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Two-qubit errors
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A Josephson phase qubit is described by the Hamiltonian
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d; is the Josephson phase of 7th qubit, Ij is the critical current, @y = h/2e is the flux

_ P13+ 20pips

201 1 Om + U1(61) + Ua(62), ¢

U(d;)) =FE;y —cosd;|, By =
quantum, ®; is the external flux, p; is the canonical momentum.

Dissipation: the resistively shunted junction (RSJ) model, i.e., a friction term in eqs. of
motion: —9; /T, where T7 = RC'is the energy relaxation time.




1. Crosstalk after the measurement pulse

Crosstalk for state |10): measurement pulse = tunneling of i
gubit 1 to the right-hand well (switching) = damped oscillation
—> microwave voltage = switching of qubit 2 =

wrong measurement (|11))
Qubit 1 is treated classically (reasonable: the quantum number n 2 150).
Theoretical approaches for qubit 2:

A. Classical approaches:
- Harmonic oscillator.
- Actual potential, no damping.

- Actual potential, with damping.

B. Quantum approach (actual potential, no damping).




First-qubit dynamics
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(the charge at the second qubit is neglected) = damped oscillation.

AU
C'=T001F, Jo =17 pA, L =T20pH, Ni = & L — 1.36.
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- left-well plasma frequency for qubit ¢, ¢ - resonance time.




2nd qubit: Classical oscillator

t
51§+w12233 = Cél(t), Tr = 52 — (512, 51( ) = A(t) exp [Z/ wd(t/> dt/] 4+ .. .y

wis = 8.91 GHz (N2 = AUz/ﬁwlg = )).
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17 = 25 ns, T7 = 500 ns
Dashed line - analytical solution with A = A(t.), wq(t) = w2 + a(t — t.).
FE max = 1.37m(*mA? /.
Numerical FT of 67 (t) = A = 4300 ns—2 (Nj2 = 5), A = 5200 ns~2 (N;2 = 10).

No escape: C.[fF] < B/+/11[ns]. B = 15for N3 = 5, B = 14.3 for N;3 = 10 ()




Classical approach for qubit 2: Actual potential
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Distinctions of nonlinear dynamics from oscillator:
- Earlier excitation.

- Less efficient excitation.
- Random changes of oscillation amplitude, sometimes beyond the initial maximum.

- Possibility of escape.




Actual potential, with damping of 2nd qubit
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Ny =5C, =5 Ty =T] =25ns. Threshold capacitance C,; 7

Cz < Cy 1 -noescape, C; < Uy 1 - escape is possible;
1- Ny =05, Tll = OQ;
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Quantum approach

Now 2nd qubit is considered quantum-mechanically (still "classical“ approach for qubit 1).

Hamiltonian for qubit 2:

PP 20 (t)p . .0
= 20+ Om +U(), p=—ih—.

H(t
(t) 00
Canonical (gauge) transformation = more physical form:

W(5,t) = W' (5, t)ePr/7 — H'(1) = Hy + V (1),
_ P
o 2m!!

We obtain eigenvalues and eigenfunctions of H by Fourier grid Hamiltonian (or,

+U(8), V(t)=—=Cm"61(t)8, m" = (1+m.

Hy

equivalently, periodic pseudospectral) method.

We expand \11(5, t) over the eigenfunctions of H and obtain from the time-dependent
Schroedinger equation a set of ordinary differential equations for the expansion

coefficients. In our simulations a subset of levels is used.




N, = AU /hw; =10, C, = 6 fF, Ty = 25 ns
E,, /hwy, |1, (0) 2 No-switching probability
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12 states in the left well: n = 146, 148, ..., 166, 169.
Used in the simulation: 141 < n < 185.

A sharp decrease of the left-well population at 16 < ¢t < 18 ns is due to the resonance
n =164 (k=9) — n = 168.
wq(16 ns) = 12.5 GHz, w1es,164 = 13.2 GHz,
w16s,164 — Wd(16 ns) = 0.7 GHz ~ Ri6s.164.
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Quantum case: crosstalk = qubit-2 switching probability P

Numerical simulations for 77 = 25, 50, 100, 200, 500 ns.
Ny =5 N; =10
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Two-qubit coupling strength (operation frequency) S = (C. /C)w1p.

Crosstalk sets limits on C';, and S.

Threshold capacitance C,, 7 and threshold operation frequency St vs. 1:
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2. Crosstalk during the measurement pulse

Dependence on the critical current I ()

Experiments have shown a significant increase of crosstalk, when critical current increases
so that U () becomes a three-well potential.
Is three-stable situation really bad?

We make simulations in the quantum approach, using parameter values from experiment:

C =1300fF, L =850pH, Cp =3, N; = 1.4, Ty = 120 ns,

Io = 1.9 uA 8 = 4.91
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Crosstalk (switching probability) M..: Large dots — C,, = 3 fF, small dots — C,, = 5 fF.

The pulse duration is 5 ns or 10 ns, as denoted in the plot
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One-qubit errors during the measurement pulse
3. Nonadiabatic effects

C'=700fF, L =0.72nH, Iy = 1.7 mkA.
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Pulse of ¢(t), the external magnetic flux (in units of the flux quantum).
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Theory

2 types of nonadiabatic errors:

(a) One of the levels is populated: P, = 1 — Pyo(7) ~ P1o(T).

(b) Both levels are populated: ~ \/E = m - error is increased due to quantum
interference.

