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Quantum collapse due to measurement – fascinating puzzle  
of quantum mechanics since 1920s

“orthodox” projective collapse fl Bell inequality (problem with causality)

Even more interesting: what is “inside” collapse
(nothing is instantaneous, matter of time scale fl non-projective) 

The same fascinating feature (as in Bell inequality): 
“spooky” quantum back-action in the process of collapse

Most importantly: “spookiness” of quantum measurement 
becomes an experimental subject in solid state systems
(3 experiments already: Santa Barbara & Sacley)

In this talk:  theory related to experiments (realized and future)
on non-projective collapse of solid-state qubits 

Possibly something useful (not only very interesting)?

Proper question: “how”, not “why”
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Quantum Bayesian formalism 

eH

I(t)

Evolution due to measurement (“spooky” quantum back-action)

A.K., 1998
(Caves-1986,
Gardiner-91) 

1) ρii evolve as probabilities, i.e. according to the Bayes rule
(for ψ=α|1Ú+β|2Ú,  |α|2 and |β|2 behave as probabilities)

2) ρij/(ρii ρjj)1/2 = const, i.e. pure state remains pure 
(for ψ=α|1Ú+β|2Ú, the phases of α(t) and β(t) do not change)

Add physical (realistic) evolution 

- Hamiltonian evolution, classical back-action, decoherence, etc.
(technically: add terms in the differential equation)
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+ Δ
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Same idea as in POVM, general quant. meas., quantum trajectories, etc. 
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Models of continuous measurement

qubit

detector
I(t) 2e

Vg V I(t)

qubit (| 1 1 | | 2 2 |) (| 1 2 | | 2 1 |)
2

H Hε
= 〉 〈 − 〉 〈 + 〉 〈 − 〉 〈

eH

I(t)

Measurement: average signals I1 and I2, response ΔI= I1- I2, white noise SI

Quantum efficiency: relation between “spooky” and non-spooky
(ratio of “spooky” and total ensemble decoherence)

2( ) / 4 II Sη Δ
=

Γ
spooky (informational back-action)
total qubit dephasing

1η =quantum limited:

(coincides with definition via energy sensitivity in units Ñ/2)

Yale
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Persistent Rabi oscillations

left right

ground

excited - Relaxes to the ground state if left alone (low-T)
- Becomes fully mixed if coupled to a high-T

(non-equilibrium) environment
- Oscillates persistently between left and right 

if (weakly) measured continuously 
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ρ11
Re ρ12
Im ρ12

A.K., 1998

Phase of Rabi oscilla-
tions fluctuates (phase 
noise, dephasing)

Direct experiment 
is difficult (quantum 
efficiency, bandwidth,
control)
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Indirect experiment: spectrum
of persistent Rabi oscillations 

qubit detector
I(t)

C
A.K., LT’1999
A.K.-Averin, 2000

2 2

0 2 2 2 2 2
( )( )

( )I
IS Sω

ω ω
Ω Δ Γ

= +
− Ω + Γ

peak-to-pedestal ratio = 4η ≤ 4

0( ) ( ) ( )
2
II t I z t tξΔ

= + +

(const + signal + noise)

2( ) / IC I HS= Δ
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Ω = 2H

integral under the peak ‹ variance ‚z2Ú

perfect Rabi oscillations: ·z2Ò=·cos2Ò=1/2
imperfect (non-persistent): ·z2ÒÜ 1/2
quantum (Bayesian) result:  ·z2Ò = 1 (!!!)

amplifier noise fl higher pedestal,
poor quantum efficiency,

but the peak is the same!!!

How to distinguish experimentally
persistent from non-persistent? Easy!

(demonstrated in Saclay expt.)

ηÜ1
ω/Ω

SI (ω)

0 1 2
0

1

Ω - Rabi frequency
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How to understand ·z2Ò = 1?

0( ) ( ) ( )
2
II t I z t tξΔ

= + +

First way (mathematical)   
We actually measure operator:  z → σz

z2 → σz
2 = 1

Second way (Bayesian)   
2

( ) ( ) ( )
4 2I zz z
I IS S S Sξξ ξω ω ωΔ Δ

= + +

Equal contributions (for weak 
coupling and η=1)

(What does it mean?
Difficult to say…)

quantum back-action changes z
in accordance with the noise ξ

Can we explain it in a more reasonable way (without spooks/ghosts)?

