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Niels Bohr:
“If you are not confused by
quantum physics then you 
haven’t really understood it”

Richard Feynman:
“I think I can safely say that nobody
understands quantum mechanics”
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Quantum mechanics =
Schroedinger equation

+
collapse postulate

1) Probability of measurement result   pr =

2) Wavefunction after measurement   =

2| | |rψ ψ〈 〉
rψ

What if measurement is continuous?
(as practically always in solid-state experiments)

• State collapse follows from common sense
• Does not follow from Schr. Eq. (contradicts; Schr. cat,

random vs. deterministic)
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Quantum measurement 
in solid-state systems

No violation of locality – too small distances

However, interesting informational aspects 
of continuous quantum measurement 
(weak coupling, noise ⇒ gradual collapse)

Starting point: qubit

detector
I(t)

What happens to a solid-state qubit (two-level system)
during its continuous measurement by a detector?

How qubit evolution is related to detector output I(t)?
(output noise is important!)
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Superconducting “charge” qubit

Vion et al. (Devoret’s group); Science, 2002
Q-factor of coherent (Rabi) oscillations = 25,000

Single Cooper
pair box

Quantum coherent 
(Rabi) oscillations
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More of superconducting charge qubits
Duty, Gunnarsson, Bladh,

Delsing, PRB 2004
Guillaume et al. (Echternach’s 

group), PRB 2004

2e

Vg V I(t)

Cooper-pair box
measured by single-
electron transistor 
(SET)
(actually, RF-SET)

All results are averaged over many measurements (not “single-shot”) 

Setup can be used 
for continuous 
measurements
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Some other superconducting qubits
Flux qubit

Mooij et al. (Delft)

Phase qubit
J. Martinis et al. 

(UCSB and NIST)

Charge qubit 
with circuit QED 

R. Schoelkopf et al. (Yale)
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I. Siddiqi, R. Schoelkopf, 
M. Devoret, et al. (Yale)

J. Clarke et al. (Berkeley)

Some other superconducting qubits
“Quantronium” qubitFlux qubit
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Semiconductor (double-dot) qubit
T. Hayashi et al., PRL 2003

Detector is not separated from qubit, 
also possible to use a separate detector

Rabi oscillations
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Some other semiconductor qubits
Double-dot qubit

J. Gorman et al. (Cambridge)

Spin qubit
C. Marcus et al. (Harvard)
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“Which-path detector” experiment

Theory: Aleiner, Wingreen,
and Meir, PRL 1997

2 2( )
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Δ
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Dephasing rate:

ΔI – detector response,  SI – shot noise

The larger noise, the smaller dephasing!!!

(ΔI)2/4SI ~ rate of “information flow”

Buks, Schuster, Heiblum, Mahalu, 
and Umansky,  Nature 1998
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The system we consider: qubit + detector

Cooper-pair box (CPB) and
single-electron transistor (SET)

eH

I(t)
Double-quantum-qot (DQD) and

quantum point contact (QPC)

qubit

detector
I(t)

H = HQB + HDET + HINT

HQB = (ε/2)(c1
+c1– c2

+c2) + H(c1
+c2+c2

+c1) ε – asymmetry, H – tunneling

Ω = (4H 2+ε2)1/2/Ñ – frequency of quantum coherent (Rabi) oscillations

Two levels of average detector current: I1 for qubit state |1〉,  I2 for |2〉
Response: ΔI= I1–I2 Detector noise: white, spectral density SI

2e

Vg V

I(t)

DQD and QPC
(setup due to 
Gurvitz, 1997)

† † † †
, ( )DET r r r r rl l l l ll r l rH E a a E a a T a a a a= + ++∑ ∑ ∑

† † † †
1 1 2 2, ( ) ( )INT r rl ll rH T c c c c a a a a= Δ − +∑ 2IS eI=
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What happens to a qubit state during measurement?
Start with density matrix evolution due to measurement only (H=ε=0 )

“Orthodox” answer

1 1 1 exp( ) 1 0
2 2 2 2 2
1 1 exp( ) 1 10
2 2 2 2 2

t

t

−Γ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

−Γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

→ →

“Conventional” (decoherence) answer (Leggett, Zurek)

|1> or |2>, depending on the result no measurement result!  (ensemble averaged)

Orthodox and decoherence answers contradict each other!

applicable for: Single quantum systems Continuous measurements
Orthodox yes no

Conventional (ensemble) no yes
Bayesian yes yes

Bayesian formalism describes gradual collapse of a single 
quantum system, taking into account noisy detector output I(t)
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Bayesian formalism for DQD-QPC
(qubit-detector) system

(A.K., 1998)

Similar formalisms developed earlier.  Key words: Imprecise, weak, selective, or conditional 
measurements, POVM, Quantum trajectories, Quantum jumps, Restricted path integral, etc.

