Vanderbilt Univ., Nashville 1/18/07

Continuous quantum measurement of solid-state qubits

Alexander Korotkov *University of California, Riverside*

Outline:

- Introduction (quantum measurement)
 - Bayesian formalism for continuous quantum measurement of a single quantum system
 - Experimental predictions and proposals
 - Recent experiment on partial collapse

General theme: Information and collapse in quantum mechanics

Support:

Alexander Korotkov

Niels Bohr:

"If you are not confused by quantum physics then you haven't really understood it"

Richard Feynman:

"I think I can safely say that nobody understands quantum mechanics"

Alexander Korotkov

Quantum mechanics = Schroedinger equation + collapse postulate

1) Probability of measurement result $p_r = |\langle \psi | \psi_r \rangle|^2$

2) Wavefunction after measurement = Ψ_r

- State collapse follows from common sense
- Does not follow from Schr. Eq. (contradicts; Schr. cat, random vs. deterministic)

What if measurement is continuous? (as practically always in solid-state experiments)

Alexander Korotkov

Einstein-Podolsky-Rosen (EPR) paradox Phys. Rev., 1935

In a complete theory there is an element corresponding to each element of reality. A sufficient condition for the reality of a physical quantity is the possibility of predicting it with certainty, without disturbing the system.

 $\psi(x_1, x_2) = \sum_n \psi_n(x_2) u_n(x_1)$ (nowadays we call it entangled state) $\psi(x_1, x_2) = \int_{-\infty}^{\infty} \exp[(i/\hbar)(x_1 - x_2)p]dp \sim \delta(x_1 - x_2)$

Measurement of particle 1 cannot affect particle 2, while QM says it affects cannot affect particle 2, (contradicts causality)

=> Quantum mechanics is incomplete

Bohr's reply (Phys. Rev., 1935) (seven pages, one formula: $\Delta p \Delta q \sim h$) It is shown that a certain "criterion of physical reality" formulated ... by A. Einstein, B. Podolsky and N. Rosen contains an essential ambiguity when it is applied to quantum phenomena.

Crudely: No need to understand QM, just use the result

——— University of California, Riverside Alexander Korotkov

Bell's inequality (John Bell, 1964)



(setup due to David Bohm)

$$\psi = \frac{1}{\sqrt{2}} (\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2)$$

Perfect anticorrelation of measurement results for the same measurement directions, $\vec{a} = \vec{b}$

Is it possible to explain the QM result assuming local realism and hidden variables *or* collapse "propagates" instantaneously (faster than light, "spooky action-at-a-distance")?

Assume: $A(\vec{a},\lambda) = \pm 1$, $B(\vec{b},\lambda) = \pm 1$ (deterministic result with hidden variable λ) Then: $|P(\vec{a},\vec{b}) - P(\vec{a},\vec{c})| \le 1 + P(\vec{b},\vec{c})$ where $P \equiv P(++) + P(--) - P(+-) - P(-+)$

QM: $P(\vec{a}, \vec{b}) = -\vec{a} \cdot \vec{b}$ For 0°, 90°, and 45°: $0.71 \neq 1 - 0.71$ violation!

Experiment (Aspect et al., 1982; photons instead of spins, CHSH): yes, "spooky action-at-a-distance"

Alexander Korotkov — University of California, Riverside

What about causality?

Actually, not too bad: you cannot transmit your own information choosing a particular measurement direction a

> \longrightarrow **Randomness saves causality** Collapse is still instantaneous: OK, just our recipe, not an "objective reality", not a "physical" process

Consequence of causality: No-cloning theorem

Wootters-Zurek, 1982; Dieks, 1982; Yurke

Result of the other

measurement does not

depend on direction *a*

You cannot copy an unknown quantum state

Otherwise get information on direction a (and causality violated) **Proof:**

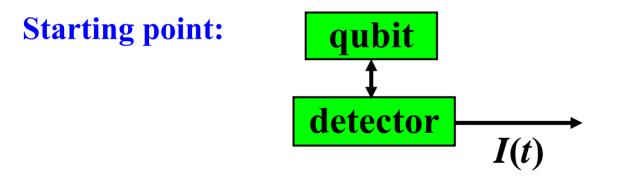
Application: quantum cryptography

Information is an important concept in quantum mechanics

Quantum measurement in solid-state systems

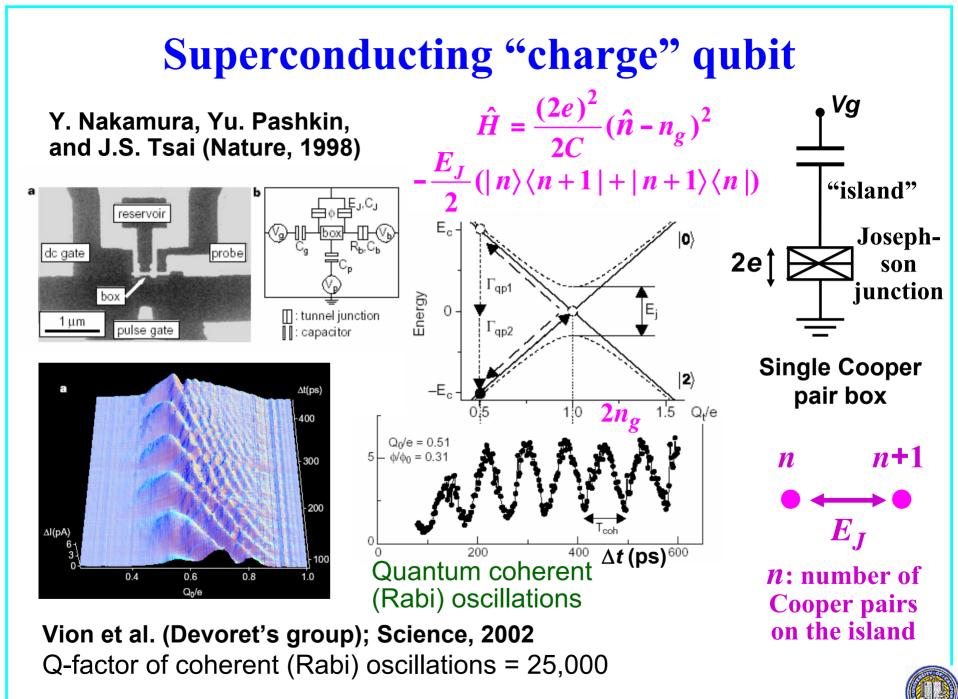
No violation of locality – too small distances

However, interesting informational aspects of continuous quantum measurement (weak coupling, noise ⇒ gradual collapse)



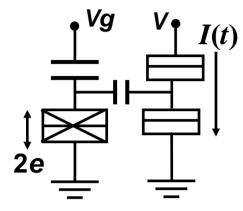
What happens to a solid-state qubit (two-level system) during its continuous measurement by a detector?
How qubit evolution is related to detector output *I(t)*? (output noise is important!)

