Measurement theory for phase qubits

A. G. Kofman¹, Q. Zhang¹, J. M. Martinis², and A. N. Korotkov¹

¹Electrical Engineering Department, University of California, Riverside ²Department of Physics, University of California, Santa Barbara

Outline

- Two-qubit errors:
 - 1. Crosstalk after the measurement pulse
 - 2. Crosstalk during the measurement pulse(related to recent experiments in Martinis' group)
- One-qubit errors during the measurement pulse:
 - 3. Nonadiabatic effects
 - 4. Left-well repopulation
 - 5. Effect of relaxation on qubit switching

(related to recent experiments in Martinis' group)

Two-qubit errors

A Josephson phase qubit is described by the Hamiltonian

$$H = \frac{p_1^2 + p_2^2 + 2\zeta p_1 p_2}{2(1+\zeta)m} + U_1(\delta_1) + U_2(\delta_2), \quad \zeta = \frac{C_x}{C+C_x},$$
$$U(\delta_i) = E_J \left[\frac{(\delta_i - \phi_i)^2}{2\beta} - \cos \delta_i \right], \quad E_J = \frac{\Phi_0 I_0}{2\pi}, \quad \beta = \frac{2\pi I_0 L}{\Phi_0}, \quad \phi_i = \frac{2\pi \Phi_i}{\Phi_0},$$

 δ_i is the Josephson phase of *i*th qubit, I_0 is the critical current, $\Phi_0 = h/2e$ is the flux quantum, Φ_i is the external flux, p_i is the canonical momentum.

Dissipation: the resistively shunted junction (RSJ) model, i.e., a friction term in eqs. of motion: $-\dot{\delta_i}/T_1$, where $T_1 = RC$ is the energy relaxation time.

1. Crosstalk after the measurement pulse

Crosstalk for state $|10\rangle$: measurement pulse \Rightarrow tunneling of $|10\rangle$ qubit 1 to the right-hand well (switching) \Rightarrow damped oscillation \Rightarrow microwave voltage \Rightarrow switching of qubit 2 \Rightarrow wrong measurement ($|11\rangle$)

Qubit 1 is treated classically (reasonable: the quantum number $n \gtrsim 150$).

Theoretical approaches for qubit 2:

- A. Classical approaches:
- Harmonic oscillator.
- Actual potential, no damping.
- Actual potential, with damping.
- B. Quantum approach (actual potential, no damping).

First-qubit dynamics

2nd qubit: Classical oscillator

$$\ddot{x} + \omega_{l2}^{2} x = \zeta \ddot{\delta}_{1}(t), \ x = \delta_{2} - \delta_{l2}, \ \ddot{\delta}_{1}(t) = A(t) \exp\left[i \int^{t} \omega_{d}(t') dt'\right] + \dots,$$

$$\omega_{l2} = 8.91 \text{ GHz} (N_{l2} \equiv \Delta U_{2} / \hbar \omega_{l2} = 5).$$

$$\int_{0}^{14} \int_{0}^{14} \int$$

Dashed line - analytical solution with $A = A(t_c), \ \omega_d(t) = \omega_{l2} + \alpha(t - t_c).$ $E_{2,\max} = 1.37\pi\zeta^2 m A^2/\alpha.$ Numerical FT of $\ddot{\delta}_1(t) \Rightarrow A = 4300 \text{ ns}^{-2}$ ($N_{l2} = 5$), $A = 5200 \text{ ns}^{-2}$ ($N_{l2} = 10$). No escape: C_x [fF] $< B/\sqrt{T_1}$ [ns]. B = 15 for $N_{l2} = 5$, B = 14.3 for $N_{l2} = 10$ (!)

Distinctions of nonlinear dynamics from oscillator:

- Earlier excitation.
- Less efficient excitation.
- Random changes of oscillation amplitude, sometimes beyond the initial maximum.
- Possibility of escape.