No (under assumptions of macrorealism; 
Leggett-Garg, 1985)

z(t)?+1

-1

qubit

detector
I(t)

or some other z(t)?
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Leggett-Garg-type inequalities for 
continuous measurement of a qubit

Ruskov-A.K.-Mizel, PRL-2006
Jordan-A.K.-Büttiker, PRL-2006

0 1 2
0

2

4

6

ω/Ω

S I(ω
)/S

0

SI (ω)

≤
4S

0

Experimentally measurable violation

qubit detector
I(t)

Assumptions of macrorealism
(similar to Leggett-Garg’85):

0 ( )  ( / 2) ( ) ( )I t I I z t tξ+ Δ +=

| ( ) | 1,  ( ) ( ) 0z t t z tξ τ≤ 〈 + 〉 =

Then for correlation function
 ( ) ( ) ( )K I t I tτ τ〈 + 〉=

2
1 2 1 2( ) ( ) ( ) ( / 2)K K K Iτ τ τ τ+ − + ≤ Δ

and for area under narrow spectral peak

0
2 2[ ( ) ] (8 / ) ( / 2)IS f S df Iπ− ≤ Δ∫

quantum result

23 ( / 2)
2

IΔ
3
2

×

violation

2( / 2)IΔ
2

8
π

×

(Saclay experiment)

Leggett-Garg,1985
Kij = ·Qi QjÒ

if Q =±1, then
1+K12+K23+K13≥0

K12+K23+K34 -K14 £2

η is not important!
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May be a physical (realistic) back-action?

OK, cannot explain without back-action

ω/Ω

S I(ω
)/S

0 SI (ω)

0 1 2
0

1

ηÜ1

0( ) ( ) ( )
2
II t I z t tξΔ

= + +qubit detector
I(t)

( ) ( ) 0t z tξ τ〈 + 〉 ≠

But may be this is a simple classical 
back-action from the noise?

In principle, classical explanation cannot be ruled out
(e.g. computer-generated I(t); no non-locality as in optics) 

Try reasonable models: linear modulation of 
the qubit parameters (H and ε) by noise ξ(t)

No, does not work!

Our (spooky) back-action is quite peculiar:   ( ) ( 0) 0t dz tξ〈 + 〉 >

“what you see is what you get”: observation becomes reality
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Two ways to think about η<1

2( ) / 4I Sη Σ

Σ

Δ
=

Γ

qubit ideal
detector I(t)0S2

0

( )
4

I
SΣ

Δ
Γ =

noise

+
1S

0 1S S SΣ = +

qubit ideal
detector I(t)SΣ2

0
( )
4

I
SΣ

Δ
Γ =

dephasing
noise

1Γ
0 1ΣΓ = Γ + Γ

These ways are equivalent
(same results for any expt.)
fi matter of convenience

A.K., 2002

2
( ) ( ) ( )

4 2I zz z
I IS S S Sξω ω ωΣ

Δ Δ
= + +

different relative contributions
in the two approaches

For spectrum:
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Recent experiment on persistent Rabi 
oscillations (P. Bertet et al., Saclay group)

courtesy of 
Patrice Bertet
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• superconducting qubit
monitored by microwave
reflection from cavity

• driven Rabi oscillations 

• perfect spectral peaks
(η~0.02á1)

• LGI violation 

First demonstration of persistent Rabi oscillations (?) 
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Previous experimental confirmation?
Durkan and Welland, 2001  (STM-ESR experiment similar to Manassen-1989)

p e a k 3 .5
n o i s e

≤

Recently reproduced: 
Messina et al., JAP-2007

(Colm Durkan,
private comm.)