Alexander Korotkov



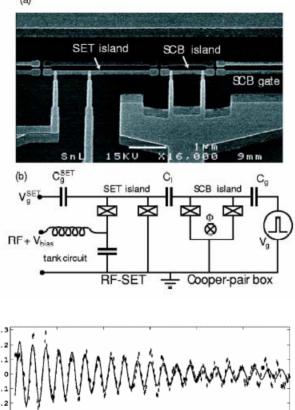
Alexander Korotkov

More of superconducting charge qubits

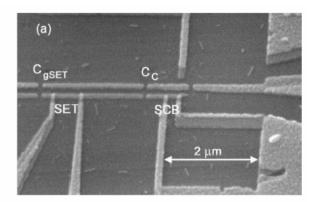


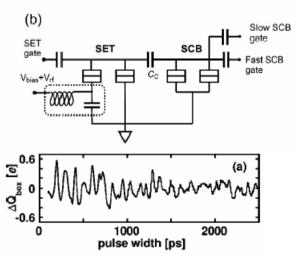
Cooper-pair box measured by singleelectron transistor (SET) (actually, RF-SET)

Setup can be used for continuous measurements Duty, Gunnarsson, Bladh, Delsing, PRB 2004



Guillaume et al. (Echternach's group), PRB 2004





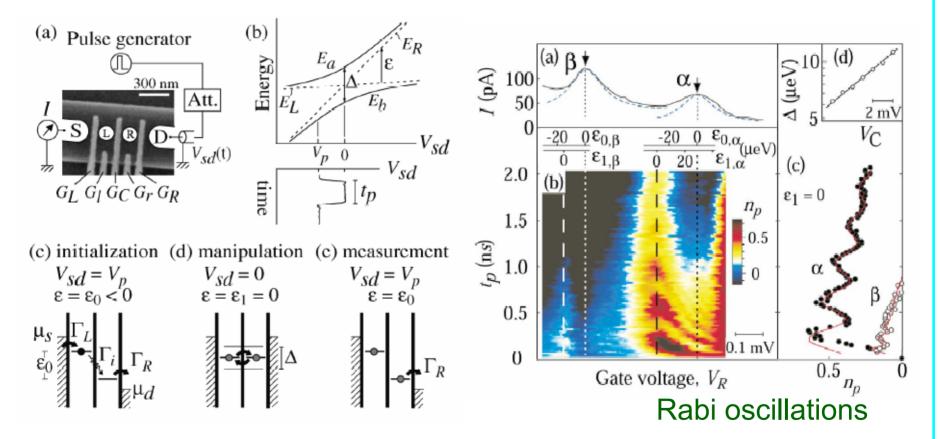
All results are averaged over many measurements (not "single-shot")

At [ns]

Alexander Korotkov

Semiconductor (double-dot) qubit

T. Hayashi et al., PRL 2003

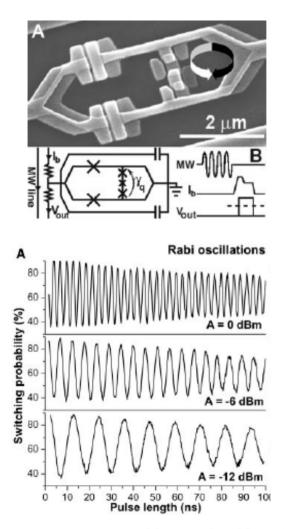


Detector is not separated from qubit, also possible to use a separate detector

Some other solid-state qubits

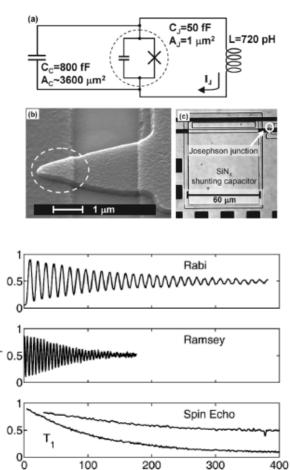
Flux qubit

Mooij et al. (Delft)



Phase qubit

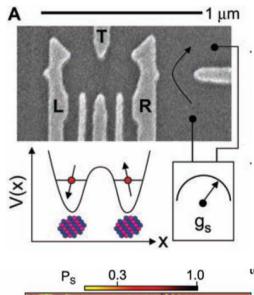
J. Martinis et al. (UCSB and NIST)

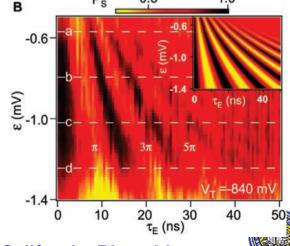


time [ns]

Spin qubit

C. Marcus et al. (Harvard)





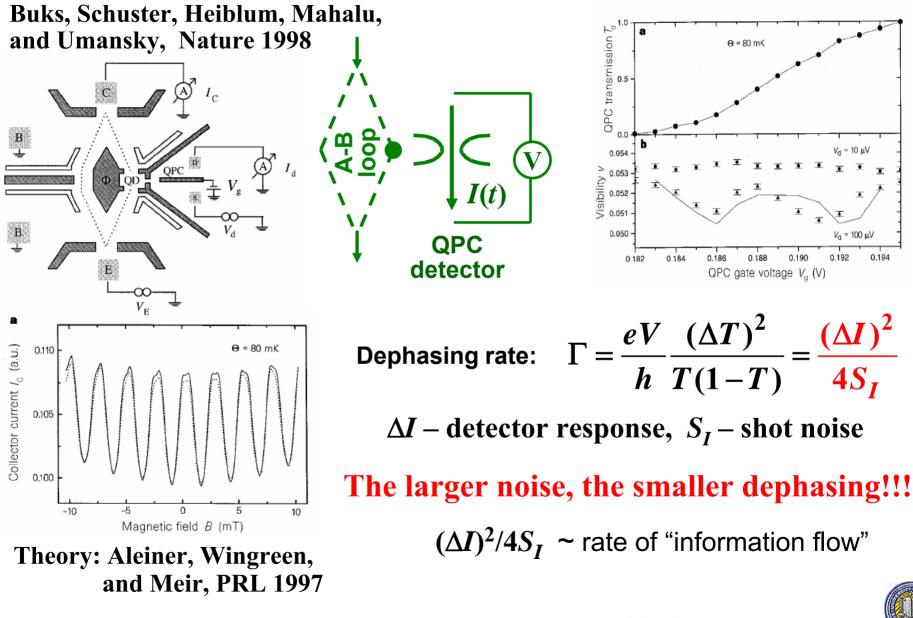
Alexander Korotkov –

(a)

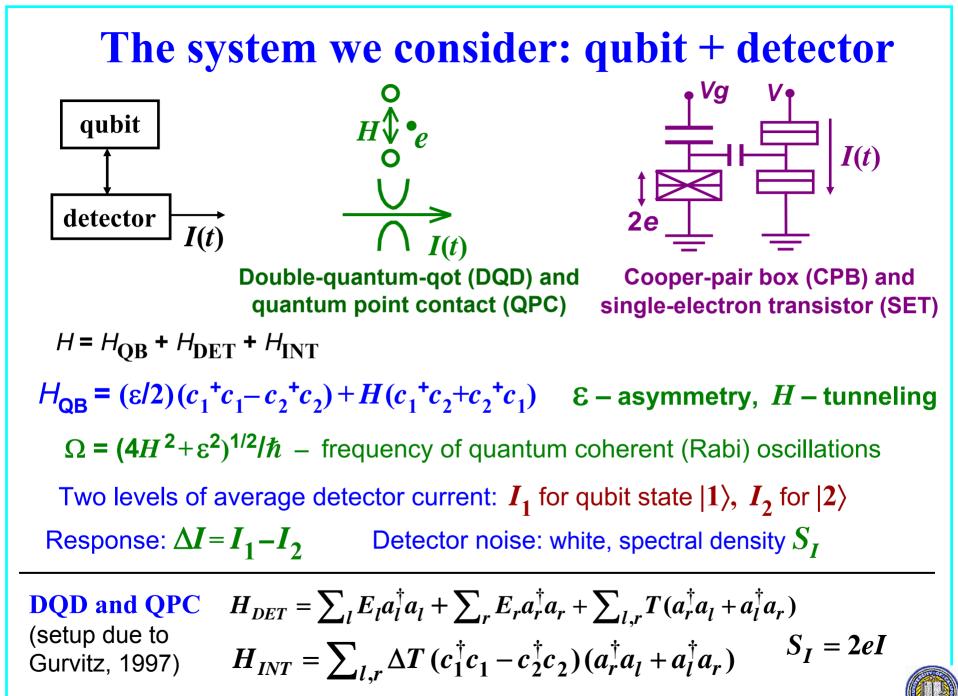
(b)

(c)

"Which-path detector" experiment



Alexander Korotkov



Alexander Korotkov — University of California, Riverside

What happens to a qubit state during measurement?