Names: Davies, Kraus, Holevo, Mensky, Caves, Gardiner, Carmichael, Plenio, Knight,
Walls, Gisin, Percival, Milburn, Wiseman, Habib, etc. (very incomplete list)

eH

I(t)

Qubit evolution due to continuous measurement:
1) Diagonal matrix elements of the qubit density matrix 

evolve as classical probabilities (i.e. according to the 
classical Bayes rule)

2) Non-diagonal matrix elements evolve so that
the degree of purity ρij/[ρii ρjj]1/2 is conserved

So simple because: 
1) QPC happens to be an ideal detector
2) no Hamiltonian evolution of the qubit

( ) ( | )
( | )

( ) ( | )k kk

i i
i

P A P R A
P A R

P A P R A
=

∑

Bayes rule:

H=0
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Bayesian formalism for a single qubit

|1Ò Æ I1,  |2Ò Æ I2, ΔI=I1-I2 , I0=(I1+I2)/2   
SI – detector noise

† † † †
1 1 2 2 1 2 2 1

ˆ ( ) ( )
2QBH c c c c H c c c cε

= − + +

(A.K., 1998)

Averaging over result I(t) leads to
conventional master equation:
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Ideal detector (η=1, as QPC) does not decohere a qubit, 
then random evolution of qubit wavefunction can be monitored

eH

I(t)
2e
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Assumptions needed for the Bayesian formalism:
• Detector voltage is much larger than the qubit energies involved 

eV >> ÑΩ, eV >> ÑΓ, Ñ/eV << (1/Ω, 1/Γ)
(no coherence in the detector, classical output, Markovian approximation)

• Simplification if weak response, |ΔI | << I0,  while  coupling C ~ Γ/Ω
is arbitraryDerivations:  

1) “logical”: via correspondence principle and comparison with 
decoherence approach (A.K., 1998) 

2) “microscopic”: Schr. eq. + collapse of the detector (A.K., 2000) 

qubit detector pointer
quantum 
interaction

frequent
collapse

classical
information

( )n
ij tρ ( )kn t

n – number of electrons
passed through detector

3) from “quantum trajectory” formalism developed for quantum optics
(Goan-Milburn, 2001; also: Wiseman, Sun, Oxtoby, etc.) 

4)  from POVM formalism (Jordan-A.K., 2006) 
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Fundamental limit for ensemble decoherence
Γ = (ΔI)2/4SI + γ

Translated into energy sensitivity: (ЄO ЄBA)1/2 ≥ =/2
where ЄO is output-noise-limited sensitivity [J/Hz] 
and ЄBA is back-action-limited sensitivity [J/Hz] 

Sensitivity limitation is known since 1980s (Clarke, Tesche, Likharev, etc.); 
also Averin-2000, Clerk et al.-2002, Pilgram et al.-2002, etc.

γ ≥ 0  ⇒ Γ ≥ (ΔI)2/4SI

ensemble 
decoherence rate

single-qubit 
decoherence

~ rate of information 
acquisition [bit/s]

η ≤
detector ideality (quantum efficiency)

100%

A.K., 1998, 2000
S. Pilgram et al., 2002
A. Clerk et al., 2002
D. Averin, 2003

2( ) / 41 II Sγη Δ
Γ Γ

= - =

1
2mτΓ ≥
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Quantum efficiency of solid-state detectors
(ideal detector does not cause single qubit decoherence)

1. Quantum point contact Theoretically, ideal quantum detector, η=1

I(t)

A.K., 1998 (Gurvitz, 1997; Aleiner et al., 1997)
Averin, 2000; Pilgram et al., 2002, Clerk et al., 2002

Experimentally, η > 80%
(using Buks et al., 1998)

2. SET-transistor

I(t)

Very non-ideal in usual operation regime, η ‹‹1
Shnirman-Schön, 1998; A.K., 2000, Devoret-Schoelkopf, 2000

However, reaches ideality, η = 1 if:
- in deep cotunneling regime (Averin, van den Brink, 2000)
- S-SET, using supercurrent (Zorin, 1996)
- S-SET, double-JQP peak (η ~ 1) (Clerk et al., 2002)
- resonant-tunneling SET, low bias (Averin, 2000)