Questionable 
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Somewhat similar experiment

E. Il’ichev et al., PRL, 2003

“Continuous monitoring of Rabi oscillations in a Josephson flux qubit”
1 ( ) cos
2 HFx z zH Wσ ε σ σ ω= Δ +- - t

2 2 ; 0)( HFω ε ε≈ Δ + ≠

low-bandwidth tank fi qubit monitoring is impossible
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Next topic: Quantum feedback for
persistent Rabi oscillations

Goal: produce persistent Rabi oscillations without phase noise
by synchronizing with a classical signal

In simple monitoring the phase of persistent Rabi oscillations
fluctuates randomly: 

( ) cos[ ( )]z t t tϕ= Ω + for η=1

phase noise fl finite linewidth of the spectrum

desired ( ) cos( )t tz = Ω

0 1 2
0

2

4

6

0 1 2
0

2

4

6

ω/Ω

S I(ω
)/S

0

ω/Ω

integral 2 1 1 1
2 2

z〈 〉 += = integral 2 1
2

z〈 〉 =
0( ) ( ) ( )

2
II t I z t tξΔ

= + +

2

0 4 2I zz z
I IS S S Sξ

Δ Δ
= + +

synchronized

cannot synchronize
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Several ways to organize quantum feedback

qubit 

H 

e 

detector Bayesian 
     equations 

I(t) 

control stage 

(barrier height) 

ρij(t) 

 

comparison 
circuit 

desired evolution  

feedback 

signal 

environment 

C<<1 

ΔHFB/H = −F×ϕ
Ruskov & A.K., 2002

Hqb=
HσX

( ) cos[ ( )]

The wavefunction is monitored via 
Bayesian equations, and then usual 
(linear) feedback of the Rabi phase

First idea: Bayesian feedback
(most straightforward but most difficult experimentally)

z t t tϕ= Ω +

ΔΩ/Ω = −F×ϕ

Experimental difficulties:
• necessity of very fast real-time 

solution of Bayesian equations 
• wide bandwidth (áΩ, GHz-range) 

of the line delivering noisy signal 
I(t) to the “processor”

D = average scalar product 
of desired and actual
vectors on Bloch sphere

desired= 2 Tr 1D

How to characterize 
feedback efficiency/fidelity?

ρ ρ〈 〉 −
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Performance of Bayesian feedback

2

desired

( ) / coupling
  feedback strength 

= 2 Tr 1

IC I S H
F

D ρ ρ

= Δ −
−

〈 〉 −

Feedback fidelity vs. feedback strength

For ideal detector and wide
bandwidth, feedback fidelity
can be close to 100%

D = exp(−C/32F)

Ruskov & A.K., 2002
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Zhang, Ruskov, A.K., 2005

Feedback fidelity vs. detector efficiency
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simple

analytics

Dots:  Monte Carlo  
(weak coupling, C=0.1)

ε = 0
analytics

detection efficiency η

D
m

ax

max1 1.25Dη η⇒ ≈

max1 (1 ) / 2Dη η≈ ⇒ ≈ +

Bayesian quantum feedback gives 
the best possible performance,

but very difficult experimentally
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Second idea: direct feedback
(similar to Wiseman-Milburn, 1993)

fb 0( )
cos( ) sin( )

/ 2
H I t I

F t t
H I

Δ −ΔΩ ⎛ ⎞= = × − Ω × Ω⎜ ⎟Ω Δ⎝ ⎠

Squeezing of an optical cavity field by feedback of the homodyne
detection signal (Wiseman-Milburn, 1993) feedback ~ I(t)-I0
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D
  (
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C=1
η =1

averaging time
τ a = (2π/Ω)/10

Ruskov & A.K., 2002

We did not study much this type of feedback

requires optimal 
feedback strength
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Third idea: “Simple” quantum feedback
(A.K., 2005)

Idea: use two quadrature components of the detector current I(t)
to monitor approximately the phase of qubit oscillations
(a very natural way for usual classical feedback!)