Start with density matrix evolution due to measurement only $(H=\varepsilon=0)$

"Orthodox" answer "Conventional" (decoherence) answer (Leggett, Zurek) $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \xrightarrow{} \begin{pmatrix} \frac{1}{2} & \frac{exp(-\Gamma t)}{2} \\ \frac{exp(-\Gamma t)}{2} & \frac{1}{2} \end{pmatrix} \xrightarrow{} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$

|1> or |2>, depending on the result no measurement result! (ensemble averaged)

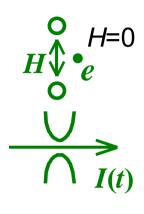
Orthodox and decoherence answers contradict each other!

applicable for:	Single quantum systems	Continuous measurements
Orthodox	yes	no
Conventional (ensemble)	no	yes
Bayesian	yes	yes

Bayesian formalism describes gradual collapse of a single quantum system, taking into account noisy detector output I(t)

University of California, Riverside Alexander Korotkov

Bayesian formalism for DQD-QPC (qubit-detector) system



Qubit evolution due to continuous measurement:

- **1)** Diagonal matrix elements of the qubit density matrix evolve as classical probabilities (i.e. according to the classical Bayes rule)
- 2) Non-diagonal matrix elements evolve so that the degree of purity $\rho_{ii}/[\rho_{ii}\rho_{ii}]^{1/2}$ is conserved

(A.K., 1998)

Bayes rule:

So simple because:

 $P(A_i | R) = \frac{P(A_i)P(R | A_i)}{\sum_{k} P(A_k)P(R | A_k)}$ 1) QPC happens to be an ideal detector 2) no Hamiltonian evolution of the qubit

Similar formalisms developed earlier. Key words: Imprecise, weak, selective, or conditional measurements, POVM, Quantum trajectories, Quantum jumps, Restricted path integral, etc.

Names: Davies, Kraus, Holevo, Mensky, Caves, Gardiner, Carmichael, Plenio, Knight, Walls, Gisin, Percival, Milburn, Wiseman, Habib, etc. (very incomplete list)

Bayesian formalism for a single qubit $\begin{array}{c} \stackrel{\circ}{H_{0}^{\diamond}} \bullet_{e} \\ \stackrel{\circ}{\bigcup} \bullet_{e} \\ \stackrel{\circ}{\longrightarrow} \\ \stackrel{\circ}{\longrightarrow} \bullet_{e} \\ \stackrel{\circ}{\longrightarrow} \\ \stackrel{\circ}{\longrightarrow} \\ \stackrel{\circ}{\longrightarrow} \bullet_{e} \\ \stackrel{\circ}{\longrightarrow} \\$

 $\rho_{11} = -\rho_{22} = -2(H/\hbar) \operatorname{Im} \rho_{12} + \rho_{11}\rho_{22}(2\Delta I/S_I)[\underline{I(t)} - I_0]$ $\rho_{12} = i(\varepsilon/\hbar)\rho_{12} + i(H/\hbar)(\rho_{11} - \rho_{22}) + \rho_{12}(\rho_{11} - \rho_{22})(\Delta I/S_I)[\underline{I(t)} - I_0] - \gamma\rho_{12}$

(A.K., 1998)

 $\gamma = \Gamma - (\Delta I)^2 / 4S_I$, Γ – ensemble decoherence $\eta = 1 - \gamma / \Gamma = (\Delta I)^2 / 4S_I \Gamma$ – detector ideality (efficiency), $\eta \le 100\%$

Ideal detector (η =1, as QPC) does not decohere a qubit, then random evolution of qubit *wavefunction* can be monitored

Averaging over result I(t) leads to $d\rho_{11}/dt = -d\rho_{22}/dt = -2(H/\hbar) \operatorname{Im} \rho_{12}$ conventional master equation: $d\rho_{12}/dt = i(\varepsilon/\hbar)\rho_{12} + i(H/\hbar)(\rho_{11} - \rho_{22}) - \Gamma \rho_{12}$

Main assumption needed for the Bayesian formalism:

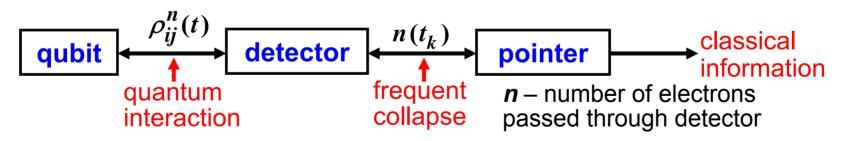
Detector voltage is much larger than the qubit energies involved $eV >> \hbar\Omega$, $eV >> \hbar\Gamma$, $\hbar/eV << (1/\Omega, 1/\Gamma)$ (no coherence in the detector, classical output, Markovian approximation)

(Coupling $C \sim \Gamma / \Omega$ is arbitrary)

Derivations:

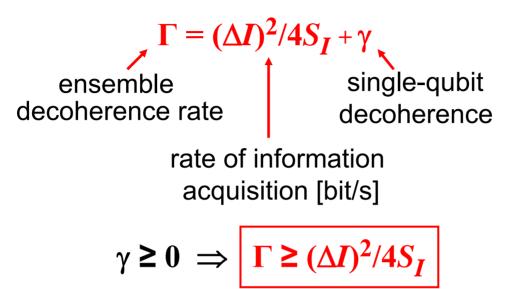
1) "logical": via correspondence principle and comparison with decoherence approach (A.K., 1998)

2) "microscopic": Schr. eq. + collapse of the detector (A.K., 2000)



- 3) from "quantum trajectory" formalism developed for quantum optics (Goan-Milburn, 2001; also: Wiseman, Sun, Oxtoby, etc.)
- 4) from POVM formalism (Jordan-A.K., 2006)

Fundamental limit for ensemble decoherence



 $\eta = 1 - \gamma / \Gamma$ – detector ideality (quantum efficiency), $\eta \le 100\%$

Translated into energy sensitivity: $(\mathbb{E}_O \mathbb{E}_{BA})^{1/2} \ge \hbar/2$ where \mathbb{E}_O is output-noise-limited sensitivity [J/Hz] and \mathbb{E}_{BA} is back-action-limited sensitivity [J/Hz]

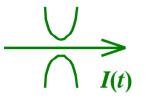
Sensitivity limitation is known since 1980s (Clarke, Tesche, Likharev, etc.); also Averin-2000, Clerk et al.-2002, Pilgram et al.-2002, etc.