Actual potential, with damping of 2nd qubit

Quantum approach

Now 2nd qubit is considered quantum-mechanically (still "classical" approach for qubit 1). Hamiltonian for qubit 2:

$$H(t) = \frac{\hat{p}^2 + 2\zeta p_1(t)\hat{p}}{2(1+\zeta)m} + U(\delta), \ \hat{p} = -i\hbar\frac{\partial}{\partial\delta}.$$

Canonical (gauge) transformation \Rightarrow more physical form:

$$\Psi(\delta, t) = \Psi'(\delta, t) e^{-i\zeta p_1(t)\delta/\hbar} \Rightarrow H'(t) = H_0 + V(t),$$
$$H_0 = \frac{\hat{p}^2}{2m''} + U(\delta), \ V(t) = -\zeta m'' \ddot{\delta}_1(t)\delta, \ m'' = (1+\zeta)m.$$

We obtain eigenvalues and eigenfunctions of H_0 by Fourier grid Hamiltonian (or, equivalently, periodic pseudospectral) method.

We expand $\Psi(\delta, t)$ over the eigenfunctions of H_0 and obtain from the time-dependent Schroedinger equation a set of **ordinary** differential equations for the expansion coefficients. In our simulations a subset of levels is used.

12 states in the left well: n = 146, 148, ..., 166, 169. Used in the simulation: $141 \le n \le 185$.

A sharp decrease of the left-well population at 16 < t < 18 ns is due to the resonance

$$n = 164 \ (k = 9) \rightarrow n = 168.$$
$$\omega_d(16 \text{ ns}) = 12.5 \text{ GHz}, \omega_{168,164} = 13.2 \text{ GHz}$$
$$\omega_{168,164} - \omega_d(16 \text{ ns}) = 0.7 \text{ GHz} \sim R_{168,164}$$

Quantum case: crosstalk = qubit-2 switching probability P_s Numerical simulations for $T_1 = 25, 50, 100, 200, 500$ ns.

 $\begin{array}{c}
0.5 \\
0.1 \\
0.05 \\
0.01 \\
0.005 \\
1 \\
1.5 \\
2 \\
2.5 \\
3 \\
3.5 \\
4 \\
Cx, fF
\end{array}$

 $N_l = 5$

 $N_{l} = 10$

Two-qubit coupling strength (operation frequency) $S = (C_x/C)\omega_{10}$. Crosstalk sets limits on C_x and S.

Threshold capacitance $C_{x,T}$ and threshold operation frequency S_T vs. T_1 :

classical classical Threshold capac. (fF) Threshold capac. (fF) quantum, Ps=0.3 Ps=0.3, quantum 0.1 0.01 0.1 oscillator 20 oscillator 0.01 25 50 100 500 25 50 100 200 200 500 T1 (ns) T1 (ns) $N_l = \Delta U / \hbar \omega_l$ Oscillator β Classic β Quantum β $C_{x,T}(T_1) \approx BT_1^{-\beta}$ 5 0.5 0.12 0.3 10 0.5 0.12 0.2 Higher barrier \Rightarrow weaker crosstalk \Rightarrow faster operation frequency

$$N_{l} = 5$$

 $N_{l} = 10$

2. Crosstalk during the measurement pulse

Dependence on the critical current I_0 (β)

Experiments have shown a significant increase of crosstalk, when critical current increases so that $U(\delta)$ becomes a three-well potential. Is three-stable situation really bad?

We make simulations in the quantum approach, using parameter values from experiment:

 $C = 1300 \ {\rm fF}, \ \ L = 850 \ {\rm pH}, \ \ C_x = 3 \ {\rm fF}, \\ N_l = 1.4, \ \ T_1 = 120 \ {\rm ns},$

One-qubit errors during the measurement pulse

3. Nonadiabatic effects

 $C = 700 \; {\rm fF}, \; L = 0.72 \; {\rm nH}, \; I_0 = 1.7 \; {\rm mkA}.$

 $H(t) = \frac{\hat{p}^2}{2m} + U(\delta, t), \quad U(\delta, t) = E_J \left\{ \frac{[\delta - \phi(t)]^2}{2\lambda} - \cos \delta \right\}$

Pulse of $\phi(t)$, the external magnetic flux (in units of the flux quantum).

