
University of California, RiversideAlexander Korotkov

Co-P.I.: Alexander Korotkov, UC Riverside

The team: 1) Qin Zhang, graduate student
2) Dr. Abraham Kofman, researcher (started 06/05)
3) Alexander Korotkov, professor

Measurement theory for phase qubits

Milestones for Years 1 and 2:
• Develop a quantum theory for the classical measurement 

cross-coupling and use it to calculate the energy transfer 
from one phase Qbit to another.

• Calculate the theoretical fidelity of single phase-Qbit
one-shot measurements 

• Calculate the theoretical measurement fidelity for coupled 
phase Qbits

• Calculate the degree of quantum measurement back action 
in a phase Qbit

Progress:   All Done
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Sponsored publications 
during first 2 years of the project

Published:  11 journal papers and 2 proceedings
Submitted: 3 journal papers
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Milestone: theoretical one-qubit
measurement fidelity

| 0〉

| 1〉

• Calculate the theoretical fidelity of single phase-Qbit one-shot measurements

Studied three error mechanisms:  1) non-adiabatic error, 
2) incomplete level discrimination, 3) left well repopulation
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very small errors for experimental pulse duration (~2 ns)
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| 0〉
| 1〉

Switching probability Ps vs. flux (“S-curves”)

- error ~1% at the optimal point
- error decreases for longer pulses
- error well below 1% requires qubit redesign

(good news: exponential sensitivity on parameters)

WKB
rates

Error due to incomplete 
level discrimination
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- energy relaxation in right well
is very important for irreversibility

- requires slow resetting of measurement pulse
(or turning damping on/off)

- special experimental study (N. Katz et al.)

Error due to left well repopulation

Fully quantum simulation
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Milestones: theory of cross-talk and 
theoretical fidelity for coupled qubits

• Develop a quantum theory for the classical measurement cross-coupling
and use it to calculate the energy transfer from one phase Qbit to another

• Calculate the theoretical measurement fidelity for coupled phase Qbits

McDermott et al., Science-2005

Cx
Measurement of state |1〉 drives second qubit
⇒ possible errors for states |10〉 and |01〉

driving frequency vs. time

Approaches for the driven qubit:
- classical
- quantum
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Classical approach

Qubit energy vs. time

T1=25 ns T1=500 ns

no error
error

Measurement error:
excitation over barrier

No-error requirement limits coupling capacitance
Maximum coupling capacitance vs. T1

qubit parameters taken from
McDermott et al., Science-05

Larger T1 requires 
smaller coupling
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Quantum approach
(numerical solution of Schrödinger equation)
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Measurement fidelity and coupling
limitation for coupled phase qubits
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Maximum coupling capacitance (and gate frequency) vs. T1
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• Cross-talk is small for 2-qubit gate frequency < 10-40 MHz
• Increasing qubit barrier helps, but not much
• Larger T1 requires smaller frequency, but weak dependence

For proof-of-principle experiments cross-talk is not a big problem, 
but for future high-fidelity experiments variable coupling is desirable
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Milestone: quantum measurement
back-action for phase qubit

• Calculate the degree of quantum measurement back action in a phase Qbit

Γ
|0〉
|1〉

Main idea:

How does a coherent state evolve
in time before tunneling event?
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(similar to optics, Dalibard-Castin-Molmer, PRL-1992)
continuous null-result collapse

2 2| | | | tNorm eα β −Γ= +

amplitude of state |0> grows without physical interaction

Qubit “ages” in contrast to a radioactive atom!
(What happens when nothing happens?)
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Partial collapse of a phase qubit
N. Katz et al., Science-2006
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• First solid-state experiment
on non-trivial collapse
(quantum back-action)

• Showed Bayesian nature of
collapse (state remains pure!)
• Non-unitary quantum gate

for a quantum computer

p = 0: no measurement
p = 1: orthodox collapse

Measurement strength
p = 1 - exp(-Γt )

is actually controlled
by Γ, not by t
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Quantum eraser based on phase qubit
(exact undoing of a quantum measurement)

ψ0
(unknown)

ψ1
(partially
collapsed)

Partial
measurement

ψ0 (still
unknown)

ψ2

successful

unsuccessful
undoing

(information erasure)
Evolution due to partial measurement 
is non-unitary, therefore impossible 
to undo it by Hamiltonian dynamics.

How to undo? One more measurement!

× =
| 0〉
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Korotkov-Jordan, 2006

Probability of success:

Similar to experiment by N. Katz 
et al., just one more π-pulse and
one more partial measurement.
If no tunneling twice, then an 
unknown state is fully restored
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Related topics (quantum 
measurement back-action)

Besides completing the planned milestones, we have
also published papers on the following related topics: 

• Quantum feedback control of a charge qubit
• QND measurement and squeezing of a nanoresonator
• QND measurement of a charge qubit
• Leggett-Garg inequalities (“Bell inequalities in time”)

for continuous measurement
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Proposed milestones for Years 3 and 4 
(theory, UCR)

Milestones for years 3 and 4 planned in 2004:
Year 3: Compute fidelity threshold for entanglement demonstration
Year 4:  Relate analysis of state tomography to models of decoherence

Proposed revised (detailed) milestones for years 3 and 4:

• Develop comprehensive theory of coherent partial collapse for single  
and entangled phase qubits due to null-result measurement (taking into  
account imperfections and simultaneous Hamiltonian evolution). Develop 
experiment-oriented theory and compute fidelity of undoing of a partial 
measurement (restoration of an unknown state) for a phase qubit.   