3. SQUID V(t) Can reach ideality, η = 1
(Danilov-Likharev-Zorin, 1983;

Averin, 2000; Clerk, 2006)

4. FET ?? HEMT ??
ballistic FET/HEMT ??
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Nonideal detectors with input-output noise correlation

qubit
(ε, H)

ideal
detector

signal

quantum
backaction

noise

+
I(t)

S0+S1

ξ2(t) = Aξ1(t)

ξ3(t)

fully 
correlated ξ1(t)

S1

Id (t)
S0 classical

current

classical noise
affecting ε

classical noise
affecting ε

detector

�
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Δ
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Δ
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A.K., 2002

1 0
0 1, I

I

AS S
K S S S

S
θ+

= = +
=

K – correlation between output
and ε–backaction noises

2 2( ) / 4 / 41 I II S K Sγη Δ +
Γ Γ

= - =
��quantum efficiency :
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Bayesian formalism for N entangled qubits 
measured by one detector

( ( ) )( )
2

]k j
j k ij ij

I I
I t I I γ ρ

+
+ − − −

qb 1

detector

qb 2 qb … qb N

I(t)

ρ (t)

A.K., PRA 65 (2002),
PRB 67 (2003)

1ˆ[ , ] ( ( ) )( )
2

[
k

k i
ij qb ij ij kk i k

I Id i H I t I I
dt S

ρ ρ ρ ρ
+−

= + − − +∑=

1 2( 1)( ) / 4 ( ) ( ) ( )
i

Iij i j ii iI I S I t t I tγ η ρ ξ−= − − = +∑

Up to 2N levels 
of current

No measurement-induced dephasing between states |iÒ and |jÒ if Ii = Ij !

(Stratonovich form)

Averaging over ξ(t) î master equation
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Measurement vs. decoherence

measurement  = decoherence (environment)

Widely accepted point of view:

Is it true?
• Yes, if not interested in information from detector

(ensemble-averaged evolution)

• No,  if take into account measurement result
(single quantum system)

Measurement result obviously gives us more information 
about the measured system, so we know its quantum state 
better (ideally, a pure state instead of a mixed state)
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Experimental predictions and proposals
from Bayesian formalism

• Direct experimental verification (1998)

• Measured spectral density of Rabi oscillations (1999, 2000, 2002)

• Bell-type correlation experiment (2000)

• Quantum feedback control of a qubit (2001)

• Entanglement by measurement (2002)

• Measurement by a quadratic detector (2003) 

• Simple quantum feedback of a qubit (2004)

• Squeezing of a nanomechanical resonator (2004)

• Violation of Leggett-Garg inequality (2005)

• Partial collapse of a phase qubit (2005)

• Undoing of a weak measurement (2006)
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Density matrix purification by measurement
(A.K., 1998)

stop & check

time

1. Start with completely mixed state
2. Measure and monitor the Rabi phase
3. Stop evolution (make H=0) at state |1›
4. Measure and check

Difficulty: need to record noisy detector current I(t) and solve Bayesian
equations in real time; typical required bandwidth: 1-10 GHz.

eH

I(t)

0 5 10 15 20 25 30
-0.5

0.0

0.5

1.0

ρ11
Re ρ12
Im ρ12
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Measured spectrum of coherent (Rabi) oscillations

qubit detector
I(t)

α What is the spectral density SI (ω)
of detector current?

A.K., LT’99
A.K.-Averin, 2000
A.K., 2000
Averin, 2000
Goan-Milburn, 2001
Makhlin et al., 2001
Balatsky-Martin, 2001
Ruskov-A.K., 2002 
Mozyrsky et al., 2002 
Balatsky et al., 2002
Bulaevskii et al., 2002
Shnirman et al., 2002
Bulaevskii-Ortiz, 2003
Shnirman et al., 2003

2 2

0 2 2 2 2 2
( )( )

( )I
IS Sω

ω ω
Ω Δ Γ

= +
− Ω + Γ

1 2
00, ( ) / 4I Sε η −= Γ = Δ

2( ) / IC I HS= Δ

(result can be obtained using various
methods, not only Bayesian method)

Spectral peak can be seen, but
peak-to-pedestal ratio ≤ 4η ≤ 4

Assume classical output, eV » =Ω
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Contrary:
Stace-Barrett, 

