = 0, “frozen” qubit 
Since ρ12 is not involved, evolution of ρ11 and ρ22 should be the same       
as in the classical case, i.e. Bayes formula (correspondence principle).

Step 2. Assume H = ε = 0 and pure initial state, ρ12 (0) = [ρ11(0) ρ22(0)]1/2

For any realization |ρ12 (t)| ≤ [ρ11(t) ρ22(t)]1/2 . Hence, averaging over 
ensemble of realizations gives  |ρ12

av(t)| ≤ ρ12
av(0) exp[æ (∆I 2/4SI) t]

However, conventional (ensemble) result (Gurvitz-1997, Aleiner et al.-1997) 
for QPC is exactly the upper bound: ρ12

av (t) = ρ12
av (0) exp[æ (∆I2/4SI) t].

Therefore, pure state remains pure: ρ12 (t) = [ρ11(t) ρ22(t)]1/2
.

Step 3. Account of a mixed initial state
Result: the degree of purity ρ12 (t) / [ρ11(t) ρ22(t)]1/2 is conserved. 

Step 4. Add qubit evolution due to H and ε.

Step 5. Add extra dephasing due to detector nonideality (i.e., for SET).
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“Microscopic” derivation of the Bayesian formalism

qubit detector pointer
quantum 
interaction

frequent
collapse

classical
information

( )n
ij tρ ( )kn t

n – number of electrons
passed through detector

Detector collapse at t = tk
Particular nk is chosen at tk

Schrödinger evolution of “qubit + detector”
for a low-T QPC as a detector (Gurvitz, 1997)

11 22( ) ( ) ( )k
n n

kP n t tρ ρ= +11 1
11 11 11 12

12 2
22 22 22 12

11 21 2
12 12 11 22 12 12

2 Im

2 Im

( )
2

n n n n

n n n n

n n n n n n

I Id H
dt e e

I Id H
dt e e

I II Id Hi i
dt e e

ρ ρ ρ ρ

ρ ρ ρ ρ

ερ ρ ρ ρ ρ ρ

−

−

−

= − + −

= − + +

+
= + − − +

=

=

= =

,

11 22

( 0) = ( 0)

( )
( 0) =

( ) ( )

n
ij k n nk ij k

nk
ij k

ij k nk nk
k k

t t

t
t

t t

ρ δ ρ

ρ
ρ

ρ ρ

+ +

+
+

11 1 22 2
11 22

11 1 22 2 11 1 22 2
1/ 2

11 22
12 12 1/ 2

11 22

(0) ( ) (0) ( )( ) , ( )
(0) ( ) (0) ( ) (0) ( ) (0) ( )

( / )[ ( ) ( )]( ) (0) , ( ) exp( / ),
![ (0) (0)]

n
i

i i

P n P nt t
P n P n P n P n

I t et tt P n I t e
n

ρ ρρ ρ
ρ ρ ρ ρ

ρ ρρ ρ
ρ ρ

= =
+ +

= = −

If = = 0,H ε
this leads to

which are exactly quantum Bayes formulas
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One more derivation

Translating well-developed “quantum trajectory” formalism 
from quantum optics into solid-state language

(equivalent though looks very different)

Goan and Milburn, 2001
Also: Wiseman, Sun, Oxtoby, Warszawsky, 

Polkinghorne, etc. 
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Nonideal detectors with input-output noise correlation

qubit
(ε, H)

ideal
detector

signal

quantum
backaction

noise

+
I(t)
S0+S1

ξ2(t) = Aξ1(t)

ξ3(t)

fully 
correlated ξ1(t)

S1

Id (t)
S0 classical

current

classical noise
affecting ε

classical noise
affecting ε

detector

�

11 22 12 11 22 0

12 12 11 22 12 11 22 0 0 12

22 Im [ ( ) ]

( ) ( ) [ ( ) ] [ ( ) ]

I

I

d d IH I t I
dt dt S
d Ii iH I t I iK I t I
dt S

ρ ρ ρ ρ ρ

ρ ερ ρ ρ ρ ρ ρ γρ

∆= − = − + −

∆= + − + − − + − −

A.K., 2002

1 0
0 1, I

I

AS S
K S S S

S
θ+

= = +
=

K – correlation between output
and ε–backaction noises

Fundamental limits for ensemble decoherence
Γ = γ + (∆I)2/4SI , γ ≥ 0  ⇒ Γ ≥ (∆I)2/4SI