0( ) [ ( ') ] cos( ') exp[ ( ') / ] '
t

X t I t I t t t dtτ
−∞

= − Ω − −∫
0( ) [ ( ') ] sin( ') exp[ ( ') / ] '

t
Y t I t I t t t dtτ

−∞
= − Ω − −∫

arctan( / )m Y Xφ = −

(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth (1 / ~ )dτ Γ Ω

detector
I(t)

×cos(Ω t), τ-average

ph
as

e

X

Y

φm
qubit

H =H0 [1– F × φm(t)]
control

×sin(Ω t), τ-average

Hqb= HσX

C << 1
local oscillator

Essentially classical feedback. Does it really work?
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Accuracy of phase monitoring via quadratures
(no feedback yet)
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C<<1
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τ [(ΔI)2/SI] = 

Δφ

p (
Δφ

)

C = 0.1

2.16

Noise improves the monitoring accuracy!
(purely quantum effect, “reality follows observations”)

C – dimensionless coupling 

0/ [ ( ) ]sin( ) ( / )Id dt I t I t I Sφ φ= − − Ω + Δ
2 2 1/ 2

0/ [ ( ) ]sin( ) /( )m md dt I t I t X Yφ φ= − − Ω + +
(actual phase shift, ideal detector)

(observed phase shift)

1/Γd=4SI/(ΔI)2

(non-Gaussian
distributions)

Δφ =φ -φm

weak coupling C<< 1

1

Noise enters the actual and observed phase evolution in a similar way

Quite accurate monitoring! cos(0.44)≈0.9

η =

1η =
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Simple quantum feedback
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classical feedback

(feedback strength)

(fi
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fidelity for different averaging τ

Simple: just check that in-phase quadrature 〈X〉
of the detector current is positive

2 1

Tr ( ) ( )
Q

Q des

D F

F t tρ ρ

≡ −

≡ 〈 〉

weak coupling C

(4 / )D X Iτ= 〈 〉 Δ

D – feedback 
efficiency

Dmax ≈ 90%

How to verify feedback operation experimentally?

〈X〉=0 for any non-feedback Hamiltonian control of the qubit
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Effect of nonidealities
- nonideal detectors (finite

quantum efficiency η)
- qubit energy asymmetry ε
- frequency mismatch ΔΩ

• Fidelity D up to ~90% achievable (for η=1)
• Natural, practically classical feedback setup
• Averaging τ~1/Γá1/Ω (narrow bandwidth!)
• Detector efficiency (ideality) η~0.1 still OK
• Robust to asymmetry ε and frequency shift ΔΩ
• Simple verification: positive in-phase quadrature 〈X〉

Simple enough
experiment?!
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Quantum feedback
still works quite well

Main features:

(feedback loop must be
faster than decoherence)
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One more idea
(not really a feedback, but synchronization 

caused by significant dissipation)

Greenberg and Il’ichev, 2004

(actually my modification 
of their mechanism)rf dissipation

driven Rabi oscillations
detuning oscillates in time

qbrf cos( )A tδω ω= + + Ω
180 185 190 195 2001

0

1

z(t)

time t Ω/2

δ/Ω=0.35
A/Ω=0.15
1/T1Ω=0.075

(not quite interesting for me personally)
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Quantum feedback in optics
First experiment: Science 304, 270 (2004)

First detailed theory:
H.M. Wiseman and G. J. Milburn, 
Phys. Rev. Lett. 70, 548 (1993)
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Quantum feedback in optics
First experiment: Science 304, 270 (2004)

First detailed theory:
H.M. Wiseman and G. J. Milburn, 
Phys. Rev. Lett. 70, 548 (1993)

paper withdrawn

PRL 94, 203002 (2005) also withdrawn

Recent experiment: 
Cook, Martin, Geremia,
Nature 446, 774 (2007)
(coherent state discrimination)
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Next topic: Undoing a weak measurement 
of a qubit (quantum uncollapsing)

It is impossible to undo “orthodox” quantum 
measurement (for an unknown initial state)

Is it possible to undo partial quantum measurement? 
Yes! (but with a finite probability)

If undoing is successful, an unknown state is fully restored

ψ0
(unknown)

ψ1
(partially
collapsed)

weak (partial)
measurement

ψ0 (still
unknown)

ψ2

successful

unsuccessful
undoing

(information erasure)

A.K. & Jordan, PRL-2006
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Uncollapsing of a qubit state
Evolution due to partial (weak, continuous, etc.) measurement 
is non-unitary (though coherent if detector is good!), therefore 

it is impossible to undo it by Hamiltonian dynamics.

How to undo? One more measurement!

