Possible experiments on continuous
measurement and quantum feedback
of solid-state qubits
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A number of experimental proposals have originated from
the Bayesian approach to continuous quantum measurement.
Here we present several of them, which are reasonably
simple for a real experiment and therefore seem to be
realizable in near future or have already been realized.
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Continuous monitoring of oscillating qubit:
spectral peak at Rabi frequency

Korotkov’1999, Korotkov-Averin’2000, ...
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What this experiment can demonstrate:

 Quantum coherent (Rabi) oscillations do not decay (!!!)
in presence of continuous monitoring, just the oscillation
phase is gradually changing (dephasing, not decay)

 Experiment can demonstrate violation of Leggett-Garg
inequality, therefore incompatibility with realism

(Ruskov-Korotkov-Mizel’2005, Jordan-Korotkov-Buttiker’2005)
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Possible experimental confirmation? (3)
Durkan and Welland, 2001 (STM-ESR experiment similar to Manassen-1989)
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Electronic spin detection in molecules using scanning-tunneling- Gy
microscopy-assisted electron-spin resonance 5 08
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(Received 8 May 2001; accepted for publication 8 November 2001) ; ",
By combining the spatial resolution of a scanning-tunneling microscope {(STM) with the electronic 5 b
. Ce . . - . oo R e, P e e i
spin sensitivity of electron-spin resonance, we show that it is possible to detect the presence of 534 535 536 537 538
localized spins on surfaces. The principle is that a STM is operated in a magnetic field, and the
resulting component of the tunnel current at the Larmor (precession) frequency is measured. This Frequency (MHz}

component is nonzero whenever there is tunneling into or out of a paramagnetic entity. We have FIG. 3. STM-ESR spectea of (a), (b} two diffecent areas (a few nm apart) of

the molecule-covered sample and (c) bare HOPG. The graphs are shifted
vertically for clarity.
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FIG. |. Schematic of the electronics used in STM-ESR. . . . .
FIG. 2. {Color) 8TM image of a 250 AX |50 A area of HOPG with four

adsorbed BDPA molecules.
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Somewhat similar experiment

(4)

“Continuous monitoring of Rabi oscillations in a Josephson flux qubit’
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FIG. 1. Measurement setup. The flux qubit is inductively
coupled to a tank circuit. The dc source applies a constant
flux &, = Ld,. The HF generator drives the qubit through a
separate coil at a frequency close to the level separation A /h —
868 MHz. The output voltage at the resonant frequency of the
tank is measured as a function of HF power
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E. Iichev et al., PRL, 2003
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FIG. 3 (color online). The spectral amplitude of the tank
voltage for HF powers P, << P, << P, at 868 MHz. detected
using the setup of Fig. 1. The bottom curve corresponds to the
background noise without an HF signal. The inset shows
normalized voltage spectra for seven values of HF power.
with background subtracted. The shape of the resonance, being
determined by the tank circuit, is essentially the same in each
case. Remaining tiny variations visible in the main figure are
due to the irradiated qubit modifying the tank’s inductance and

Universitv of California, Riverside




Simple quantum feedback of a solid-state qubit

H=H,[1-Fx g ()] Korotkov’2005
Hy,= HOy control |«
9 v % Goal: maintain coherent
cect N ” xcos(Q1), T-average [— g |  (Rabi)oscillations for
detector UR local oscillator ﬁ arbitrary long time
xsin(Q7), T-average Y <

Idea: use two quadrature components of the detector current I(¢)
to monitor approximately the phase of qubit oscillations

(a very natural way for usual classical feedback!)
X(0)=| " (") - 1,] cos(Qt") exp[-(t - 1)/ T] dt
P @, = —arctan(Y / X)

Y(¢) = j __H(#") =~ 1y] sin(Qt") exp[-(¢ —¢')/ T] dt

(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth (1/7 ~T ; <<Q)

Anticipated problem: without feedback the spectral peak-to-pedestal ratio <4,
therefore not much information in quadratures

(surprisingly, situation is much better than anticipated!)
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(2)

Accuracy of phase monitoring via quadratures

(no feedback yet) |
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Noise improves the monitoring accuracy!
(purely quantum effect, “reality follows observations”)

do/dt =—I1(t)—1,]sin(Qt+ @ (AI/S;) (actual phase shift, ideal detector)
dg, /dt = —I(t) - 1,]sin(Qz+ (t),,)/(X2 + Yz)l/2 (observed phase shift)

Noise enters the actual and observed phase evolution in a similar way
Quite accurate monitoring! cos(0.44)=0.9
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Simple quantum feedback

(3)
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How to verity feedback operation experimentally?

