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Possible experiments on continuous
measurement and quantum feedback 

of solid-state qubits
Alexander Korotkov

University of California, Riverside

A number of experimental proposals have originated from 
the Bayesian approach to continuous quantum measurement. 
Here we present several of them, which are reasonably 
simple for a real experiment and therefore seem to be 
realizable in near future or have already been realized. 

Support:
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Continuous monitoring of oscillating qubit:
spectral peak at Rabi  frequency

Korotkov’1999, Korotkov-Averin’2000, …
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Spectral peak can be seen, but
peak-to-pedestal ratio ≤ 4η ≤ 4
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(2)Spectral peak at Rabi  frequency
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What this experiment can demonstrate:

• Quantum coherent (Rabi) oscillations do not decay (!!!)
in presence of continuous monitoring, just the oscillation
phase is gradually changing (dephasing, not decay)

• Experiment can demonstrate violation of Leggett-Garg
inequality, therefore incompatibility with realism 

(Ruskov-Korotkov-Mizel’2005, Jordan-Korotkov-Buttiker’2005)
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(3)Possible experimental confirmation?
Durkan and Welland, 2001  (STM-ESR experiment similar to Manassen-1989)
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(Colm Durkan,
private comm.)
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(4)Somewhat similar experiment
“Continuous monitoring of Rabi oscillations in a Josephson flux qubit”

E. Il’ichev et al., PRL, 20031 ( ) cos
2 HFx z zH W tσ ε σ σ ω= ∆ +- -

2 2 ; 0)( HFω ε ε≈ ∆ + ≠
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Simple quantum feedback of a solid-state qubit
Korotkov’2005
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Goal: maintain coherent 
(Rabi) oscillations for
arbitrary long time

Idea: use two quadrature components of the detector current I(t)
to monitor approximately the phase of qubit oscillations
(a very natural way for usual classical feedback!)
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(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth (1 / ~ )dτ Γ << Ω
Anticipated problem: without feedback the spectral peak-to-pedestal ratio <4,

therefore not much information in quadratures
(surprisingly, situation is much better than anticipated!)
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Accuracy of phase monitoring via quadratures
(no feedback yet)
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Noise improves the monitoring accuracy!
(purely quantum effect, “reality follows observations”)

0/ [ ( ) ]sin( ) ( / )Id dt I t I t I Sφ φ= − − Ω + ∆
2 2 1/ 2

0/ [ ( ) ]sin( ) /( )m md dt I t I t X Yφ φ= − − Ω + +
(actual phase shift, ideal detector)

(observed phase shift)

Noise enters the actual and observed phase evolution in a similar way

Quite accurate monitoring! cos(0.44)≈0.9
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(3)Simple quantum feedback

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

1
2

F/C

D
, <

X
>(

4/
τ ∆

I)

4
8

0.5
0.2

τ[(∆I)2/SI]=  

0.1C = 0.1
η = 1

classical feedback

(feedback strength)

(fi
de

lit
y)

fidelity for different averaging τ

weak coupling C

D – feedback 
efficiency
2 1

Tr ( ) ( )
Q

Q des

D F

F t tρ ρ
≡ −

≡ 〈 〉

Dmax ≈ 90%

(FQ ≈ 95%)

How to verify feedback operation experimentally?
Simple: just check that in-phase quadrature 〈X〉

of the detector current is positive (4 / )D X Iτ= 〈 〉 ∆

〈X〉=0 for any non-feedback Hamiltonian control of the qubit



University of California, RiversideAlexander Korotkov

(4)Effect of nonidealities
- nonideal detectors (finite

quantum efficiency η)
and environment

- qubit energy asymmetry ε
- frequency mismatch ∆Ω

• Fidelity FQ up to ~95% achievable (D~90%)
• Natural, practically classical feedback setup
• Averaging τ~1/Γ>>1/Ω (narrow bandwidth!)
• Detector efficiency (ideality) η ~0.1 still OK
• Robust to asymmetry ε and frequency shift ∆Ω
• Simple verification: positive in-phase quadrature 〈X〉

Simple enough
experiment?!
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Quantum feedback
still works quite well

Main features:
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Bell-type measurement correlation
Korotkov’2000
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Idea: two consecutive finite-time (imprecise) measurements of a qubit 
by two detectors; probability distribution P(QA, QB, τ) shows 
the effect of the first measurement on the qubit state.

Proves that qubit remains in a pure state during measurement (for η=1)

Advantage: no need to record noisy detector output with GHz bandwidth;
instead, we use two detectors and fast ON/OFF switching.

Modification: correlation of low-frequency noises (not considered yet)
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“Aging” of a phase qubit due to measurement
Recently realized experimentally by
Nadav Katz et al. (John Martinis’ group)
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Main idea:
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(similar to optics, Dalibard et al., PRL-1992)
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Effect of remaining coherence after 
incomplete (too short) measurement

Protocol:
0) state preparation by rf pulse
1) incomplete measurement
2) additional rf pulse (θ-pulse)
3) measurement again (complete)
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(3)Formulas for ideal case
Step 1. Rabi pulse θ0 prepares state 0 0cos( )| 0 sin( )| 1/ 2 / 2θ θ〉 + 〉

1 exp( )p τ= − −ΓStep 2. Incomplete measurement with strength
switches qubit with probability                       .  With probability 2

1 0sin ( )P p θ= 1
the state becomes                                               wherecos( )| 0 sin( ) | 1 ,/ 2 / 2 mi

m m e ϕθ θ〉 + 〉-
1P−

ϕm – accumulated phase shift in rotating frame (levels change) and 

01 tan( )2 atan( / 2m pθ θ−=
Step 3. Z-rotation ϕ and Rabi pulse θ. 

Step 4. Complete measurement, switching probability P2.
Total switching probability 1 2tP P P= +

2 011 [1 sin ( )][1 cos cos sin sin cos( )]
2 2 m m mtP p θ θ θ θ θ ϕ ϕ= − − + − −

If ϕm is compensated (ϕ = ϕm) then maximum oscillation amplitude:
2 011 [1 sin ( )][1 cos( )]

2 2 mtP p θ θ θ= − − + +
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(4)
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Conclusion

● Interesting (“ideologically” nontrivial) experiments
on continuous quantum measurement and quantum
feedback can be performed with solid-state qubits

● One such experiment has been already realized;
one more partially realized

● Few more experimental proposals seem to be 
realizable now (or in near future)
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