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Quantum efficiency of linear detectors

Idea of definition (Korotkov-1998): % detector —>
1(t)
I'>1/27,,  (informational bound) (
Y. X Korotkov, 1998, 2000
ensemble “measurement time” Averin, 2000

decoherence rate  (to reach signal-to-noise =1)  Pilgram-Buttiker, 2002

Clerk-Girvin-Stone, 2002
= quantum efficiency (ideality) 77 = 1/2I't m

Ideal detector (n=1) does not decohere qubit (pure — pure) - (0
Slightly different definitions (A.K., 2000): H® e
0
S — output noise
>
F I/ZT + K >/4 K- output-backactlon U
noise correlation n 1)
. ~ 2
= efficiency 77 =(1/27, + K*S/4)/T’ QPC is an ideal detector
or 7=(1/27,) (T —K*S/4) n=1 - (AK, 1998)

Equivalent to the energy sensitivity limitations known since 1980s:

1/2 2.1/2 (Clarke, Tesche,
(€O €B) = h/2, (€O €B B €OB )2 h/Z, Likharev, Caves, etc.)
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Now general binary-output detector
(try to use the same idea)

We consider realistic detectors (not the “orthodox” projective measurement!)

Measurement fidelities F and F,
Fo = probability to get result O for a qubit in state |0),
F, = probability to get result 1 for a qubit in state |1)
Ideal detector (pure qubit state — pure)
Use POVM language: linear measurement operators M, and M, (result O or 1)
T
M. pM;
Tr(M, pMiT )
Each operator M; : 8 -1(phase) =7 real parameters

7+7=14, but completeness (My,*My+M;*M;=1), so 14 — 4=10

- for result i, probability P. = Tr(M.pM)

Ideal binary-output detector of a qubit is described
by 10 real parameters (including fidelities F, and F,)
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Non-ideal binary-output detectors

Again use POVM language, now arbitrary one-qubit qguantum operation
(superoperator) for each measurement result
= 16 +16 — 4 = 28 real parameters for a general (non-ideal) detector

28 (general) — 10 (ideal) = 18 (quantum efficiencies)

Therefore, quantum efficiency (ideality) of a general binary-outcome
detector is described by 18 real parameters.

Too many!!l Impractical. What to do?

Consider only “QND” detectors
(qubit does not evolve itself during measurement, c,-coupling)

0) > 10}, |1) = [1)

Try to use the informational bound (as for linear detectors)
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Decoherence bound for a QND detector

General description of a QND detector: only 6 parameters
(fidelities F, and F,, decoherences Dy and D4, and angles ¢, and ¢,)

D, i

result 0: ('000 pOIJ —> i(FOPOO \/FO(1 - |:1) e e 0'OOIJ

Pio Pn Py c.c. A-F)p simple

-D, id Bayes!

. (Poo Pm] L L[a=-F)py, Ja-F)F e tep,

P Pu Py C.C. Fou
probabilities: P, =F,p,, +(1—F)p, Pr=0-F)pe + F o
Average over (pﬂﬂ P 01] | Poo € ave'¢avp01
results: P Pu C.C. P11

e—DaVei¢aV =\/F0(1_ I:l)e_D()ei¢0 +\/(1_ FO)FI e_Dle|¢1
—> ensemble

decoherence Dav 2 Dmin = _ln[\/Fo (1 - Fl) + \/(1 - Fo)Fl ]

bound
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Definitions of quantum efficiency
(actual decoherence vs. informational bound)

Similar to the first definition _
for linear detectors n= Dmin / DaV
Taking into account ~ . ln | \/FO (1 . Fl) + \/(1 - I:O)Fle |(¢1_¢0) |
phase correlation: n= 5
av
or
F__ ~IlJR(-F)+ (- F)R]

Dy

_In[\F,(1-F)e 0 + JA-F,)Fe ™)

Also meaningful to define quantum efficiency
for each result of the measurement:

DO
Dﬂ—ln\/FO(l—Fl)

Dl
D, —In,/(1-F,)F,

useful for “asymmetric” and “half-destructive” detectors, as for phase qubits)
y P q
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Quantum efficiency for several
detector models

Model 1: Indirect projective measurement

i i - projective
E&% ancilla qubit |< >| detector
measurement

Evolution:
(@]0)+4(1))[0,) > a|0)(Cyy |0,) +Ciy [10)+ B [1)(Cyy [04) +Cy [15)) =

(aCyy | 0) + fCy; | 1))/ Norm, if result 0
(aCyy |0+ SCi; | 1))/ Norm, if result 1

Then

Fo =[Cpo 1, F =lcy %, @y = arg(Co Cy)» # = arg(Cy,Cy;), D, =0, D, =0

1 (ideal)

And so no=n =1, ﬁ=77
but 7 #1, if @, # ¢,

Alexander Korotkov Universitv of California. Riverside




Model 2: Linear detector in binary-output

regime
. . continuous comparison result
EHI linear detector [——-1—| with threshold [~ 0 or 1
result 0 thre- result 1 FO = [1 + erf(l’ + S)] /2
5 shold F, =[1+erf(—r+5)]/2
where r is threshold and
s s S=./t/ 27, is measurement strength
: . Results: “In \/Fo 1- F1)
IO Il To = —ln[(1+erf(l’))/2]+82+}/'[

N =n,(-r
Even for an ideal linear detector 1(r)=1,(=T)

the threshold detector is ~In[JF,(-F,)) +(1-F)F, ]
significantly non-ideal M= s% + yt
Why? Because we loose information! n<llr
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Model 3: Partial-collapse measurement

N. Katz et al., Of a phase quit
Science-2006
(Martinis’ group) Result O (“null result”), then
0 +e?pe TV
g@ 2|0+ g1y 21repe 1D
Norm
Result 1, then qubit destroyed
\ p=1-eIt
|1) A> T For this model 7] = 1,

|0>\U/ \ while M, and M cannot be defined

(“half-destructive” measurement)

If imperfections are taken into account (Pryadko-Korotkov, 2007),
then finite quantum efficiency for null-result case: 1ny<1.
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Model 4: Detector based on tunneling
into continuum

detector
P Or Py
— 00— ——

In simple case (when p,<p,<<1):

Result 0 (no tunneling), then

probability to tunnel out (py or Pq)
depends on the qubit state

Fo=1-py, F=p

non-destructive detector for
both measurement results

Then ideal detector:

NPT N CINUEY NELL .z

Norm

Result 1 (tunneling), then

770:771:1,
n=n=1
n=1if ¢, =9

Can such regime be realized

ig
a|0)+ B|1) - a\/p70|0)+,8\/ﬁe LY by a real SQUID or by

Norm
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a bifurcation detector?
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Conclusions

¢ Derived a simple informational bound on
the qubit ensemble decoherence due to
measurement by a binary-outcome detector

e Introduced corresponding definitions
for the detector quantum efficiency

e Calculated the quantum efficiency
in several models
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