Alexander Korotkov

Quantum efficiency of solid-state detectors

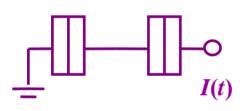
(ideal detector does not cause single qubit decoherence)

1. Quantum point contact



Theoretically, ideal quantum detector, $\eta = 1$ A.K., 1998 (Gurvitz, 1997; Aleiner *et al.*, 1997) Averin, 2000; Pilgram et al., 2002, Clerk et al., 2002 Experimentally, $\eta > 80\%$ (using Buks *et al.*, 1998)

2. SET-transistor



Very non-ideal in usual operation regime, **ŋ** << 1 Shnirman-Schön, 1998; A.K., 2000, Devoret-Schoelkopf, 2000

However, reaches ideality, $\eta = 1$ if:

- in deep cotunneling regime (Averin, van den Brink, 2000)
- S-SET, using supercurrent (Zorin, 1996)
- S-SET, double-JQP peak ($\eta \sim 1$) (Clerk *et al.*, 2002)
- resonant-tunneling SET, low bias (Averin, 2000)

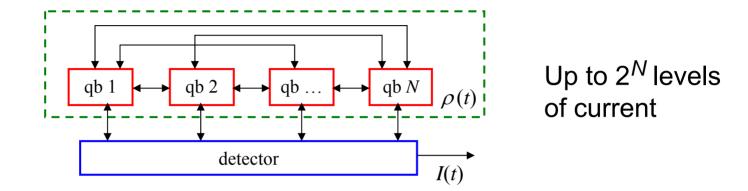
3. SQUID V(t)

Can reach ideality, $\eta = 1$

(Danilov-Likharev-Zorin, 1983; Averin, 2000) 4. FET ?? HEMT ?? ballistic FET/HEMT ??

Alexander Korotkov

Bayesian formalism for *N* **entangled qubits measured by one detector**



$$\frac{d}{dt}\rho_{ij} = \frac{-i}{\hbar}[\hat{H}_{qb},\rho]_{ij} + \rho_{ij}\frac{1}{S}\sum_{k}\rho_{kk}[(I(t) - \frac{I_k + I_i}{2})(I_i - I_k) + (I(t) - \frac{I_k + I_j}{2})(I_j - I_k)] - \gamma_{ij}\rho_{ij} \qquad (\text{Stratonovich form})$$
$$\gamma_{ij} = (\eta^{-1} - 1)(I_i - I_j)^2 / 4S_I \qquad I(t) = \sum_i \rho_{ii}(t)I_i + \xi(t)$$
Averaging over $\xi(t) \implies \text{master equation}$

No measurement-induced dephasing between states $|i\rangle$ and $|j\rangle$ if $I_i = I_j$! A.K., PRA 65 (2002), PRB 67 (2003)

Alexander Korotkov — University of California, Riverside

Measurement vs. decoherence

Widely accepted point of view:

measurement = decoherence (environment) ls it true?

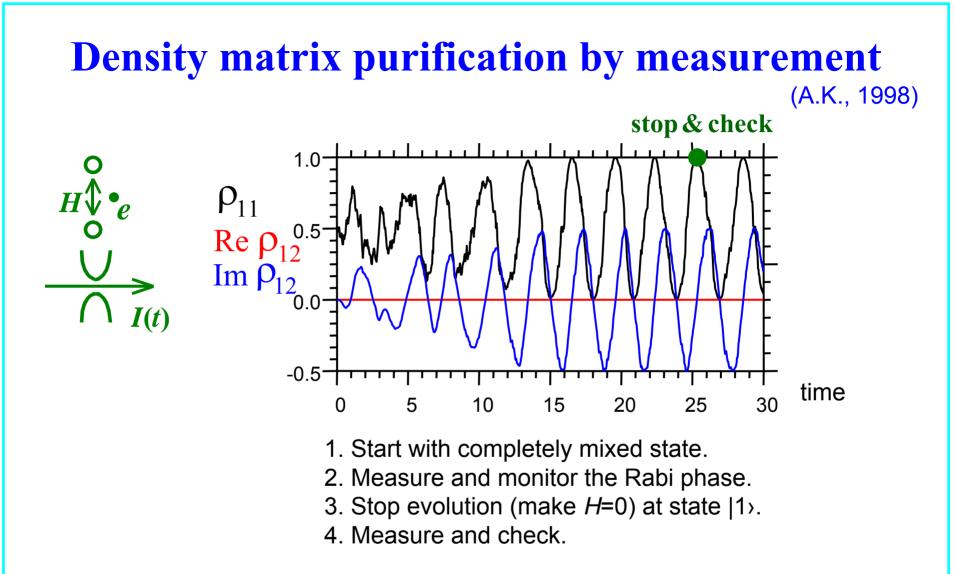
- Yes, if not interested in information from detector (ensemble-averaged evolution)
- No, if take into account measurement result (single quantum system)

Measurement result obviously gives us more information about the measured system, so we know its quantum state better (ideally, a pure state instead of a mixed state)

Experimental predictions and proposals from Bayesian formalism

- Direct experimental verification (1998)
- Measured spectral density of Rabi oscillations (1999, 2000, 2002)
- Bell-type correlation experiment (2000)
- Quantum feedback control of a qubit (2001)
- Entanglement by measurement (2002)
- Measurement by a quadratic detector (2003)
- Simple quantum feedback of a qubit (2004)
- Squeezing of a nanomechanical resonator (2004)
- Violation of Leggett-Garg inequality (2005)
- Partial collapse of a phase qubit (2005)
- Undoing of a weak measurement (2006)

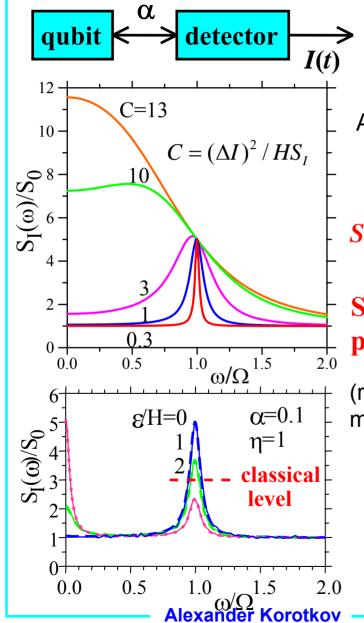
Alexander Korotkov



Difficulty: need to record noisy detector current I(t) and solve Bayesian equations in real time; typical required bandwidth: 1-10 GHz.

Alexander Korotkov

Measured spectrum of coherent (Rabi) oscillations



What is the spectral density $S_{I}(\omega)$ of detector current?

Assume classical output, eV » $\hbar\Omega$ $\varepsilon = 0$, $\Gamma = \eta^{-1} (\Delta I)^2 / 4S_0$

 $S_{I}(\omega) = S_{0} + \frac{\Omega^{2} (\Delta I)^{2} \Gamma}{(\omega^{2} - \Omega^{2})^{2} + \Gamma^{2} \omega^{2}}$

Spectral peak can be seen, but peak-to-pedestal ratio $\leq 4\eta \leq 4$

(result can be obtained using various methods, not only Bayesian method)

A.K., LT'99 A.K.-Averin, 2000 A.K., 2000 Averin, 2000 Goan-Milburn, 2001 Makhlin et al., 2001 Balatsky-Martin, 2001 Ruskov-A.K., 2002 Mozyrsky et al., 2002 Balatsky et al., 2002 Bulaevskii et al., 2002 Shnirman et al., 2003

Contrary: Stace-Barrett, PRL-2004

Possible experimental confirmation?