× =

| 0〉

| 1〉

| 0〉 | 0〉

| 1〉 | 1〉

(Figure partially adopted from 
Jordan-A.K.-Büttiker, PRL-06)(similar to Koashi-Ueda, PRL-1999)

need ideal (quantum-limited) detector
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Evolution of a charge qubit with H=0

eH

I(t)

Jordan-Korotkov-Büttiker, PRL-06

1r =-

0r =

0.5r =-

1r =0.5r =

11 11

22 22

( ) (0) exp[2 ( )]
( ) (0)
t r t
t

ρ ρ
ρ ρ

=

12

11 22

( ) const
( ) ( )

t
t t

ρ
ρ ρ

=

where measurement result r(t) is

00( ) [ ( ') ' ]
I

tIr t I t dt I t
S
Δ

∫= -

H=0

If r = 0, then no information and no evolution!
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Uncollapsing for DQD-QPC system

r(t)

Uncollapsing 
measurement

t

r0

First  
measurement

Detector (QPC)

Qubit 
(DQD)I(t)

Simple strategy: continue measuring 
until result r(t) becomes zero. Then  
any initial state is fully restored.

(same for an entangled qubit)

It may happen though that  r = 0  never crossed; 
then undoing procedure is unsuccessful.

A.K. & Jordan

11 22

0

0 0

||

| | | |(0) (0)
S

r

r r
eP

e eρ ρ+

-

-=Probability of success:

00( ) [ ( ') ' ]
I

tIr t I t dt I t
S
Δ

∫= -

22 /( )m IT S IΔ=
Averaged probability of
success (over result r0): av 1 erf[ / 2 ],mP t T= -

(does not depend on initial state)
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General theory of uncollapsing
Measurement operator Mr :

†

†Tr( )
r r

r r

M M
M M

ρ
ρ

ρ
→

Uncollapsing operator: 1
rC M −×

max( ) min ,i i iC p p= – eigenvalues of

Probability of success:
in

min
( )S

r

r

PP
P ρ

≤

Pr(ρin) – probability of result r for initial state ρin, 
min Pr – probability of result r minimized over

all possible initial states
minav rrP P≤

(to satisfy completeness, 
eigenvalues cannot be >1)

POVM formalism

Averaged (over r) probability of success: ∑

(Nielsen-Chuang, p.85)

Completeness : † 1r rr M M =∑

†
r rM M

Probability : †Tr( )r r rP M Mρ=

(cannot depend on initial state, otherwise get information)
(similar to Koashi-Ueda, 1999)
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General bound for DQD-QPC system

in

min
( )S

r

r

PP
P ρ

≤General bound:

DQD+QPC
system

1 2

1 211 22

min( , )
(0) (0)S

p pP
p pρ ρ

≤
+

where 1/ 2 2( / ) exp[ ( ) / ]i I Iip S t I I t S dIπ= - - -

Coincides with the actual result, so the upper bound is reached,
therefore uncollapsing strategy is optimal
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Second example: uncollapsing 
of a superconducting phase qubit 

1) Start with an unknown state
2) Partial measurement of strength p
3) π-pulse (exchange |0Ú ↔ |1Ú)
4) One more measurement with 

the same strength p
5)   π-pulse 

Γ
|0〉
|1〉

1 tp e Γ-= -

N. Katz et al., 
Science-2006,
PRL-2008

(in more detail later)
This is what was demonstrated experimentally
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Fourth example: general uncollapsing              
for entangled charge qubits 

1) unitary transformation of N qubits
2) null-result measurement of a certain strength by a strongly

nonlinear QPC (tunneling only for state |11..1Ú) 
3) repeat 2N times, sequentially transforming the basis vectors

of the diagonalized measurement operator into |11..1Ú

(also reach the upper bound for success probability)

Third example: evolving charge qubit

1) Bayesian equations to calculate measurement operator
2) unitary operation, measurement by QPC, unitary operation

† † † †
1 1 2 2 1 2 2 1

ˆ ( / 2) ( ) ( )QBH c c c c H c c c cε= − + +
eH

I(t)
(now non-zero H and ε, qubit evolves during measurement)
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Quantum erasers in optics
Quantum eraser proposal by Scully and Drühl, PRA (1982)

Our idea of uncollapsing is quite different:
we really extract information and then erase it

Interference fringes restored for two-detector
correlations (since “which-path” information
is erased)
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Partial collapse of a phase qubit

Γ
|0〉
|1〉 How does a coherent state evolve

in time before tunneling event?