PRL-2004
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Possible experimental confirmation?
Durkan and Welland, 2001  (STM-ESR experiment similar to Manassen-1989)

p e a k 3 . 5
n o i s e

≤

Recently reproduced: 
Messina et al., JAP-2007

(Colm Durkan,
private comm.)
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Somewhat similar experiment

E. Il’ichev et al., PRL, 2003
“Continuous monitoring of Rabi oscillations in a Josephson flux qubit”

1 ( ) cos
2 HFx z zH Wσ ε σ σ ω= Δ +- - t

2 2 ; 0)( HFω ε ε≈ Δ + ≠
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Bell-type (Leggett-Garg-type) inequalities 
for continuous measurement of a qubit

Ruskov-A.K.-Mizel, PRL-2006
Jordan-A.K.-Büttiker, PRL-2006

0 1 2
0

2

4

6

ω/Ω

S I(ω
)/S

0

SI (ω)

≤
4S

0

Experimentally measurable violation of classical bound

qubit detector
I(t)

Assumptions of macrorealism
(similar to Leggett-Garg’85):

0 ( )  ( / 2) ( ) ( )I t I I Q t tξ+ Δ +=

| ( ) | 1,  ( ) ( ) 0Q t t Q tξ τ≤ 〈 + 〉 =

Then for correlation function
 ( ) ( ) ( )K I t I tτ τ〈 + 〉=

2
1 2 1 2( ) ( ) ( ) ( / 2)K K K Iτ τ τ τ+ − + ≤ Δ

and for area under spectral peak

0
2 2[ ( ) ] (8 / ) ( / 2)IS f S df Iπ− ≤ Δ∫

quantum result

23 ( / 2)
2

IΔ
3
2

×

violation

2( / 2)IΔ
2

8
π

×
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Bell-type measurement correlation 
on

off
τA τB

τ
on

off

QA= ∫IAdt QB= ∫IBdt

(A.K., 2000)

detector A    qubit    detector B
0 1 2 3

-0.5

-0.25

0

0.25

0.5

τ Ω /2π

δ  B
 =

 (<
Q

B>
 - 

Q
0B

)/Δ
Q

B

τA(Δ IA)2/SA = 1

(QA/τA- I 0A) /Δ IA= 

δQA> 0 δQA= 0 δQA> 0

QA is fixed (selected)
0.6, 0, -0.3

conventional 
0 1 2 3

-0.5

-0.25

0

0.25

0.5

τ Ω /2π

after π/2 pulse

Idea: two consecutive finite-time (imprecise) measurements of a qubit 
by two detectors; probability distribution P(QA, QB, τ) shows 
the effect of the first measurement on the qubit state.

Proves that qubit remains in a pure state during measurement (for η=1)

Advantage: no need to record noisy detector output with GHz bandwidth;
instead, we use two detectors and fast ON/OFF switching.
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Quantum feedback control of a qubit

qubit 

H 

e 

detector Bayesian 
     equations 

I(t) 

control stage 

(barrier height) 

ρij(t) 

 

comparison 
circuit 

desired evolution  

feedback 

signal 

environment 

C<<1 

Goal: maintain perfect Rabi oscillations forever

Ruskov & A.K., 2001

Hqb= HσX

Idea: monitor the Rabi phase φ by continuous measurement and apply 
feedback control of the qubit barrier height, ΔHFB/H = −F×Δφ

To monitor phase φ we plug detector output I(t) into Bayesian equations

Since qubit state can be monitored, the feedback is possible!
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Performance of quantum feedback

2

desir

( ) / coupling
F  feedback strength 

D= 2 Tr 1

IC I S H

ρρ

= Δ −
−

〈 〉 −

=

C=1, η=1, F=0, 0.05, 0.5

For ideal detector and wide 
bandwidth, fidelity can be 
arbitrarily close to 100%

D = exp(−C/32F) Ruskov & A.K., PRB-2002

Qubit correlation function Fidelity (synchronization degree)

2 /cos( ) exp ( 1)
2 16

FH
z

t CK e
F

ττ −Ω ⎡ ⎤= −⎢ ⎥⎣ ⎦
=
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D
  (
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n 
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ee
)

Cenv /Cdet= 0 0.1   0.5

C=Cdet=1
τa=0

Experimental difficulties:
• necessity of very fast real-time 

solution of Bayesian equations 
• wide bandwidth (>>Ω, GHz-range) 

of the line delivering noisy signal 
I(t) to the “processor”
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Simple quantum feedback of a solid-state qubit
(A.K., 2005)

Idea: use two quadrature components of the detector current I(t)
to monitor approximately the phase of qubit oscillations
(a very natural way for usual classical feedback!)