Durkan and Welland, 2001 (STM-ESR experiment similar to Manassen-1989)

APPLIED PHYSICS LETTERS

VOLUME 80, NUMBER 3

Electronic spin detection in molecules using scanning-tunnelingmicroscopy-assisted electron-spin resonance

C. Durkan^{a)} and M. E. Welland

Nunoscule Science Luborutory, Department of Engineering, University of Cumbridge, Trumpington Street, Cumbridge CB2 1PZ, United Kingdom

(Received 8 May 2001; accepted for publication 8 November 2001)

By combining the spatial resolution of a scanning-tunneling microscope (STM) with the electronic spin sensitivity of electron-spin resonance, we show that it is possible to detect the presence of localized spins on surfaces. The principle is that a STM is operated in a magnetic field, and the resulting component of the tunnel current at the Larmor (precession) frequency is measured. This component is nonzero whenever there is tunneling into or out of a paramagnetic entity. We have

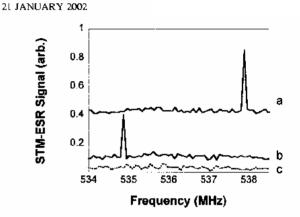


FIG. 3. STM-ESR spectra of (a), (b) two different areas (a few nm apart) of the molecule-covered sample and (c) bare HOPG. The graphs are shifted vertically for clarity.

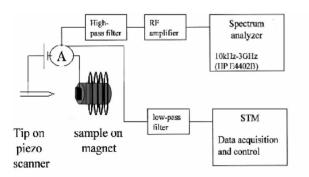
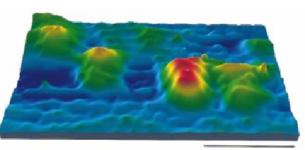
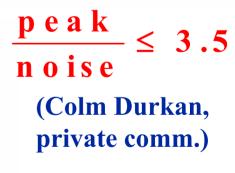


FIG. 1. Schematic of the electronics used in STM-ESR.



10 nm

FIG. 2. (Color) STM image of a 250 Å×150 Å area of HOPG with four adsorbed BDPA molecules.



Alexander Korotkov

Somewhat similar experiment

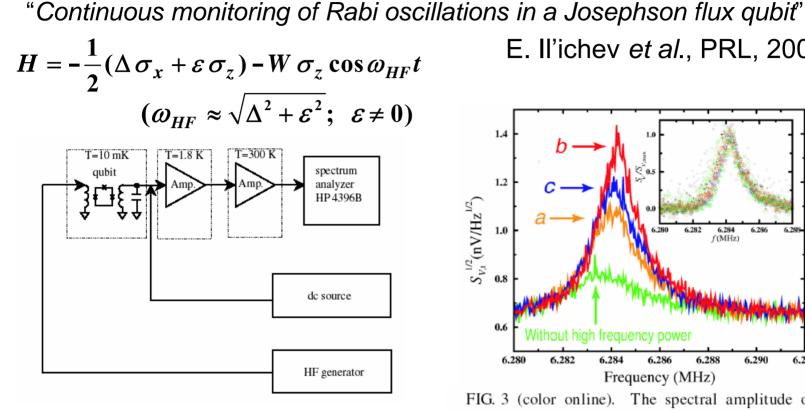


FIG. 1. Measurement setup. The flux qubit is inductively coupled to a tank circuit. The dc source applies a constant flux $\Phi_e \approx \frac{1}{2} \Phi_0$. The HF generator drives the qubit through a separate coil at a frequency close to the level separation $\Delta/h =$ 868 MHz. The output voltage at the resonant frequency of the tank is measured as a function of HF power.

Alexander Korotkov

E. Il'ichev et al., PRL, 2003

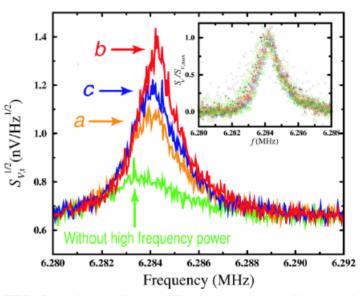


FIG. 3 (color online). The spectral amplitude of the tank voltage for HF powers $P_a < P_b < P_c$ at 868 MHz, detected using the setup of Fig. 1. The bottom curve corresponds to the background noise without an HF signal. The inset shows normalized voltage spectra for seven values of HF power, with background subtracted. The shape of the resonance, being determined by the tank circuit, is essentially the same in each case. Remaining tiny variations visible in the main figure are due to the irradiated qubit modifying the tank's inductance and

Bell-type (Leggett-Garg-type) inequalities for continuous measurement of a qubit

qubit
$$\leftarrow$$
 detector $I(t)$

Assumptions of macrorealism (similar to Leggett-Garg'85): $I(t) = I_0 + (\Delta I / 2)Q(t) + \xi(t)$ $|Q(t)| \le 1, \quad \langle \xi(t) \ Q(t+\tau) \rangle = 0$

Then for correlation function $K(\tau) = \langle I(t) I(t + \tau) \rangle$

 $K(\tau_1) + K(\tau_2) - K(\tau_1 + \tau_2) \le (\Delta I / 2)^2$

and for area under spectral peak

$$[S_{I}(f) - S_{0}]df \leq (8/\pi^{2})(\Delta I/2)^{2}$$

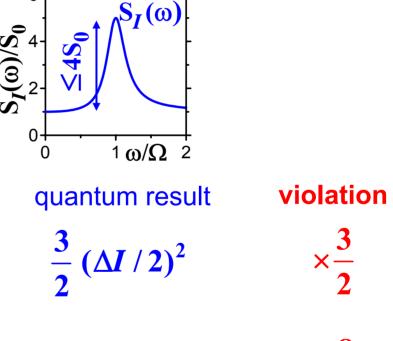
Experimentally measurable violation of classical bound

Alexander Korotkov

University of California, Riverside

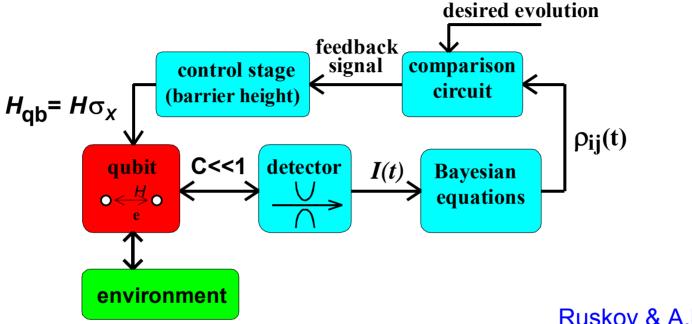
 $(\Delta I/2)^2$

Ruskov-A.K.-Mizel, PRL-2006 Jordan-A.K.-Büttiker, PRL-2006



Quantum feedback control of a qubit

Since qubit state can be monitored, the feedback is possible!