Theory

2 types of nonadiabatic errors:

(a) One of the levels is populated: $P_e \equiv 1 - P_{00}(\tau) \approx P_{10}(\tau)$.

(b) Both levels are populated: $\simeq \sqrt{P_e} = \sqrt{P_{00}(\tau)}$ - error is increased due to quantum interference.

Roughly (PT):
$$P_e \approx \frac{E_J^2}{2\hbar\beta^2 m \omega_{10}^{3/2}} \left| \int_0^{\tau} dt \dot{\phi}(t) e^{i\omega_{10}t} \right|^2 \ [\omega_{10} \to \omega_{10}(0) \text{ or } \omega_{10}(\tau)].$$

More exactly, adiabatic PT (taking into account 2 states):

$$P_e \approx \left(\frac{E_J}{\hbar\beta}\right)^2 \left| \int_0^\tau dt \frac{\dot{\phi}(t)\delta_{10}(t)}{\omega_{10}(t)} e^{i\int_0^t \omega_{10}(t')dt'} \right|^2.$$
$$\delta_{10} \approx \sqrt{\hbar/(2m\omega_{10})} \Rightarrow P_e \approx \frac{E_J^2}{2\hbar\beta^2 m} \left| \int_0^\tau \frac{dt\dot{\phi}(t)}{\omega_{10}^{3/2}(t)} e^{i\int_0^t \omega_{10}(t')dt'} \right|^2.$$

Theory: Long- τ behavior

Dependence on the pulse duration $\tau: \phi(t) \to \phi(t/\tau) = \phi(\theta)$.

Let $\omega_{10}(t= au) au\gg 1$. Then

$$P_{e} \approx \frac{E_{J}^{2}}{\hbar^{2} \beta^{2} \tau^{2j}} \left| \frac{\phi^{(j_{0})}(0) \delta_{10}(0)}{\omega_{10}^{j_{0}+1}(0) \tau^{j_{0}-j}} - \frac{i^{j_{1}-j_{0}} \phi^{(j_{1})}(1) \delta_{10}(1)}{\omega_{10}^{j_{1}+1}(1) \tau^{j_{1}-j}} e^{i\bar{\omega}_{10}\tau} \right|^{2},$$
$$\bar{\omega}_{ni} = \int_{0}^{1} \omega_{ni}(\theta) d\theta$$

. 0

 j_0, j_1 - lowest orders of derivatives at t = 0 and $t = \tau$, respectively. $\phi^{(j)}(\theta)$ is the *j*th derivative of $\phi(\theta)$.

If $j_0 = j_1 = j$, $P_e \approx \frac{E_J^2}{\hbar^2 \lambda^2 \tau^{2j}} \left| \frac{\phi^{(j)}(0)\delta_{10}(0)}{\omega_{10}^{j+1}(0)} - \frac{\phi^{(j)}(1)\delta_{10}(1)}{\omega_{10}^{j+1}(1)} e^{i\bar{\omega}_{10}\tau} \right|^2.$

- oscillations. If $j_0 \neq j_1$, oscillations vanish for long τ .

Numerical simulations

Method

$$t_m = m\Delta t \ (m = 0, 1, \dots, N_\tau - 1)$$

We obtain eigenvalues and eigenfunctions of $H(t_m)$ by Fourier grid Hamiltonian (or, equivalently, periodic pseudospectral) method.

$$\Psi(\delta,t) = \sum_{n} a_n^m \psi_n^m(\delta) e^{-iE_n^m(t-t_m)/\hbar} \quad (t_m \le t \le t_{m+1}),$$

$$a_n^m = \int_{-\infty}^{\infty} \psi_n^{m*}(\delta) \Psi(\delta, t_m) d\delta.$$

The population of the qubit state n, subject to the condition that initially state i is populated, is given by

$$P_{ni}(t) = |a_n^m|^2 \ (t_m \le t \le t_{m+1}).$$

Results

Measurement pulse shape $f(\theta)$: $\phi(t/\tau) = \phi_0 + (\phi_1 - \phi_0)f(t/\tau)$

 $f(\theta) = \theta$ (thin solid line), $\sin(\pi\theta/2)$ (thin dotted line), $1 - \cos(\pi\theta/2)$ (thin dash-dot line), $\sin^2(\pi\theta/2)$ (thin dashed line), $\sin^4(\pi\theta/2)$ (thick solid line), $1 - \cos^4(\pi\theta/2)$ (thick dotted line), $\theta \cos^2(\pi\theta)$ (thick dashed line), $[1 + \pi^2(1 - \theta)^2/2] \sin^4(\pi\theta/2)$ (thick dash-dot line).