• Compute fidelity threshold and decoherence limitations for entanglement 
demonstration. Analyze applicability of the Clauser-Horne-Shimony-Holt
version of the Bell inequality for entangled phase qubits; study potential 
improvement using Eberhard-like inequality.

• Calculate gate fidelities for coupled qubits. Develop procedure of
process tomography characterization suitable for quantum gates
based on phase qubits. 
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Milestone: Threshold for 
entanglement demonstration

Original Bell’s inequality (1964)
a b

1 2 1 2
1 ( )
2

ψ = ↑ ↓ − ↓ ↑

| ( , ) ( , ) | 1 ( , )P a b P a c P b c− ≤ +
G GG G G G

( ) ( ) ( ) ( )P p p p p≡ + + + −− − + − − −+

QM: ( , )P a b a b= −
G GG Gi

For 0°, 90°, and 45°: 0.71 1 0.71≤ −
violation

For the Bell’s inequality we need to assume perfect anticorrelation
for the same measurement direction ⇒ not practical!

CHSH inequality (Clauser, Horne, Shimony, Holt, 1969)
a or a’ b or b’ | | 2, where

( , ) ( , ') ( ', ) ( ', ')
S

S P a b P a b P a b P a b
≤

= - + +

2 2S ±=Maximum violation:
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CHSH: Translation into phase qubits

0

1
A

B
tomography angle

Preliminary results for finite visibility 
Models:  1) “orthodox” collapse

and classical errors
2) Partial measurement,
Γ and γ (not yet studied)

1 1 2 2 1 1 2 2max( ) 2( 1) ( 1) 2 2 ( ) ( )S A B A B A B A B= + - + - + - -

Assume A1=A2=A, B1=B2=B, then violation (S>2) requires:
0.83A B >- (same as in CHSH paper)

Unanswered questions
• Visibility limitation for the second and other models
• Limitation for decoherence
• Finite visibility together with decoherence
• Required accuracy of control
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Other inequalities

Our preliminary proposal (similar to CHSH)
where1 0,T≤ ≤- 1 2( , ) ( , ') ( ', ) ( ', ') ( ') ( )T R a b R a b R a b R a b R a R b= - + + - -

1 2( ), ( , any), (any, )R p R p R p= - - = - = - Max violation: 1 2
2 2

T = − ±

There is a direct relation between S and T; however, only negative-
result cases are counted in T, so cross-talk is not important!

One more inequality (Eberhard, 1993)
0J ≥ ( | , ') ( | , ') ( | ', )J p a b p u a b p a b= +- + + + -+ +

( | ', ) ( | ', ') ( | , )p u a b p a b p a b+ + + ++ - ++
Efficiency η >2/3 (instead of >83%) is sufficient 

to observe violation, initial state is not the Bell state 

(u – unobserved)

Can something similar be used for phase qubits
to relax requirements for visibility and decoherence?
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Milestone: Partial collapse of phase
qubits (further developments)

Problems to be studied:

• Rigorous theory of partial collapse; account of decoherence,
microwave, etc., theory for more advanced experiments 
(collaboration with Prof. Pryadko, Dr. Ruskov, and Prof. Mizel)

• Theoretical support of experiment (hopefully!) on quantum 
eraser: account of imperfections (collab. with Prof. Jordan)

• Partial collapse of entangled qubits; gradual violation of 
Bell (CHSH) inequalities (not possible in optics!)

• Non-unitary probabilistic gates for entangled qubits based 
on partial collapse: new operations for QC library 

Really interesting (“ideologically” non-trivial) experiments 
on quantum information processing are within reach.

Quantum optics no longer holds monopoly!
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Proposed experiment on undoing 
partial collapse of a phase qubit 

1) start with an “unknown” state
2) partial measurement of strength p
3) π-pulse (exchange |0> ↔ |1>)
4) one more measurement with 

the same strength p
5)   π-pulse (not really needed)
6)   tomography

If no tunneling for both measurements, 
then initial state is fully restored!
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Milestone: Gate fidelities and
process tomography

We have learned a lot about one-qubit and coupled-qubit
measurement fidelities, now can apply it to quantum gates

Gate fidelities

Simple approach: simplest model of gate operation + T1 and T2 
for each qubit

Advanced approach: 1) various models of decoherence (intra- and
inter-qubit); 2) account of cross-talk; 
3) account of measurement fidelity  

Process tomography
• Develop superoperator formalism for evolution of phase qubits
• Adapt optical language for process tomography to phase qubits
• Extract process information (types of decoherence, measurement

disturbance, cross-talk, etc.) from experimental tomography data
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Proposed milestones for Years 3 and 4 
(theory, UCR)

• Develop comprehensive theory of coherent partial collapse for 
single and entangled phase qubits due to null-result measurement 
(taking into account imperfections and simultaneous Hamiltonian 
evolution). Develop experiment-oriented theory and compute fidelity 
of undoing of a partial measurement (restoration of an unknown state) 
for a phase qubit.   

• Compute fidelity threshold and decoherence limitations for
entanglement demonstration. Analyze applicability of the Clauser-
Horne-Shimony-Holt version of the Bell inequality for entangled
phase qubits; study potential improvement using Eberhard-like
inequality.

• Calculate gate fidelities for coupled qubits. Develop procedure of
process tomography characterization suitable for quantum gates
based on phase qubits.
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