Ruskov & A.K., 2001

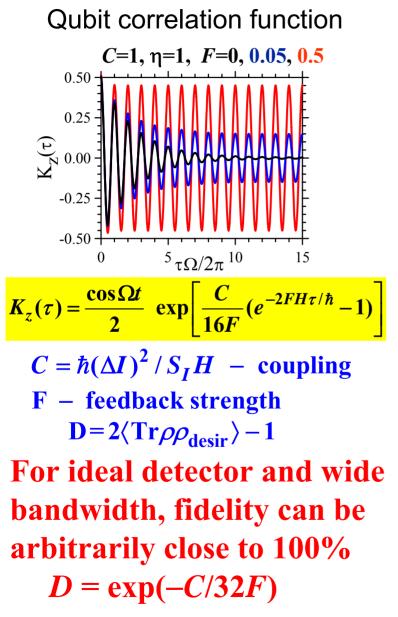
Goal: maintain perfect Rabi oscillations forever

Idea: monitor the Rabi phase ϕ by continuous measurement and apply feedback control of the qubit barrier height, $\Delta H_{FB}/H = -F \times \Delta \phi$

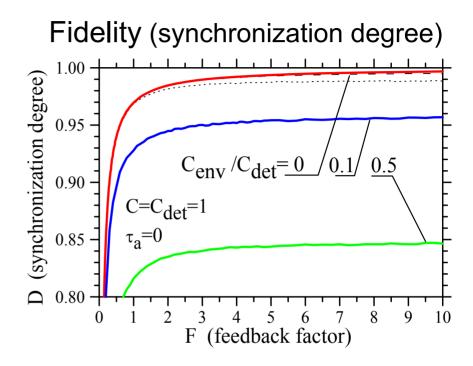
To monitor phase ϕ we plug detector output I(t) into Bayesian equations

Alexander Korotkov — University of California, Riverside

Performance of quantum feedback



Alexander Korotkov –

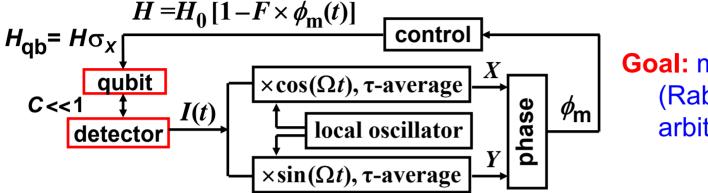


Experimental difficulties:

- necessity of very fast real-time solution of Bayesian equations
- wide bandwidth (>>Ω, GHz-range) of the line delivering noisy signal *l*(*t*) to the "processor"

Ruskov & A.K., PRB-2002

Simple quantum feedback of a solid-state qubit (A.K., 2005)



Goal: maintain coherent (Rabi) oscillations for arbitrarily long time

Idea: use two quadrature components of the detector current *l(t)* to monitor approximately the phase of qubit oscillations (a very natural way for usual classical feedback!)

$$X(t) = \int_{-\infty}^{t} [I(t') - I_0] \cos(\Omega t') \exp[-(t - t')/\tau] dt$$

$$Y(t) = \int_{-\infty}^{t} [I(t') - I_0] \sin(\Omega t') \exp[-(t - t')/\tau] dt$$

$$\phi_m = -\arctan(Y/X)$$

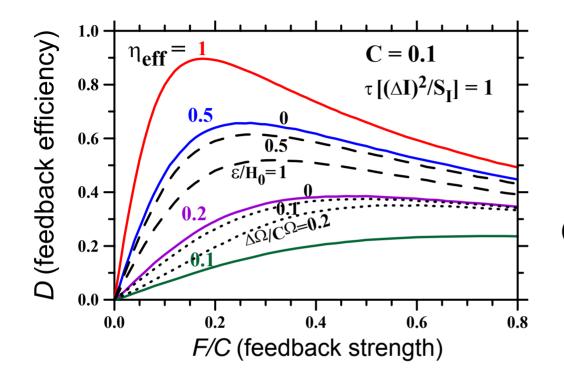
(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth $(1/\tau \sim \Gamma_d \ll \Omega)$

Essentially classical feedback. Does it really work?

Alexander Korotkov — University of California, Riverside

Fidelity of simple quantum feedback



Alexander Korotkov

 $D_{\text{max}} \approx 90\%$ $D \equiv 2F_Q - 1$ $F_Q \equiv \langle \operatorname{Tr} \rho(t) \rho_{des}(t) \rangle$

Robust to imperfections (inefficient detector, frequency mismatch, qubit asymmetry)

University of California, Riverside

How to verify feedback operation experimentally? Simple: just check that in-phase quadrature $\langle X \rangle$ of the detector current is positive $D = \langle X \rangle (4/\tau \Delta I)$ $\langle X \rangle = 0$ for *any* non-feedback Hamiltonian control of the qubit Simple enough for real experiment!

Quantum feedback in optics

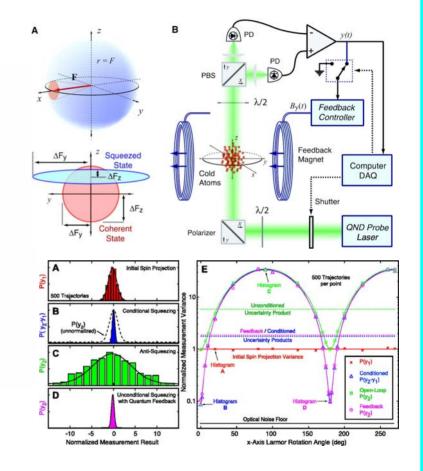
First experiment: Science 304, 270 (2004) Real-Time Quantum Feedback Control of Atomic Spin-Squeezing

JM Geremia,* John K. Stockton, Hideo Mabuchi

Real-time feedback performed during a quantum nondemolition measurement of atomic spin-angular momentum allowed us to influence the quantum statistics of the measurement outcome. We showed that it is possible to harness measurement backaction as a form of actuation in quantum control, and thus we describe a valuable tool for quantum information science. Our feedbackmediated procedure generates spin-squeezing, for which the reduction in quantum uncertainty and resulting atomic entanglement are not conditioned on the measurement outcome.

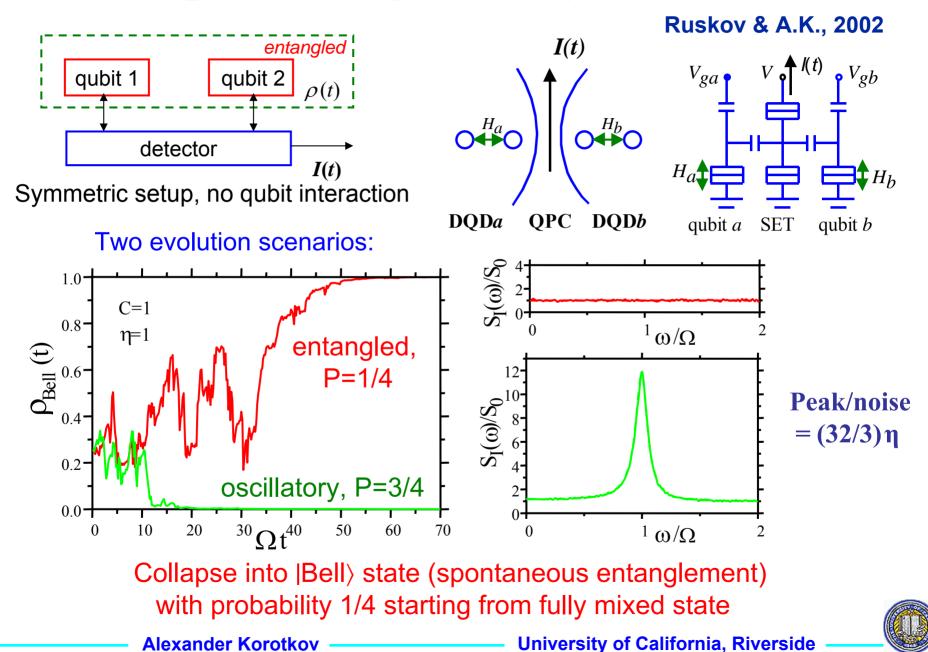
First detailed theory:

H.M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70, 548 (**1993**)

