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Quantum efficiency of linear detectors

Korotkov, 1998, 2000
Averin, 2000
Pilgram-Buttiker, 2002
Clerk-Girvin-Stone, 2002

. . .

Idea of definition (Korotkov-1998): qubit detector
I(t)

1 / 2 mτΓ ≥

ensemble 
decoherence rate

“measurement time”
(to reach signal-to-noise =1)

⇒ quantum efficiency (ideality) 1 / 2= mη τΓ

Slightly different definitions (A.K., 2000):

(informational bound)

21 / 2 / 4m K SτΓ ≥ +

21 / 2 / 4) /= ( m K S

S – output noise
K – output-backaction

noise correlation

⇒ efficiency η τ + Γ
21 / 2 ) /( / 4)= ( m K Sη τ Γ −or 

Equivalent to the energy sensitivity limitations known since 1980s:

(ЄO ЄB)1/2 ≥ /2, (ЄO ЄB - ЄOB
2)1/2 ≥ /2, (Clarke, Tesche, 

Likharev, Caves, etc.)

eH

I(t)
QPC is an ideal detector

η=1    (A.K., 1998)

Ideal detector (η=1) does not decohere qubit (pure → pure)
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Now general binary-output detector
(try to use the same idea)

We consider realistic detectors (not the “orthodox” projective measurement!)

Measurement fidelities F0 and F1
F0 = probability to get result 0 for a qubit in state |0Ú,
F1 = probability to get result 1 for a qubit in state |1Ú

Ideal detector (pure qubit state → pure)
Use POVM language: linear measurement operators M0 and M1 (result 0 or 1)

†

†Tr( )
i i

i i

M M
M M
ρ

ρ
ρ

→ for result i, probability 

Each operator Mi : 8 -1(phase) =7 real parameters 

7+7=14, but completeness (M0
+M0+M1

+M1=1 ), so 14 - 4=10

Ideal binary-output detector of a qubit is described 
by 10 real parameters (including fidelities F0 and F1)

†Tr( )i i iP M Mρ=
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Non-ideal binary-output detectors
Again use POVM language, now arbitrary one-qubit quantum operation
(superoperator) for each measurement result  
⇒ 16 +16 - 4 = 28 real parameters for a general (non-ideal) detector

Therefore, quantum efficiency (ideality) of a general binary-outcome 
detector is described by 18 real parameters.

28 (general) – 10 (ideal) = 18 (quantum efficiencies)

Too many!!!  Impractical.  What to do? 

Consider only “QND” detectors
(qubit does not evolve itself during measurement, σz-coupling)

|0Ú→ |0Ú , |1Ú→ |1Ú

Try to use the informational bound (as for linear detectors)
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Decoherence bound for a QND detector
General description of a QND detector: only 6 parameters
(fidelities F0 and F1, decoherences D0 and D1, and angles φ0 and φ1)

00 01 0 00 0 1 01

10 11 0 1 11

0 01 (1 )
. . (1 )

D iF F F e e
P c c F

φρ ρ ρ ρ
ρ ρ ρ

⎛ ⎞⎛ ⎞ −→ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

-
result 0:

00 01 0 00 0 1 01

10 11 1 1 11

1 11 (1 ) (1 )
. .

D iF F F e e
P c c F

φρ ρ ρ ρ
ρ ρ ρ

⎛ ⎞⎛ ⎞ − −→ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

-

result 1:

Average over
results:

0 0 00 1 11 1 0 00 1 11(1 ) , (1 )P F F P F Fρ ρ ρ ρ= + − = − +

00 01 00 01

10 11 11. .

D iav ave e
c c

φρ ρ ρ ρ
ρ ρ ρ

⎛ ⎞⎛ ⎞
→ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

-

0 1 0 1
0 0 1 1(1 ) (1 )D i D iD iav ave e F F e e F F e eφ φφ = − + −- --

0 1 0 1min ln[ (1 ) (1 ) ]avD D F F F F≥ = − − + −
⇒ ensemble
decoherence
bound 

probabilities:

simple 
Bayes!
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Definitions of quantum efficiency
(actual decoherence vs. informational bound)

Similar to the first definition
for linear detectors min / avD Dη =

Taking into account 
phase correlation: 

)
0 1 0 1

1 0(ln | (1 ) (1 ) |i

av

F F F F e
D

φ φ
η

− − + −
=

-

or
0 1 0 1

0 1 0 1
0 1

ln[ (1 ) (1 ) ]

ln[ (1 ) (1 ) ]D D
F F F F

F F e F F e
η

− − + −
=
− − + −- -

Also meaningful to define quantum efficiency 
for each result of the measurement: 