Simple: just check that in-phase quadrature (X)
of the detector current is positive D =(X)(4/TAI)

(X)=0 for any non-feedback Hamiltonian control of the qubit
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Effect of nonidealities (4)

- nonideal detectors (finte = 77— 1""" C=0'1
quantum efficiency n) e 1t :
. O 08- T[AD¥S=1 [
and environment '© i
- qubit energy asymmetry e  © 06- -
- frequency mismatch AQ ‘;‘% a ’ T = i
o Toioiaomo I
Quantum feedback 2 i
still works quite well L %7 i
Q g0 & — —— — T
0.0 0.2 0.4 0.6 0.8
Main features: F/C (feedback strength)

 Fidelity F o up to ~95% achievable (D~90%)
e Natural, practically classical feedback setup .
* Averaging 1~1/[ >>1/Q (narrow bandwidth!) Slmple enough
« Detector efficiency (ideality) n~0.1 still OK experiment?!
e Robust to asymmetry € and frequency shift AQ

e Simple verification: positive in-phase quadrature (X)
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Bell-type measurement correlation

Korotkov’2000
on on
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Idea: two consecutive finite-time (imprecise) measurements of a qubit
by two detectors; probability distribution P(Q4, Qg,t) shows
the effect of the first measurement on the qubit state.

Proves that qubit remains in a pure state during measurement (for n=1)

Advantage: no need to record noisy detector output with GHz bandwidth;
instead, we use two detectors and fast ON/OFF switching.

Modification: correlation of low-frequency noises (not considered yet)
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“Aging” of a phase qubit due to measurement

Recently realized experimentally by
Nadav Katz et al. (John Martinis’ group)

1) r

|0) How does a coherent state evolve
in time before tunneling event?

Main idea:

| out), if tunneled
w=al0)+BI1) - WO =1g10y+Be 2 1)

L Norm

Norm :\/|a|2 +| B e "

, if not tunneled

continuous null-result collapse
(similar to optics, Dalibard et al., PRL-1992)
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Effect of remaining coherence after (2)
incomplete (too short) measurement

Protocol:
0) state preparation by rf pulse p = 1-exp(-I't) — probability
1) incomplete measurement of state |1) switching after
2) additional rf pulse (6-pulse) Incomplete measurement
3) measurement again (complete) ¢ — extra phase (z-rotation)

total probability
of switching

] ] ] ] 0 ] ]
0 O (second pulse) 10 0 a) 10
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(3)

Formulas for ideal case

Step 1. Rabi pulse 6, prepares state cos(6,/2)|0) +sin(6,/2)|1)

Step 2. Incomplete measurement with strength » =1-exp(-I'7)
switches qubit with probability P, = psin*(6,) . With probability 1- P,
the state becomes cos(6,,/2)|0) +sin(8,, / 2)e #"|1), where
¢, —accumulated phase shift in rotating frame (levels change) and

6,, =2 atan(y/1- p tan(§,/2)
Step 3. Z-rotation ¢ and Rabi pulse 6.

Step 4. Complete measurement, switching probability P..
Total switching probability P, =P, +P,

P =1 —%[1 — psinz(%)][l +cos8, cos@—sinf,, sinbcos(¢ — @,,)]

If §,,, is compensated (¢ = ¢,,) then maximum oscillation amplitude:

P =121 —psinz(%)ul +c05(6,, + O)]
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Conclusion

e Interesting (“ideologically” nontrivial) experiments
on continuous quantum measurement and quantum
feedback can be performed with solid-state qubits

e One such experiment has been already realized;
one more partially realized

e Few more experimental proposals seem to be
realizable now (or in near future)
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