Quantum feedback control of solid-state qubits

Alexander Korotkov *University of California, Riverside*

Alexander Korotkov

Bayesian formalism for DQD-QPC (qubit-detector) system

Qubit evolution due to continuous measurement:

- **1)** Diagonal matrix elements of the qubit density matrix evolve as classical probabilities (i.e. according to the classical Bayes rule)
- 2) Non-diagonal matrix elements evolve so that the degree of purity $\rho_{ii}/[\rho_{ii}\rho_{ii}]^{1/2}$ is conserved

(A.K., 1998)

Bayes rule:

So simple because:

 $P(A_i | R) = \frac{P(A_i)P(R | A_i)}{\sum_{k} P(A_k)P(R | A_k)}$ 1) QPC happens to be an ideal detector 2) no Hamiltonian evolution of the qubit

Similar formalisms developed earlier. Key words: Imprecise, weak, selective, or conditional measurements, POVM, Quantum trajectories, Quantum jumps, Restricted path integral, etc.

Names: Davies, Kraus, Holevo, Belavkin, Mensky, Caves, Gardiner, Carmichael, Knight, Walls, Gisin, Percival, Milburn, Wiseman, Habib, etc. (very incomplete list)

"Quantum Bayes theorem" (ideal detector assumed)

 $\dot{\rho}_{11} = -\dot{\rho}_{22} = -2(H/\hbar) \operatorname{Im} \rho_{12} + \rho_{11}\rho_{22}(2\Delta I/S_I)[\underline{I(t)} - I_0]$ $\dot{\rho}_{12} = i(\varepsilon/\hbar)\rho_{12} + i(H/\hbar)(\rho_{11} - \rho_{22}) + \rho_{12}(\rho_{11} - \rho_{22})(\Delta I/S_I)[\underline{I(t)} - I_0] - \gamma\rho_{12}$

$$I(t) - I_0 = (\rho_{22} - \rho_{11})\Delta I / 2 + \xi(t), \quad S_{\xi} = S_I$$
 (A.K., 1998)

 $\gamma = \Gamma - (\Delta I)^2 / 4S_I, \quad \Gamma - \text{ensemble decoherence}$

 $\eta = 1 - \gamma / \Gamma = (\Delta I)^2 / 4S_I \Gamma$ - detector ideality (efficiency), $\eta \le 100\%$

Ideal detector (η =1, as QPC) does not decohere a qubit, then random evolution of qubit *wavefunction* can be monitored

Averaging over result I(t) leads to $d\rho_{11}/dt = -d\rho_{22}/dt = -2(H/\hbar) \operatorname{Im} \rho_{12}$ conventional master equation: $d\rho_{12}/dt = i(\varepsilon/\hbar)\rho_{12} + i(H/\hbar)(\rho_{11} - \rho_{22}) - \Gamma \rho_{12}$

Assumptions needed for the Bayesian formalism

• Detector voltage is much larger than the qubit energies involved $eV >> \hbar\Omega$, $eV >> \hbar\Gamma$ (no coherence in the detector, $\hbar/eV << (1/\Omega, 1/\Gamma)$; Markovian approximation)

• Small detector response, $|\Delta I| << I_0$, $\Delta I = I_1 - I_2$, $I_0 = (I_1 + I_2)/2$ Many electrons pass through detector before qubit evolves noticeably. (Not a really important condition, but simplifies formalism.)

Coupling $C \sim \Gamma / \Omega$ is arbitrary [we define $C = \hbar (\Delta I)^2 / S_I H$]

$$\frac{d}{dt}\rho_{11} = -\frac{d}{dt}\rho_{22} = -2\frac{H}{\hbar}\operatorname{Im}\rho_{12} + \rho_{11}\rho_{22}\frac{2\Delta I}{S_I}[I(t) - I_0]$$

$$\frac{d}{dt}\rho_{12} = i\frac{\varepsilon}{\hbar}\rho_{12} + i\frac{H}{\hbar}(\rho_{11} - \rho_{22}) + \rho_{12}(\rho_{11} - \rho_{22})\frac{\Delta I}{S_I}[I(t) - I_0] - \gamma\rho_{12}$$

Derivations

1) "logical": via correspondence principle and comparison with decoherence approach (A.K., 1998)

2) "microscopic": Schr. eq. + collapse of the detector (A.K., 2000) **qubit** $\rho_{ij}^{n}(t)$ **detector** $n(t_k)$ **pointer** classical information quantum interaction frequent collapse n - number of electrons passed through detector

3) from "quantum trajectory" formalism developed for quantum optics (Goan-Milburn, 2001; also: Wiseman, Sun, Oxtoby, etc.)

4) from POVM formalism (Jordan-A.K., 2006)

Alexander Korotkov

"Informational" derivation of the Bayesian formalism

Step 1. Assume $H = \varepsilon = 0$, "frozen" qubit Since ρ_{12} is not involved, evolution of ρ_{11} and ρ_{22} should be the same as in the classical case, i.e. Bayes formula (correspondence principle).