Main idea:

2 2

/2
| , if tunneled

| 0 | 1| 0 | 1 ( ) , if not tunneled
| | | |

i

t

t e

out

et

e

ϕα βψ α β ψ

α β Γ

Γ

〉⎧
⎪

〉 + 〉〉 + 〉 → ⎨
⎪

+⎩
-

-= =

(better theory: Leonid Pryadko & A.K., 2007)

(similar to optics, Dalibard-Castin-Molmer, PRL-1992)

continuous null-result collapse

N. Katz, M. Ansmann, R. Bialczak, E. Lucero, 
R. McDermott, M. Neeley, M. Steffen, E. Weig, 
A. Cleland, J. Martinis, A. Korotkov, Science-06

amplitude of state |0Ú grows without physical interaction

Qubit “ages” in contrast to a radioactive atom!
(What happens when nothing happens?)
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Superconducting phase qubit at UCSB
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Courtesy of Nadav Katz (UCSB)
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Experimental technique for partial collapse 
Nadav Katz et al.
(John Martinis’ group)

Protocol:
1) State preparation by 

applying microwave pulse 
(via Rabi oscillations)

2) Partial measurement by
lowering barrier for time t

3) State tomography (micro-
wave + full measurement)

Measurement strength
p = 1 - exp(-Γt ) 

is actually controlled
by Γ, not by t

p=0: no measurement
p=1: orthodox collapse



University of California, RiversideAlexander Korotkov

Experimental tomography data
Nadav Katz et al. (UCSB)

p=0 p=0.14p=0.06

p=0.23

p=0.70p=0.56

p=0.43p=0.32

p=0.83

θx

θy

| 0 | 1
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inψ
〉 + 〉

=

π/2
π
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Partial collapse: experimental results

in (c) T1=110 ns, T2=80 ns (measured)

no fitting parameters in (a) and (b)P
ol
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le

V
is

ib
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ty

probability p

probability p

pulse ampl.

N. Katz et al., Science-06

• In case of no tunneling 
(null-result measurement) 
phase qubit evolves

• This evolution is well
described by a simple
Bayesian theory, without 
fitting parameters

• Phase qubit remains fully 
coherent in the process 
of continuous collapse
(experimentally ~80% 
raw data, ~96% after
account for T1 and T2)

lines - theory
dots and squares – expt.

quantum efficiency
0 0.8η >
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Uncollapsing of a phase qubit state

1)   Start with an unknown state
2)   Partial measurement of strength p
3)   π-pulse (exchange |0Ú ↔ |1Ú)
4)   One more measurement with 

the same strength p
5) π-pulse 

If no tunneling for both measurements, 
then initial state is fully restored!

/ 2

/ 2 / 2

| 0 | 1| 0 | 1
Norm

| 0 | 1 ( | 0 | 1 )
Norm

i t

i it t
i

e e

e e e e e

φ

φ φ
φ

α βα β

α β α β

−Γ

−Γ −Γ

〉 + 〉
〉 + 〉 → →

〉 + 〉
= 〉 + 〉

 

Γ
|0〉
|1〉

1 tp e Γ-= -

A.K. & Jordan, 2006

phase is also restored (spin echo)
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Probability of success 
Success probability if no tunneling during first measurement:

00 1100 11

1
(0) (1 ) (0)(0) (0)S

t

t
e pP

pe ρ ρρ ρ

Γ

Γ ++

-

-
-

= =
-

where ρ(0) is the density matrix of the initial state (either averaged 
unknown state or an entangled state traced over all other qubits)

For measurement strength p increasing to 1, success probability 
decreases to zero (orthodox collapse), but still exact uncollapsing