Γ = γ + (∆I)2/4SI + K2SI/4 , γ ≥ 0  ⇒ Γ ≥ (∆I)2/4SI + K2SI /4

Translated into energy sensitivity: (ЄO ЄBA)1/2 ≥ =/2 or (ЄOЄBA – ЄO,BA
2)1/2 ≥ =/2

(known since 1980s; also Averin-2000)
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Quantum efficiency of solid-state detectors
(ideal detector does not cause single qubit decoherence)

1. Quantum point contact Theoretically, ideal quantum detector, η=1

I(t)

A.K., 1998 (Gurvitz, 1997; Aleiner et al., 1997)
Averin, 2000; Pilgram et al., 2002, Clerk et al., 2002

Experimentally, η > 80%
(using Buks et al., 1998)

Very non-ideal in usual operation regime, η ‹‹12. SET-transistor
Shnirman-Schőn, 1998; A.K., 2000, Devoret-Schoelkopf, 2000

However, reaches ideality, η = 1 if:
- in deep cotunneling regime (Averin, vanden Brink, 2000)
- S-SET, using supercurrent (Zorin, 1996)
- S-SET, double-JQP peak (η ~ 1) (Clerk et al., 2002)
- resonant-tunneling SET, low bias (Averin, 2000)

I(t)

Can reach ideality, η = 13. SQUID 4. FET ?? HEMT ??
ballistic FET/HEMT ??

V(t)

(Danilov-Likharev-Zorin, 1983;
Averin, 2000)
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Bayesian formalism for N entangled qubits 
measured by one detector

qb 1

detector

qb 2 qb … qb N

I(t)

ρ (t)
Up to 2N levels 
of current

( ( ) )( )
2

]k j
j k ij ij

I I
I t I I γ ρ

+
+ − − −

1ˆ[ , ] ( ( ) )( )
2

[
k

k i
ij qb ij ij kk i k

I Id i H I t I I
dt S

ρ ρ ρ ρ +−= + − − +∑=

1 2( 1)( ) / 4 ( ) ( ) ( )
i

Iij i j ii iI I S I t t I tγ η ρ ξ−= − − = +∑
Averaging over ξ(t) î master equation

(Stratonovich form)

No measurement-induced dephasing between states |iÒ and |jÒ if Ii = Ij !
A.K., PRA 65 (2002),

PRB 67 (2003)



University of California, RiversideAlexander Korotkov

Measurement vs. decoherence
Widely accepted point of view:

measurement  = decoherence (environment)

Is it true?
• Yes, if not interested in information from detector

(ensemble-averaged evolution)

• No,  if take into account measurement result
(single quantum system)

Measurement result obviously gives us more information 
about the measured system, so we know its quantum state 
better (ideally, a pure state instead of a mixed state)
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Some experimental predictions and proposals

• Direct experimental verification (1998)

• Measured spectral density of Rabi oscillations (1999, 2000, 2002)

• Bell-type correlation experiment (2000)

• Quantum feedback control of a qubit (2001)

• Entanglement by measurement (2002)

• Measurement by a quadratic detector (2003) 

• Simple quantum feedback of a qubit (2004)

• Squeezing of a nanomechanical resonator (2004)
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Direct verification of the Bayesian evolution
(A.K., 1998)

Idea: check the predicted evolution of an almost pure qubit state

0.0

0.5

1.0
ρ11

t

Reρ12

0 5 10 15 20 25 30

-0.5

0.0

0.5

1.0

ρ11
Re ρ12
Im ρ12

Evolution from 1/2-alive to                             Density matrix purification
1/3-alive Schrödinger cat                                       by measurement

time

stop & check

1. Start with completely mixed state.
2. Measure and monitor the Rabi phase.
3. Stop evolution (make H=0) at state |1›. 
4. Measure and check.