Step 2. Assume $H = \varepsilon = 0$ and pure initial state, $\rho_{12}(0) = [\rho_{11}(0) \rho_{22}(0)]^{1/2}$ For any realization $|\rho_{12}(t)| \leq [\rho_{11}(t) \rho_{22}(t)]^{1/2}$. Hence, averaging over ensemble of realizations gives $|\rho_{12}^{av}(t)| \leq \rho_{12}^{av}(0) \exp[-(\Delta I^2/4S_I)t]$ However, conventional (ensemble) result (Gurvitz-1997, Aleiner *et al.*-1997) for QPC is exactly the upper bound: $\rho_{12}^{av}(t) = \rho_{12}^{av}(0) \exp[-(\Delta I^2/4S_I)t]$. **Therefore, pure state remains pure**: $\rho_{12}(t) = [\rho_{11}(t) \rho_{22}(t)]^{1/2}$.

Step 3. Account of a mixed initial state Result: the degree of purity $\rho_{12}(t) / [\rho_{11}(t) \rho_{22}(t)]^{1/2}$ is conserved.

Step 4. Add qubit evolution due to H and ε .

Step 5. Add extra dephasing due to detector nonideality (i.e., for SET).

Quantum efficiency of solid-state detectors

(ideal detector does not cause single qubit decoherence)

1. Quantum point contact

Theoretically, ideal quantum detector, $\eta = 1$ A.K., 1998 (Gurvitz, 1997; Aleiner *et al.*, 1997) Averin, 2000; Pilgram et al., 2002, Clerk et al., 2002 Experimentally, $\eta > 80\%$ (using Buks *et al.*, 1998)

2. SET-transistor

Very non-ideal in usual operation regime, η «1 Shnirman-Schön, 1998; A.K., 2000, Devoret-Schoelkopf, 2000

However, reaches ideality, $\eta = 1$ if:

- in deep cotunneling regime (Averin, van den Brink, 2000)
- S-SET, using supercurrent (Zorin, 1996)
- S-SET, double-JQP peak ($\eta \sim 1$) (Clerk *et al.*, 2002)
- resonant-tunneling SET, low bias (Averin, 2000)

3. SQUID V(t)

Can reach ideality, $\eta = 1$

(Danilov-Likharev-Zorin, 1983; Averin, 2000) 4. FET ?? HEMT ?? ballistic FET/HEMT ??

Alexander Korotkov

Bayesian formalism for *N* **entangled qubits measured by one detector**

$$\frac{d}{dt}\rho_{ij} = \frac{-i}{\hbar}[\hat{H}_{qb},\rho]_{ij} + \rho_{ij}\frac{1}{S}\sum_{k}\rho_{kk}[(I(t) - \frac{I_k + I_i}{2})(I_i - I_k) + (I(t) - \frac{I_k + I_j}{2})(I_j - I_k)] - \gamma_{ij}\rho_{ij} \qquad (\text{Stratonovich form})$$
$$\gamma_{ij} = (\eta^{-1} - 1)(I_i - I_j)^2 / 4S_I \qquad I(t) = \sum_i \rho_{ii}(t)I_i + \xi(t)$$
Averaging over $\xi(t) \implies \text{master equation}$

No measurement-induced dephasing between states $|i\rangle$ and $|j\rangle$ if $I_i = I_j$! A.K., PRA 65 (2002), PRB 67 (2003)

Bayesian quantum feedback control of a qubit

Since qubit state can be monitored, the feedback is possible!

Goal: maintain perfect Rabi oscillations forever

Idea: monitor the Rabi phase ϕ by continuous measurement and apply feedback control of the qubit barrier height, $\Delta H_{FB}/H = -F \times \Delta \phi$

To monitor phase ϕ we plug detector output I(t) into Bayesian equations

Performance of quantum feedback

Alexander Korotkov –

Experimental difficulties:

- necessity of very fast real-time solution of Bayesian equations
- wide bandwidth (>>Ω, GHz-range) of the line delivering noisy signal *l(t)* to the "processor"

Ruskov & A.K., PRB-2002

Simple quantum feedback of a solid-state qubit (A.K., 2005)

Goal: maintain coherent (Rabi) oscillations for arbitrarily long time

Idea: use two quadrature components of the detector current *l(t)* to monitor approximately the phase of qubit oscillations (a very natural way for usual classical feedback!)

$$X(t) = \int_{-\infty}^{t} [I(t') - I_0] \cos(\Omega t') \exp[-(t - t')/\tau] dt$$

$$Y(t) = \int_{-\infty}^{t} [I(t') - I_0] \sin(\Omega t') \exp[-(t - t')/\tau] dt$$

$$\phi_m = -\arctan(Y/X)$$

(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth $(1/\tau \sim \Gamma_d \ll \Omega)$

Essentially classical feedback. Does it really work?