Goal: maintain coherent 
(Rabi) oscillations for
arbitrarily long time

0( ) [ ( ') ] cos( ') exp[ ( ') / ] '
t

X t I t I t t t dtτ
−∞

= − Ω − −∫
0( ) [ ( ') ] sin( ') exp[ ( ') / ] '

t
Y t I t I t t t dtτ

−∞
= − Ω − −∫

arctan( / )m Y Xφ = −

(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth (1 / ~ )dτ Γ << Ω

detector
I(t)

×cos(Ω t), τ-average

ph
as

e

X

Y

φm
qubit

H =H0 [1– F × φm(t)]
control

×sin(Ω t), τ-average

Hqb= HσX

C <<1
local oscillator

Essentially classical feedback. Does it really work?
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Fidelity of simple quantum feedback

Simple: just check that in-phase quadrature 〈X〉
of the detector current is positive (4 / )

2 1

Tr ( ) ( )
Q

Q des

D F

F t tρ ρ

≡ −

≡ 〈 〉

D X Iτ= 〈 〉 Δ

How to verify feedback operation experimentally?

〈X〉=0 for any non-feedback Hamiltonian control of the qubit

Dmax ≈ 90%

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0
ηeff =

0.5

0.2

0.1

ε/H0= 1
0.5

0

ΔΩ/CΩ=0.2

0

C = 0.1
τ [(ΔI)2/SI] = 1 

1

0.1

F/C (feedback strength)

D
(fe

ed
ba

ck
 e

ffi
ci

en
cy

)

Simple enough for real experiment!

Robust to imperfections
(inefficient detector, frequency
mismatch, qubit asymmetry) 
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Quantum feedback in optics
First experiment: Science 304, 270 (2004)

First detailed theory:
H.M. Wiseman and G. J. Milburn, 
Phys. Rev. Lett. 70, 548 (1993)
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Two-qubit entanglement by measurement

Ha Hb

DQDa QPC DQDb

I(t)

Ha Hb

Vga VgbV

qubit a qubit bSET

I(t)
qubit 1 qubit 2

detector
I(t)

entangled

ρ (t)

Collapse into |BellÚ state (spontaneous entanglement) 
with probability 1/4 starting from fully mixed state

Ruskov & A.K., 2002

Two evolution scenarios:

Symmetric setup, no qubit interaction

Peak/noise
= (32/3)η

0 10 20 30 40 50 60 70
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Ω t

ρ B e
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Quadratic quantum detection
Mao, Averin, Ruskov, Korotkov, PRL-2004

Ha Hb

Vga VgbV

qubit a qubit bSET

I(t)

Peak only at 2Ω, peak/noise = 4η

Nonlinear detector:

Quadratic detector:

spectral peaks at Ω, 2Ω and 0

2 2

0 2 2 2 2 2
4 ( )( )

( 4 )I
IS Sω

ω ω
Ω Δ Γ

= +
− Ω + Γ

Ibias

V(f)

ω/Ω

Three evolution scenarios: 1) collapse into |↑↓-↓↑Ú, current IÆ∞, flat spectrum
2) collapse into |↑↑ - ↓↓Ú, current IÆÆ, flat spectrum; 3) collapse into remaining 
subspace, current (IÆ∞+ IÆÆ)/2, spectral peak at  2Ω

Entangled states distinguished by average detector current

0 1 2 3
0
2
4
6

S I
(ω

)/S
0

0 1 2 3
0
2
4
6

ω/Ω

S I
(ω

)/S
0

quadraticI, V

q0,φ



University of California, RiversideAlexander Korotkov

QND squeezing of a nanomechanical resonator
Ruskov, Schwab, Korotkov, PRB-2005

I(t)

m, ω0

∼
V(t)

x

QPC

resonator 

Potential application: ultrasensitive force measurements

Experimental status:
ω0/2π ∼ 1 GHz (=ω0 ∼ 80 mK), Roukes’ group, 2003
Δx/Δx0 ∼ 5 [SQL Δx0=(=/2mω0)1/2], Schwab’s group, 2004
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C0 – coupling with detector, η – detector efficiency,
T – temperature, Q – resonator Q-factor

(So far in experiment  η1/2C0Q~0.1)
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Undoing a weak measurement of a qubit

It is impossible to undo “orthodox” quantum 
measurement (for an unknown initial state)

Is it possible to undo partial quantum measurement? 
(To restore a “precious” qubit accidentally measured)