2 2

E T
Roughly (PT): P, = J 373 / dtp(t)e™ 0t w19 — wip(0) or wig(T)].
2h3%mwi)” 1/o

More exactly, adiabatic PT (taking into account 2 states):

2
P ~ (ﬁ) 2 /T dt¢(t)510(t) Gi fot wio(t)dt’
hB 0 wlo(t)

2

£ T dtdE) i [ o dr
510 ~ \/h/(melo) = Pe ~ J / gb( ) e fO 10(t")dt
0

2h532m | Jo wii?(t)
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Theory: Long- 7 behavior

Dependence on the pulse duration 7: ¢(t) — ¢(t/7) = ¢(0).

Let wio(t = 7)7 > 1. Then

E?] ¢(jo)(0)510(0) ijl_j0¢(j1)(1)510(1) ?

~ | o - 7 gl0T
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Jo, J1 - lowest orders of derivatives att = () and ¢t = T, respectively.
#9)(8) is the jth derivative of ¢(H).

If Jo = J1 = J,
| | ,
P~ E? $\9)(0)810(0) B ¢<J)(1)510(1)6m107
R I FR U N CY

- oscillations. If jo # j1, oscillations vanish for long 7.
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Numerical simulations

Method

tm = mAt (m=20,1,..., N, — 1)

We obtain eigenvalues and eigenfunctions of H (t,,) by Fourier grid Hamiltonian (or,

equivalently, periodic pseudospectral) method.

W(o,t) =Y alpr(8)e N (4, <t < t),

o™ = /oo S (8)VT(S, 1,7 )dO.

The population of the qubit state 1, subject to the condition that initially state ¢ is populated,

IS given by
Pui(t) = lap'|* (tm <t <tmia).
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Results

Measurement pulse shape f(0): ¢(t/7) = ¢og + (¢1 — ¢Po) f(t/T)

Linear pulse, f(0) = 6 Pulse shapes

@)

— Numerical
---- Simple analytics
— Better analytics

0.1 057 (ns) 1 2 ' ' ' ' ' Pulse ddration t (i!\s)

o,
1

f(8) = 6 (thin solid line), sin(76/2) (thin dotted line), 1 — cos(wf/2) (thin dash-dot
line), sin® (7@ /2) (thin dashed line), sin* (76 /2) (thick solid line), 1 — cos*(70/2) (thick
dotted line), A cos? (@) (thick dashed line), [1 4+ 7w2(1 — 6)? /2] sin* (w6 /2) (thick
dash-dot line).

Good agreement with the theory.
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4. Left-well repopulation

No relaxation (17 — 00)

Case | (above case): C' = 700fF, L = 0.72nH, Iy = 1.7 uA, N, = 174 (no. of
right-well levels).

Casell: C =790fF, L =0.720 nH, Iy = 0.764 puA, N, = 30.

Parabolic pulse: ¢(t/7) = ¢g + 4(p1 — Po)(t/7)(1 —t/T) (0 <t < 7).
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Case I: Level populations P, (t) (169 < n < 204) for p; = 1.01¢. and 7 = 2 ns
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t < 0.63 ns (t < 0.4 ns), population of |0) (|1)) are the upper (lower) envelope of P, (t).

t < 0.3 ns, they vary due to above nonadiabatic effects.

0.4 < t < 0.63 ns, Landau-Zener transitions, due to crossings of left- and right-well levels.

t < 0.5 ns, |0) is below the barrier, transitions represent quantum tunneling.

t > 0.5, level splittings are comparable to level separations, > 2 levels are coupled simultaneously.
t > 0.63, the left well disappears.
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Probability for the system to be to the right of the barrier top: P, (t) = / [T (8, t)|°dd
5

m

(where 0., is barrier-top position). It depends on time, due to excited delocalized levels.

[©.@)
The switching probability is the time average of P,.(t) : Ps = Z P, / |9 (8)]7d6,
n Om

where P, is the population of level n after the pulse; the integral is the probability for the system in

state n to be in the right well.
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The measurement pulse excites the system!

Relaxation is obligatory for switching.
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5. Effect of relaxation on qubit switching

A rough estimate of the minimal pulse duration 7,,, necessary for switching:

n;, —n

Uz

Here n; is the highest state populated immediately after the pulse rise, 1 ¢ is the first level above the
barrier top after the pulse is over.

Incase I, n; ~ 200, ny = 181, hence 7, =~ 0.177.
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For experiments, C' = 1.1 pF, L = 850 pH, and Ip = 1.118 uA, Th = 110 ns.

Then we estimate n; = 156, ny = 135 and get 7, Z 14 ns.

This estimation seems to correlate with the experimental data. Indeed, in the plot, at ® ~ 1.01P.

there is a sharp increase of P to a value close to 1 for 7 > 10 ns.

pvs CIJ/CIJC
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L
1.05
@/ _in [0.9311, 1.1348]

The escape probability P vs. & /P..
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Conclusions

Crosstalk of phase qubits after the measurement pulse has be en analyzed both classically
(for several models) and quantum-mechanically. The theory provides limits on the

coupling capacitance and the operating frequency.

Crosstalk during the measurement pulse has been analyzed by the quantum-mechanical
approach. The results agree qualitatively with recent expe riments. A region of the qubit

parameters, where the crosstalk is reduced, has been found.

Nonadiabatic errors during the measurement pulse have been studied both analytically
(using several approaches with different levels of complex ity) and numerically by solving

the time-dependent Schr 6dinger equation.

Qubit switching in the absence of relaxation has been studie d by numerical simulations of
the Schr ddinger equation. The left-well repopulation effect has be en observed and its

mechanism has been discussed.

A relation between the measurement-pulse duration and the r elaxation time has been

suggested and compared with recent experiments.
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