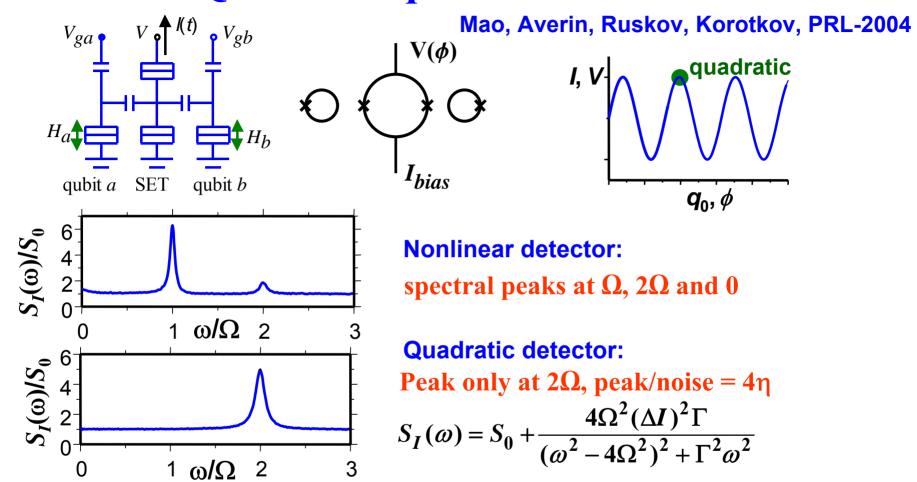


Alexander Korotkov

Two-qubit entanglement by measurement



Quadratic quantum detection

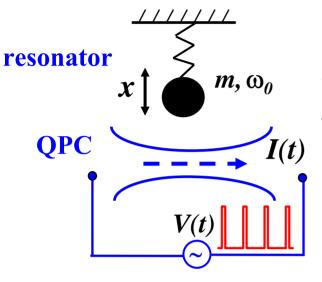


Three evolution scenarios: 1) collapse into $|\uparrow\downarrow - \downarrow\uparrow\rangle$, current $I_{\uparrow\downarrow}$, flat spectrum 2) collapse into $|\uparrow\uparrow - \downarrow\downarrow\rangle$, current $I_{\uparrow\uparrow}$, flat spectrum; 3) collapse into remaining subspace, current $(I_{\uparrow\downarrow} + I_{\uparrow\uparrow})/2$, spectral peak at 2Ω

Entangled states distinguished by average detector current

Alexander Korotkov — University of California, Riverside

QND squeezing of a nanomechanical resonator



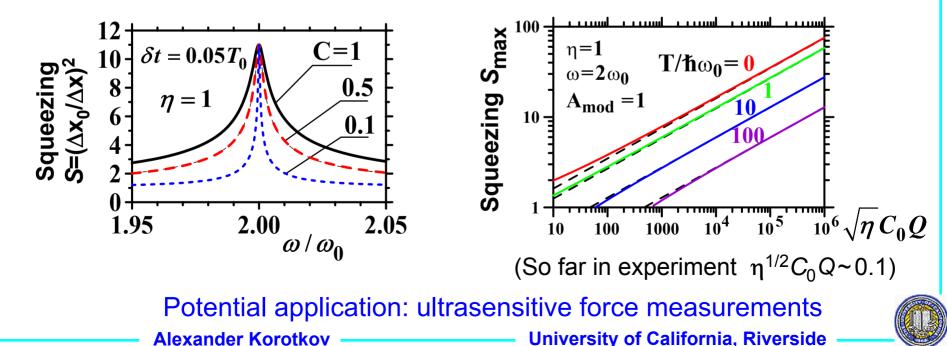
Experimental status:

 $ω_0/2π \sim 1 \text{ GHz}$ ($\hbar ω_0 \sim 80 \text{ mK}$), Roukes' group, 2003 $\Delta x/\Delta x_0 \sim 5 \text{ [SQL } \Delta x_0 = (\hbar/2mω_0)^{1/2}\text{]}$, Schwab's group, 2004

$$S_{\max} = \frac{3}{4} \left[\frac{\sqrt{\eta} C_0 Q}{\coth(\hbar \omega_0 / 2T)} \right]^{1/3}$$

 $m{C}_0$ – coupling with detector, η – detector efficiency, T – temperature, Q – resonator Q-factor

Ruskov, Schwab, Korotkov, PRB-2005

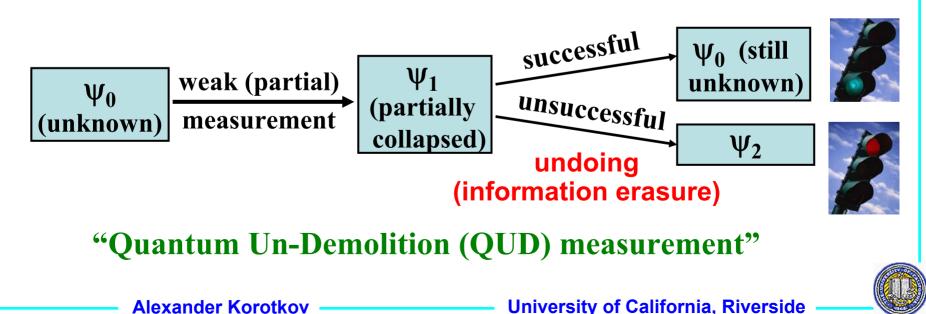


Undoing a weak measurement of a qubit A.K. & Jordan, PRL-2006

It is impossible to undo "orthodox" quantum measurement (for an unknown initial state)

Is it possible to undo partial quantum measurement? (To restore a "precious" qubit accidentally measured) Yes! (but with a finite probability)

If undoing is successful, an unknown state is fully restored



Evolution of a charge qubit

where measurement result r(t) is

$$r(t) = \frac{\Delta I}{S_I} \left[\int_0^t I(t') dt' - I_0 t \right]$$

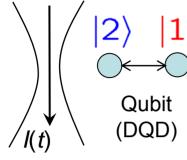


Jordan-Korotkov-Büttiker, PRL-06

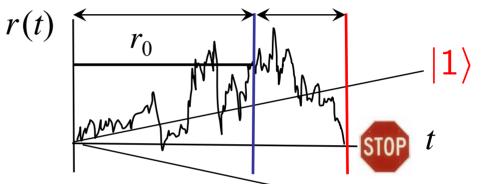
If r = 0, then no information and no evolution!

Alexander Korotkov

Measurement undoing for DQD-QPC system A.K. & Jordan, PRL-2006



Detector (QPC) First "accidental" Undoing measurement measurement



Simple strategy: continue measuring until result *r*(*t*) becomes zero! Then any unknown initial state is fully restored.

(same for an entangled qubit)

It may happen though that r = 0 never happens; then undoing procedure is unsuccessful.

Probability of success:

 $P_{S} = \frac{e^{-|r_{0}|}}{e^{|r_{0}|}\rho_{11}(0) + e^{-|r_{0}|}\rho_{22}(0)}$

 $r(t) = \frac{\Delta I}{S_{\star}} \left[\int_0^t I(t') dt' - I_0 t \right]$

Alexander Korotkov

Partial collapse of a "phase" qubit

N. Katz, M. Ansmann, R. Bialczak, E. Lucero, R. McDermott, M. Neeley, M. Steffen, E. Weig, A. Cleland, J. Martinis, A. Korotkov, Science-06

How does a coherent state evolve in time before tunneling event?

(What happens when nothing happens?)

Qubit "ages" in contrast to a radioactive atom!