Yes! (but with a finite probability)

If undoing is successful, an unknown state is fully restored

ψ0
(unknown)

ψ1
(partially
collapsed)

weak (partial)
measurement

ψ0 (still
unknown)

ψ2

successful

unsuccessful
undoing

(information erasure)

A.K. & Jordan, PRL-2006

“Quantum Un-Demolition (QUD) measurement”
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Evolution of a charge qubit

eH

I(t)

Jordan-Korotkov-Büttiker, PRL-06
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where measurement result r(t) is
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If r = 0, then no information and no evolution!
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Measurement undoing for DQD-QPC system

r(t)

Undoing 
measurement

t

r0

First “accidental”
measurement

Detector 
(QPC)

Qubit 
(DQD)I(t)

Simple strategy: continue measuring 
until result r(t) becomes zero! Then any 
unknown initial state is fully restored.

(same for an entangled qubit)

It may happen though that  r = 0  never happens; 
then undoing procedure is unsuccessful.

A.K. & Jordan, PRL-2006
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Partial collapse of a “phase” qubit

Γ
|0〉
|1〉 How does a coherent state evolve

in time before tunneling event?

Main idea:

2 2

/2
| , if tunneled

| 0 | 1| 0 | 1 ( ) , if not tunneled
| | | |

i

t

t e

out

et

e

ϕα βψ α β ψ

α β Γ

Γ

〉⎧
⎪

〉 + 〉〉 + 〉 → ⎨
⎪

+⎩
-

-= =

(better theory: Pryadko & A.K., 2007)

(similar to optics, Dalibard-Castin-Molmer, PRL-1992)
continuous null-result collapse

N. Katz, M. Ansmann, R. Bialczak, E. Lucero, 
R. McDermott, M. Neeley, M. Steffen, E. Weig, 
A. Cleland, J. Martinis, A. Korotkov, Science-06

amplitude of state |0> grows without physical interaction

Qubit “ages” in contrast to a radioactive atom!
(What happens when nothing happens?)
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Superconducting phase qubit at UCSB

Idc+Iz
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ω01
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Courtesy of Nadav Katz (UCSB)
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Experimental technique for partial collapse 
Nadav Katz et al.
(John Martinis’ group)

Protocol:
1) State preparation by 

applying microwave pulse 
(via Rabi oscillations)

2) Partial measurement by
lowering barrier for time t

3) State tomography (micro-
wave + full measurement)

Measurement strength 
p = 1 - exp(-Γt ) 

is actually controlled
by Γ, not by t

p=0: no measurement
p=1: orthodox collapse
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Experimental tomography data
Nadav Katz et al. (UCSB)

p=0 p=0.14p=0.06

p=0.23

p=0.70p=0.56

p=0.43p=0.32

p=0.83

θx

θy

| 0 | 1
2

inψ
〉 + 〉

=

π/2
π
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Partial collapse: experimental results

in (c) T1=110 ns, T2=80 ns (measured)

no fitting parameters in (a) and (b)P
ol
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probability p

probability p

pulse ampl.

N. Katz et al., Science-06

• In case of no tunneling 
(null-result measurement) 
phase qubit evolves 

• This evolution is well
described by a simple
Bayesian theory, without 
fitting parameters

• Phase qubit remains fully 
coherent in the process 
of continuous collapse 
(experimentally ~80% 
raw data, ~96% after
account for T1 and T2) 

lines - theory
dots and squares – expt.
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Initial
state

Partial
collapse

Erasure
(QUD)

| 1〉

0.05 0.7p

Experiment on wavefunction uncollapsing (QUD)

< <

N. Katz et al. (J. Martinis’ group)

× =
| 1〉

| 0〉

| 1〉 | 1〉

| 0〉 | 0〉

(A.K. & Jordan)

Expt. results:

uncollapsing works well!

tomography & 
final measure

state
preparation

7 ns

partial 
measure 

pIdea:

QUD protocol:
- partial collapse
- π-pulse
- partial collapse
(same strength)

Courtesy of Nadav Katz
and John Martinis

Collapse strength:
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Conclusions

● Continuous quantum measurement is not equivalent to 
decoherence (environment) if detector output (information)
is taken into account (in contrast to ensemble-averaged case)

● Bayesian approach to continuous quantum measurement
is a simple, but powerful theoretical technique

● A number of experimental predictions have been made

● Two direct experiments have been realized (+ few indirect ones);
hopefully, more experiments are coming soon
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