1. Prepare coherent state and make H=0.
2. Measure for a finite time t.
3. Check the predicted wavefunction (using

evolution with H≠0 to get the state |1›. 

Difficulty: need to record noisy detector current I(t) and solve Bayesian
equations in real time; typical required bandwidth: 1-10 GHz.
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Measured spectrum of qubit coherent oscillations

qubit detector
I(t)

α What is the spectral density SI (ω)
of detector current?

A.K., LT’99
Averin-A.K., 2000
A.K., 2000
Averin, 2000
Goan-Milburn, 2001
Makhlin et al., 2001
Balatsky-Martin, 2001
Ruskov-A.K., 2002 
Mozyrsky et al., 2002 
Balatsky et al., 2002
Bulaevskii et al., 2002
Shnirman et al., 2002
Bulaevskii-Ortiz, 2003
Shnirman et al., 2003

2 2

0 2 2 2 2 2
( )( )

( )I
IS Sω

ω ω
Ω ∆ Γ= +
− Ω + Γ

Spectral peak can be seen, but
peak-to-pedestal ratio ≤ 4η ≤ 4

1 2
00, ( ) / 4I Sε η −= Γ = ∆2( ) / IC I HS= ∆

0.0 0.5 1.0 1.5 2.0
0
1
2
3
4
5
6

ω /Ω

S I(ω
)/S

0 

α  = 0.1
η  = 1

ε /H=0
        1
        2 classical

 limit

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

ω/Ω

I(ω
)/S

0

C=13

10

3
1

0.3

Assume classical output, eV » =Ω

S

(result can be obtained using various
methods, not only Bayesian method)

Weak coupling, α = C/8 « 1

0
2 2

0 2 2 2 2
/( )

1 ( / 4 )I
S HS S

H
η εω

ω
= +

+ Ω Γ=
2 2 1

0
2 2 2 2

4 (1 / 2 )
1 [( ) (1 2 / )]

S H
H

η ε
ω

−+
+

+ −Ω Γ − Ω=

Contrary:
Stace-Barrett, 2003

(PRL 2004)
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Possible experimental confirmation?
Durkan and Welland, 2001  (STM-ESR experiment similar to Manassen-1989)

p e a k 3 . 5
n o i s e

≤

(Colm Durkan,
private comm.)



University of California, RiversideAlexander Korotkov

Somewhat similar experiment
“Continuous monitoring of Rabi oscillations in a Josephson flux qubit”

E. Il’ichev et al., PRL, 20031 ( ) cos
2 HFx z zH W tσ ε σ σ ω= ∆ +- -

2 2 ; 0)( HFω ε ε≈ ∆ + ≠
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Bell-type measurement correlation 
on

off
τA τB

τ on
off

QA= ∫IAdt QB= ∫IBdt

(A.K., 2000)

0 1 2 3
-0.5

-0.25

0

0.25

0.5

τ Ω /2π

δ  B
 =

 (<
Q

B>
 - 

Q
0B

)/∆
Q

B

τA(∆ IA)2/SA = 1

(QA/τA- I 0A) /∆ IA= 

δQA> 0 δQA= 0 δQA> 0

QA is fixed (selected)
0.6, 0, -0.3

conventional 
0 1 2 3

-0.5

-0.25

0

0.25

0.5

τ Ω /2π

after π/2 pulse
detector A    qubit    detector B

Idea: two consecutive finite-time (imprecise) measurements of a qubit 
by two detectors; probability distribution P(QA, QB, τ) shows 
the effect of the first measurement on the qubit state.

Proves that qubit remains in a pure state during measurement (for η=1)

Advantage: no need to record noisy detector output with GHz bandwidth;
instead, we use two detectors and fast ON/OFF switching.
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Quantum feedback control of a qubit
Since qubit state can be monitored, the feedback is possible!

qubit 

H 

e 

detector Bayesian 
     equations 

I(t) 

control stage 

(barrier height) 

ρij(t) 

 

comparison 
circuit 

desired evolution  

feedback 

signal 

environment 

C<<1 

Goal: maintain desired phase of coherent (Rabi) oscillations
in spite of environmental dephasing (keep qubit “fresh”) 