Good agreement with the theory.

4. Left-well repopulation

No relaxation ($T_1 \rightarrow \infty$)

Case I (above case): C = 700 fF, L = 0.72 nH, $I_0 = 1.7 \ \mu$ A, $N_r = 174$ (no. of right-well levels).

Case II: C = 790 fF, L = 0.720 nH, $I_0 = 0.764 \ \mu$ A, $N_r = 30$.

Parabolic pulse: $\phi(t/\tau) = \phi_0 + 4(\phi_1 - \phi_0)(t/\tau)(1 - t/\tau) \ (0 \le t \le \tau).$

t < 0.63 ns (t < 0.4 ns), population of $|0\rangle$ ($|1\rangle$) are the upper (lower) envelope of $P_n(t)$. t < 0.3 ns, they vary due to above nonadiabatic effects.

0.4 < t < 0.63 ns, Landau-Zener transitions, due to crossings of left- and right-well levels.

t < 0.5 ns, |0
angle is below the barrier, transitions represent quantum tunneling.

 $t \ge 0.5$, level splittings are comparable to level separations, > 2 levels are coupled simultaneously.

 $t \geq 0.63,$ the left well disappears.

Probability for the system to be to the right of the barrier top: $P_r(t) = \int_{\delta_m}^{\infty} |\Psi(\delta, t)|^2 d\delta$

(where δ_m is barrier-top position). It depends on time, due to excited delocalized levels.

The switching probability is the time average of $P_r(t)$: $P_s = \sum_n P_n \int_{\delta_m}^{\infty} |\psi_n(\delta)|^2 d\delta$,

where P_n is the population of level n after the pulse; the integral is the probability for the system in state n to be in the right well.

The measurement pulse excites the system!

Relaxation is obligatory for switching.

5. Effect of relaxation on qubit switching

A rough estimate of the minimal pulse duration au_m necessary for switching:

$$\tau_m > \frac{n_i - n_f}{n_i} T_1.$$

Here n_i is the highest state populated immediately after the pulse rise, n_f is the first level above the barrier top after the pulse is over.

In case I, $n_i \approx 200$, $n_f = 181$, hence $\tau_m \approx 0.1T_1$.

For experiments, C = 1.1 pF, L = 850 pH, and $I_0 = 1.118 \ \mu$ A, $T_1 = 110$ ns. Then we estimate $n_i = 156$, $n_f = 135$ and get $\tau_m \gtrsim 14$ ns.

This estimation seems to correlate with the experimental data. Indeed, in the plot, at $\Phi \approx 1.01 \Phi_c$ there is a sharp increase of P to a value close to 1 for $\tau \ge 10$ ns.

The escape probability P vs. Φ/Φ_c .

Conclusions

- Crosstalk of phase qubits after the measurement pulse has been analyzed both classically (for several models) and quantum-mechanically. The theory provides limits on the coupling capacitance and the operating frequency.
- Crosstalk during the measurement pulse has been analyzed by the quantum-mechanical approach. The results agree qualitatively with recent experiments. A region of the qubit parameters, where the crosstalk is reduced, has been found.
- Nonadiabatic errors during the measurement pulse have been studied both analytically (using several approaches with different levels of complexity) and numerically by solving the time-dependent Schrödinger equation.
- Qubit switching in the absence of relaxation has been studied by numerical simulations of the Schrödinger equation. The left-well repopulation effect has been observed and its mechanism has been discussed.
- A relation between the measurement-pulse duration and the relaxation time has been suggested and compared with recent experiments.