0 1 0 1
0 1

0 1

0 1
1 , 1

ln (1 ) ln (1 )
D D

D F F D F F
η η− = − =

− − − −

(useful for “asymmetric” and “half-destructive” detectors, as for phase qubits)
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Quantum efficiency for several 
detector models

Model 1: Indirect projective measurement

qubit ancilla qubit
projective

measurement
detector

00 10 01 11( | 0 | 1 ) | 0 | 0 ( | 0 | 1 ) | 1 ( | 0 | 1 )a a a a ac c c cα β α β〉 + 〉 〉 → 〉 〉 + 〉 + 〉 〉 + 〉 →

00 01

10 11

Norm
Norm

( | 0 | 1 ) / ,  if result 0 
( | 0 | 1 ) / ,  if result 1

c c
c c

α β
α β

〉 + 〉⎧
→ ⎨ 〉 + 〉⎩

2 2
0 00 1 11 0 00 01 1 10 11 0 1| | , | | , arg( ), arg( ), 0, 0F c F c c c c c D Dφ φ∗ ∗= = = = = =

Then

Evolution:

And so 0 1 1, 1η η η η= = = =

0 1but if1,η φ φ≠ ≠

(ideal)
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Model 2:  Linear detector in binary-output 
regime

P

I0 I1

~1/s ~1/s

thre-
shold

result 0 result 1

qubit linear detector
continuous

result
comparison

with threshold
result
0 or 1

0 erf[1 ( )]/ 2F r s= + +

1 erf[1 ( )]/ 2F r s= + − +

/ 2 ms t τ=
where  r is threshold and

is measurement strength

0 1
0 2erf

ln (1 )
ln[(1 ( )) / 2]

F F
r s t

η
γ

− −
=
− + + +

1 0( ) ( )r rη η= −

0 1 0 1
2

ln[ (1 ) (1 ) ]F F F F
s t

η
γ

− − + −
=

+
2 /η π≤

Results:

Even for an ideal linear detector
the threshold detector is 

significantly non-ideal
Why? Because we loose information!
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Model 3:  Partial-collapse measurement
of a phase qubit

Γ
|0〉
|1〉

1 tp e Γ-= -

N. Katz et al., 
Science-2006
(Martinis’ group)

/ 2| 0 | 1| 0 | 1
Norm

i te eφα βα β
−Γ〉 + 〉

〉 + 〉 → 

Result 0 (“null result”), then

Result 1, then qubit destroyed

For this model 0 1,η =
while   η1 and  η cannot be defined

(“half-destructive” measurement)

If imperfections are taken into account (Pryadko-Korotkov, 2007),
then finite quantum efficiency for null-result case: η0<1.
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Model 4:  Detector based on tunneling 
into continuum

qubit
p0 or p1

detector

0 01 ,F p= −

probability to tunnel out (p0 or p1) 
depends on the qubit state

1 1F p=

non-destructive detector for
both measurement results

0
0 11 | 0 1 | 1

| 0 | 1
Norm

ip p e φα β
α β

− 〉 + − 〉
〉 + 〉 → 

Result 0 (no tunneling), then

Result 1 (tunneling), then

In simple case (when p0<p1<<1):

1
0 1| 0 | 1

| 0 | 1
Norm

ip p e φα β
α β

〉 + 〉
〉 + 〉 → 

Then ideal detector:
0 1 1,

1

η η

η η

= =

= =

0 1if1η φ φ= =
Can such regime be realized 

by a real SQUID or by 
a bifurcation detector? 
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Conclusions

• Derived a simple informational bound on 
the qubit ensemble decoherence due to 
measurement by a binary-outcome detector

• Introduced corresponding definitions 
for the detector quantum efficiency  

• Calculated the quantum efficiency
in several models


	Quantum efficiency of linear detectors
	Now general binary-output detector�(try to use the same idea)
	Non-ideal binary-output detectors
	Decoherence bound for a QND detector
	Definitions of quantum efficiency�(actual decoherence vs. informational bound)
	Quantum efficiency for several �detector models
	Model 2:  Linear detector in binary-output regime
	Model 3:  Partial-collapse measurement�of a phase qubit
	Model 4:  Detector based on tunneling �into continuum
	Conclusions