Ruskov & A.K., 2001

Hqb= HσX

Idea: monitor the Rabi phase φ by continuous measurement and apply 
feedback control of the qubit barrier height, ∆HFB/H = −F×∆φ

To monitor phase φ we plug detector output I(t) into Bayesian equations
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Performance of quantum feedback
(no extra environment)

Qubit correlation function Fidelity (synchronization degree)
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For ideal detector and wide bandwidth,
fidelity can be arbitrarily close to 100%
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Ruskov & Korotkov, PRB 66, 041401(R) (2002)
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Suppression of environment-induced 
decoherence by quantum feedback
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Example: if qubit coupling to environment is 10 times weaker than to detector,
then Dmax = 95% and qubit fidelity 97.5%. (D = 0 without feedback.)

Experimental problems:
• necessity of very fast real-time solution 

of the Bayesian equations 
• wide bandwidth (>>Ω, GHz-range) of the line 

delivering noisy signal I(t) to the “processor” 
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Simple quantum feedback of a solid-state qubit
(A.K., PRB-2005)

detector
I(t)

×cos(Ω t), τ-average

ph
as

e

X

Y

φm
qubit

H =H0 [1– F×φm(t)]
control

×sin(Ω t), τ-average

Hqb= HσX

C <<1
local oscillator

Goal: maintain coherent 
(Rabi) oscillations for
arbitrary long time

Idea: use two quadrature components of the detector current I(t)
to monitor approximately the phase of qubit oscillations
(a very natural way for usual classical feedback!)

0( ) [ ( ') ] cos( ') exp[ ( ') / ]
t

X t I t I t t t dtτ
−∞

= − Ω − −∫
0( ) [ ( ') ] sin( ') exp[ ( ') / ]

t
Y t I t I t t t dtτ

−∞
= − Ω − −∫

arctan( / )m Y Xφ = −

(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth (1 / ~ )dτ Γ << Ω
Anticipated problem: without feedback the spectral peak-to-pedestal ratio <4,

therefore not much information in quadratures
(surprisingly, situation is much better than anticipated!)
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Accuracy of phase monitoring via quadratures
(no feedback yet)
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Noise improves the monitoring accuracy!
(purely quantum effect, “reality follows observations”)

0/ [ ( ) ]sin( ) ( / )Id dt I t I t I Sφ φ= − − Ω + ∆
2 2 1/ 2

0/ [ ( ) ]sin( ) /( )m md dt I t I t X Yφ φ= − − Ω + +
(actual phase shift, ideal detector)

(observed phase shift)

Noise enters the actual and observed phase evolution in a similar way

Quite accurate monitoring! cos(0.44)≈0.9
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Simple quantum feedback
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How to verify feedback operation experimentally?
Simple: just check that in-phase quadrature 〈X〉

of the detector current is positive (4 / )D X Iτ= 〈 〉 ∆

〈X〉=0 for any non-feedback Hamiltonian control of the qubit
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Effect of nonidealities
- nonideal detectors (finite

quantum efficiency η)
and environment

- qubit energy asymmetry ε
- frequency mismatch ∆Ω

• Fidelity FQ up to ~95% achievable (D~90%)
• Natural, practically classical feedback setup
• Averaging τ~1/Γ>>1/Ω (narrow bandwidth!)
• Detector efficiency (ideality) η ~0.1 still OK
• Robust to asymmetry ε and frequency shift ∆Ω
• Simple verification: positive in-phase quadrature 〈X〉

Simple enough
experiment?!
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Quantum feedback
still works quite well

Main features:
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Quantum feedback in optics
Recent experiment: Science 304, 270 (2004)

First detailed theory:
H.M. Wiseman and G. J. Milburn, 
Phys. Rev. Lett. 70, 548 (1993)
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Two-qubit entanglement by measurement
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qubit 1 qubit 2

detector
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ρ (t)

Collapse into |BellÚ state (spontaneous entanglement) 
with probability 1/4 starting from fully mixed state

Ruskov & A.K., 2002
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Two evolution scenarios:

Symmetric setup, no qubit interaction

Peak/noise
= (32/3)η
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Quadratic quantum detection
Mao, Averin, Ruskov, Korotkov, PRL-2004
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Peak only at 2Ω, peak/noise = 4η
2 2