Noise improves the monitoring accuracy! (purely quantum effect, "reality follows observations")

 $\frac{d\phi}{dt} = -[I(t) - I_0]\sin(\Omega t + \phi)(\Delta I / S_I) \quad \text{(actual phase shift, ideal detector)}$ $\frac{d\phi_m}{dt} = -[I(t) - I_0]\sin(\Omega t + \phi_m)/(X^2 + Y^2)^{1/2} \quad \text{(observed phase shift)}$

Noise enters the actual and observed phase evolution in a similar way

Quite accurate monitoring! $cos(0.44) \approx 0.9$

Simple quantum feedback

How to verify feedback operation experimentally? Simple: just check that in-phase quadrature $\langle X \rangle$ of the detector current is positive $D = \langle X \rangle (4/\tau \Delta I)$

 $\langle X \rangle$ =0 for *any* non-feedback Hamiltonian control of the qubit

Effect of nonidealities

- nonideal detectors (finite quantum efficiency η) and environment
- qubit energy asymmetry $\boldsymbol{\epsilon}$
- frequency mismatch $\Delta \Omega$

Quantum feedback still works quite well

Main features:

- Fidelity F_O up to ~95% achievable (D~90%)
- Natural, practically classical feedback setup
- Averaging $\tau \sim 1/\Gamma >> 1/\Omega$ (narrow bandwidth!)
- Detector efficiency (ideality) $\eta \sim 0.1$ still OK
- \bullet Robust to asymmetry ϵ and frequency shift $\Delta \Omega$
- Simple verification: positive in-phase quadrature $\langle X \rangle$

Simple enough experiment?!

Bayesian quantum feedback in more detail

Ideal case (ideal detector, no extra dephasing, infinite bandwidth and no delay)

 $C = \hbar (\Delta I)^2 / S_I H$, Coupling

D - Feedback efficiency

Analytics: *D*=exp(-*C*/32*F*)

D(*F*/C>>1) ≈1 – works very well in ideal case

We have also analyzed the following effects: Non-ideal detector & extra dephasing Finite bandwidth Time delay in the feedback loop Qubit parameter deviations ($\varepsilon \& H$) Feedback of a qubit with $\varepsilon \neq 0$ (needs special controller)

Detector nonideality and dephasing

- →Effect of imperfect detector and extra dephasing due to coupling to environment
 - Imperfection & extra dephasing $\Rightarrow D_{max}(\eta_e) < 1$
 - **D**_{max}: maximum feedback efficiency

 $\eta_e = [1 + 4\gamma S_I / (\Delta I)^2]^{-1}$ -- quantum efficiency

Effect of finite detector bandwidth

- Available detector output signal $I_a(t)$ differs form the "true" one \Rightarrow A modified signal to compensate this implicit time delay, $\Delta \phi = \phi_a - \Omega(t - \kappa \tau_a), D_{\max} = D(k = k_{opt})$
- $I_a(t) = \tau_a^{-1} \int_{-\infty}^t I(t') \exp^{-(t-t')/\tau_a} dt'$ exponential window
- $I_a(t) = \tau_a^{-1} \int_{t-\tau_a}^{t} I(t') dt' \text{rectangular window}$

Effect of time delay in the feedback loop

Sharp drop at $F \tau_d/T > 1/4$ ---different from ideal case $F \tau_d/T = 1/4$ separates stable region & unstable (oversteering) region Simple model results \approx full model results; Scaling behavior for $C \tau_d/T = C' \tau_d'/T$

Effect of ε & H deviation (from $\varepsilon = 0, H = H_0$)

• mistake in qubit monitoring \Rightarrow obviously worsens D

Solid: small ε decreases D very little Dashed: rescaling x-axis by $C^{1/2}$ Dotted: exact monitoring significantly improves D Effect of H deviation quite similar to ε Dashed : rescaling x-axis by C

Feedback operation is robust against small unknown deviations of qubit parameters.

Alexander Korotkov

Feedback of an energy-asymmetric qubit ($\epsilon \neq 0$)

Despite the phase space becomes essentially two-dimensional, we still want to control only one parameter (H)

- Special controller: $\Delta H_{\rm fb}/H = -F \Delta \phi_m F_{\rm r} \sin \phi_m \Delta r_{\rm m}$
- Change only one parameter *H* to reduce both $\Delta \phi_{\rm m}$ and $\Delta r_{\rm m}$

Conclusions

Alexander Korotkov

Quantum feedback in optics

First experiment: Science 304, 270 (2004) Real-Time Quantum Feedback Control of Atomic Spin-Squeezing

JM Geremia,* John K. Stockton, Hideo Mabuchi

Real-time feedback performed during a quantum nondemolition measurement of atomic spin-angular momentum allowed us to influence the quantum statistics of the measurement outcome. We showed that it is possible to harness measurement backaction as a form of actuation in quantum control, and thus we describe a valuable tool for quantum information science. Our feedbackmediated procedure generates spin-squeezing, for which the reduction in quantum uncertainty and resulting atomic entanglement are not conditioned on the measurement outcome.

First detailed theory:

H.M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70, 548 (**1993**)

Alexander Korotkov