Main idea:

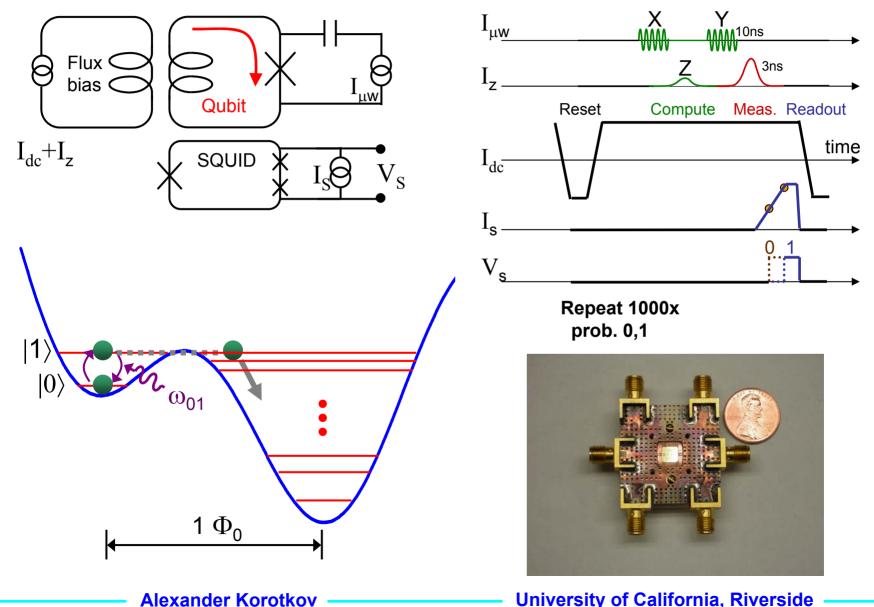
 $\psi = \alpha | 0 \rangle + \beta | 1 \rangle \rightarrow \psi(t) = \begin{cases} |out\rangle, \text{ if tunneled} \\ \frac{\alpha | 0 \rangle + \beta e^{-\Gamma t/2} e^{i\varphi} | 1 \rangle}{Norm}, \text{ if not tunneled} \\ Norm = \sqrt{|\alpha|^2 + |\beta|^2 e^{-\Gamma t}} \end{cases}$

amplitude of state |0> grows without physical interaction continuous null-result collapse

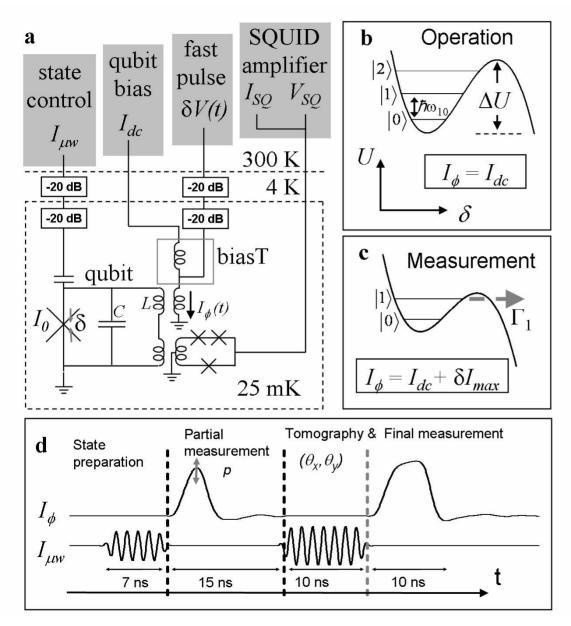
(similar to optics, Dalibard-Castin-Molmer, PRL-1992)

Alexander Korotkov — University of California, Riverside

Superconducting phase qubit at UCSB Courtesy of Nadav Katz (UCSB)



Experimental technique for partial collapse



Nadav Katz *et al*. (John Martinis' group)

Protocol:

- 1) State preparation by applying microwave pulse (via Rabi oscillations)
- 2) Partial measurement by lowering barrier for time t
- 3) State tomography (microwave + full measurement)

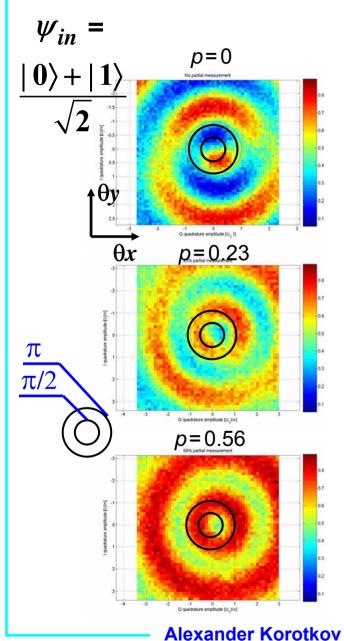
Measurement strength $p = 1 - \exp(-\Gamma t)$ is actually controlled by Γ , not by t

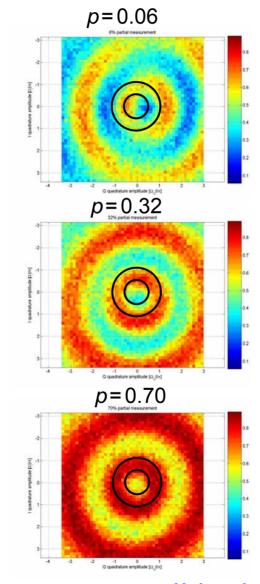
p=0: no measurement
p=1: orthodox collapse

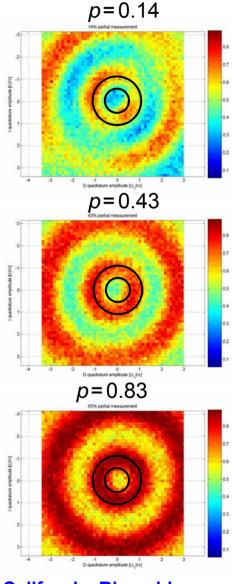
Alexander Korotkov

Experimental tomography data

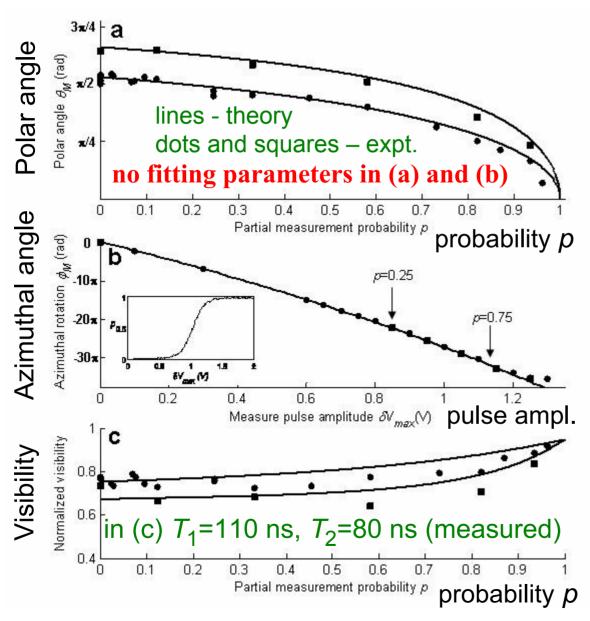
Nadav Katz et al. (UCSB)







Partial collapse: experimental results



N. Katz et al., Science-06

• In case of no tunneling (null-result measurement) phase qubit evolves

• This evolution is well described by a simple Bayesian theory, without fitting parameters

 Phase qubit remains fully coherent in the process of continuous collapse (experimentally ~80% raw data, ~96% after account for T1 and T2)

Alexander Korotkov — Ur

Conclusions

- Continuous quantum measurement is *not* equivalent to decoherence (environment) if detector output (information) is taken into account (in contrast to ensemble-averaged case)
- Bayesian approach to continuous quantum measurement is a simple, but new and interesting subject in solid-state mesoscopics
- A number of experimental predictions have been made
- First direct experiment is realized (+ few indirect ones); hopefully, more experiments are coming soon

