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The problem

It is impossible to undo “orthodox” quantum 
measurement (for an unknown initial state)

Is it possible to undo weak (partial) quantum measurement? 
(To restore a “precious” qubit accidentally measured)

Yes! (but with a finite probability)

If undoing is successful, an unknown state is fully restored
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“Quantum Un-Demolition (QUD) measurement”
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Measurement undoing

Evolution due to partial (weak, continuous, etc.) measurement 
is non-unitary (though coherent if detector is good!), therefore 

it is impossible to undo it by Hamiltonian dynamics.
How to undo? One more measurement!
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(Figure partially adopted from A. Jordan, 
A. Korotkov, and M. Büttiker, PRL-2006(similar to Koashi-Ueda, PRL-1999)
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First example: DQD qubit with no tunneling,
measured by QPC 
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Assume “frozen” qubit: 0Hε = =

Bayesian evolution due to measurement (Korotkov-1998)

1) Diagonal matrix elements of the density matrix 
evolve according to the classical Bayes rule

2) Non-diagonal matrix elements evolve so that
the degree of purity ρij/[ρiiρjj]

1/2 is conserved
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Graphical representation of the evolution
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Jordan-Korotkov-Büttiker, PRL-06
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where measurement result r(t) is
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If r = 0, then no information and no evolution!



University of California, RiversideAlexander Korotkov

Measurement undoing for DQD-QPC system

r(t)

Undoing 
measurement

t

r0

First “accidental”
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Detector 
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Qubit 
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Simple strategy: continue measuring until r(t) becomes zero!
Then any unknown initial state is fully restored.

(same for an entangled qubit)
It may happen though that  r = 0  never happens; 

then undoing procedure is unsuccessful.

Jordan and Korotkov, PRL-2006
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Probability of success
Trick: since non-diagonal matrix elements are not directly involved,

we can analyze classical probabilities (as if qubit is in some
certain, but unknown state); then simple diffusion with drift

Results:

Probability of 
successful undoing
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where r0 is the result of the measurement to be undone,
and ρ(0) is our knowledge about an unknown initial state;
in case of an entangled qubit ρ(0) is traced over other qubits

Average time to wait undo 0| |mT T r= 22 /( )m IT S IΔ=
(“measurement time”)

where

Averaged probability 
of success (over result r0) av 1 erf[ / 2 ]mP t T= -

(does not depend on initial state!)
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Second example: Undoing partial 
measurement of a phase qubit 

1) Start with an unknown state
2) Partial measurement of strength p
3) π-pulse (exchange |0> ↔ |1>)
4) One more measurement with 

the same strength p
5)   π-pulse 

If no tunneling for both measurements, 
then initial state is fully restored!
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Science-2006
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Probability of successful measurement 
undoing for phase qubit

Success probability if no tunneling during first measurement:
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where ρ(0) is the density matrix of the initial state (either averaged 
unknown state or an entangled state traced over all other qubits)

For measurement strength p increasing to 1, success probability 
decreases to zero (orthodox collapse), but still exact undoing

Total (averaged) success probability: av 1P p= -

Such an experiment is only slightly more difficult than recent
experiment on partial collapse (N. Katz et al., 2006).
Can be realized experimentally pretty soon!!!
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General theory of quantum
measurement undoing

Measurement operator Mr :
†
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r r

r r

M M
M M
ρ

ρ
ρ

→

1
rC MUndoing measurement operator: −×
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pi – probability of the measurement result r for initial state |i 〉
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min min

(0) ( (0))S
i

ri i

ri ii

p PP
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Pr(ρ(0)) – probability of result r for initial state ρ(0), 
min(Pr) – probability of result r minimized over all 

possible initial states

(to satisfy completeness, 
eigenvalues cannot be >1)

(POVM formalism)

minav rrP P≤

(similar to Koashi-Ueda, PRL, 1999)

Averaged (over r) probability of success: ∑
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Comparison of the general bound for
undoing success with examples
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First example 
(DQD+QPC)
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Coincides with the pervious result, so the upper bound is reached,
therefore undoing strategy is optimal

Second example 
(phase qubit)

Probabilities of no-tunneling are 1 and exp(-Γt )=1-p
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Again same as before, so measurement 
undoing for phase qubit is also optimal
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Quantum erasers in optics
Quantum eraser proposal by Scully and Drühl, PRA (1982)

Our idea of measurement undoing is quite different:
we really extract information and then erase it

Interference fringes restored for two-detector
correlations (since “which-path” information
is erased)



University of California, RiversideAlexander Korotkov

Conclusions

• Partial (incomplete, weak, etc.) quantum measurement can be
undone, though with a finite probability Ps, which decreases with 
increasing strength of the measurement (Ps=0 for orthodox case)

• Though somewhat similar to the quantum eraser, undoing idea 
is actually quite different:  “Quantum Un-Demolition” (QUD)

• Quantum Un-Demolition for a phase qubit can be realized now,
experiment with a charge qubit will hopefully be possible soon
(difficulty to use SET: need an ideal quantum detector) 
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