0 2 2 2 2 2
4 ( )( )

( 4 )I
IS Sω

ω ω
Ω ∆ Γ= +

− Ω + Γ

Ibias

V(f)

ω/Ω0 1 2 3
0
2
4
6

S I
(ω

)/S
0

0 1 2 3
0
2
4
6

ω/Ω

S I
(ω

)/S
0

quadraticI, V

q0,φ

Nonlinear detector:
spectral peaks at Ω, 2Ω and 0

Quadratic detector:

Three evolution scenarios: 1) collapse into |↑↓ -↓↑ Ú, current IÆ∞, flat spectrum
2) collapse into |↑↑ - ↓↓ Ú, current IÆÆ, flat spectrum; 3) collapse into remaining 
subspace, current (IÆ∞+ IÆÆ)/2, spectral peak at  2Ω

Entangled states distinguished by average detector current
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Some experiments on nanoresonators
LaHaye, Buu, Camarota, 
and Schwab, Science-2004

f = 20 MHz

∆x = 5.8∆x0 3.8 fm/Hz1/2

Knobel, Cleland, Nature-2003

f = 117 MHz

2 fm/Hz1/2

∆x ~ 100 ∆x0

Ming et al. (Roukes’ group), 
Nature-2003

f = 1.03 GHz
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QND squeezing of a nanomechanical resonator
Ruskov, Schwab, Korotkov, PRB-2005

I(t)

m,ω0

∼
V(t)

x

QPC

resonator 
,

† † †ˆ ( . .)DET
rl l r

r r r rl l l lH E a a E a a Ma a H c= + + +∑ ∑ ∑
†

,

ˆ ˆ( . .)INT rl
l r

H M x a a H c= ∆ +∑

2 2 2
0 0

ˆ ˆ ˆ/ 2 / 2H p m m xω= +

Experimental status:

Continuous monitoring and quantum feedback can cool nanoresonator
down to the ground state (Hopkins, Jacobs, Habib, Schwab, PRB 2003)

ω0/2π∼ 1 GHz  (=ω0 ∼ 80 mK), Roukes’ group, 2003

∆x/∆x0 ∼ 5 [SQL ∆x0=(=/2mω0)1/2], Schwab’s group,
2004

Our paper: Braginsky’s stroboscopic QND measurement using
modulation of detector voltage ⇒ squeezing becomes possible 

Potential application: ultrasensitive force measurements

Other most important papers:
Doherty, Jacobs, PRA 1999 (formalism for Gaussian states) 
Mozyrsky, Martin, PRL 2002 (ensemble-averaged evolution)
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Stroboscopic QND measurements
Quantum nondemolition (QND) measurements (Braginsky-Khalili book)
(a way to suppress measurement backaction and overcome standard quantum limit)
Idea: to avoid measuring the magnitude conjugated to the magnitude of interest

Standard quantum limit
/ 2p x∆ > ∆=

1( )x t 2( )x t

Example: measurement of x(t2)-x(t1)
First measurement: ∆p(t1)>=/2∆x(t1), then even for accurate second measurement

inaccuracy of position difference is  ∆x(t1)+ (t2-t1)=/2m∆x(t1)> (t2-t1)=/21/2m

Stroboscopic QND measurements (Braginsky et al., 1978; Thorne et al., 1978)

oscillator
Idea: second measurement exactly one oscillation 

period later is insensitive to ∆p
(or ∆t =nT/2, T=2π/ω0)

• continuous measurement
• weak coupling with detector
• quantum feedback to suppress “heating”

Difference in our case:
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Squeezing by stroboscopic (pulse) modulation
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Squeezing by stroboscopic modulation
Analytics (weak coupling, short pulses)
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Conclusions

● Continuous quantum measurement is not equivalent to 
decoherence (environment) if detector output (information)
is taken into account, in contrast to ensemble-averaged case

● Bayesian approach to continuous quantum measurement
is a simple, but new and interesting subject in solid-state
mesoscopics

● Several experimental predictions have been already made;
however, many problems not studied yet

● No direct experiments yet (few indirect ones); hopefully,
coming soon
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