Total (averaged) success probability: av 1P p= -

Compare with the general upper bound
0

min
( )S

r

r

PP
P ρ

≤

coincides fi optimal uncollapsing



University of California, RiversideAlexander Korotkov

Experiment on wavefunction uncollapsing
N. Katz, M. Neeley, M. Ansmann,
R. Bialzak, E. Lucero, A. O’Connell,
H. Wang, A. Cleland, J. Martinis, 
and A. Korotkov, PRL-2008 (soon)

tomography & 
final measure

state
preparation

7 ns

partial 
measure p

p

time
10 ns

partial 
measure p

p

10 ns 7 ns

π

Iμw

Idc

State tomography with 
X, Y, and no pulses

Background PB should  
be subtracted to find
qubit density matrix

| 0 | 1
2inψ 〉+ 〉

=

Uncollapse protocol:
- partial collapse
- π-pulse
- partial collapse

(same strength)

Nature News
Nature-2008
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Initial
state

Partial
collapse

Uncollapsed

| 1〉

Experimental results on Bloch sphere

0.05 0.7p< <

N. Katz et al. 

Collapse strength:

uncollapsing works well!

| 0〉
| 0 | 1

2
〉+ 〉 | 0 | 1

2
i〉 + 〉
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Same with polar angle dependence
(another experimental run)

Both spin echo (azimuth) and uncollapsing (polar angle)
Difference: spin echo – undoing of an unknown unitary evolution,

uncollapsing – undoing of a known, but non-unitary evolution
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Quantum process tomography

Overall: uncollapsing is well-confirmed experimentally

Why getting worse at p>0.6?  
Energy relaxation  pr = t /T1= 45ns/450ns = 0.1
Selection affected when 1-p ~ pr

p = 0.5

N. Katz et al.
(Martinis group) 

uncollapsing works 
with good fidelity!
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Last topic: quantum efficiency of 
binary-outcome qubit detectors

Measurement fidelities F0 and F1
F0 = probability to get result 0 for a qubit in state |0Ú,
F1 = probability to get result 1 for a qubit in state |1Ú

How to define quantum efficiency?

Let us use the same idea as for linear detectors: 
by comparing actual with quantum-limited 

quantum-limited ensemble decoherence
actual (total) ensemble decoherenceη

A.K., PRB-2008
(soon)

Why need? For quantum feedback, non-unitary gates, etc.
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General binary-output qubit detector
Quantum-limited (ideal) detector: pure qubit state remains pure

Use POVM language: linear measurement operators M0 and M1 (result 0 or 1)
† †/ Tr( )i i i iM M M Mρ ρ ρ→

Each operator Mi : 8 -1(phase) =7 real parameters 
for result i, probability

7+7=14, but completeness (M0
+M0+M1

+M1=1 ), so 14 - 4=10
Ideal binary-output qubit detector is described by
10 real parameters (including fidelities F0 and F1)

†Tr( )i i iP M Mρ=

Non-ideal detector
Again use POVM, now arbitrary one-qubit superoperators for i=0,1
fl 16 +16 - 4 = 28 real parameters for a general (non-ideal) detector

Quantum efficiency (ideality) of a general binary-outcome 
qubit detector is described by 18 real parameters.

28 (general) – 10 (ideal) = 18 (quantum efficiencies)

Too many!!! Impractical.  What to do? 
(qubit does not evolve itself, σz-coupling)|0Ú → |0Ú , |1Ú → |1Ú

Consider only “QND” detectors
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Decoherence bound for a QND detector
General description of a QND detector: only 6 parameters
(fidelities F0 and F1, decoherences D0 and D1, and angles φ0 and φ1)

00 01 0 00 0 1 01

10 11 0 1 11

0 01 (1 )
. . (1 )

D iF F F e e
P c c F

φρ ρ ρ ρ
ρ ρ ρ

⎛ ⎞⎛ ⎞ −→ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

-
result 0:

00 01 0 00 0 1 01

10 11 1 1 11

1 11 (1 ) (1 )
. .

D iF F F e e
P c c F

φρ ρ ρ ρ
ρ ρ ρ

⎛ ⎞⎛ ⎞ − −→ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

-

result 1:

average over
two results:

0 0 00 1 11 1 0 00 1 11(1 ) , (1 )P F F P F Fρ ρ ρ ρ= + − = − +

00 01 00 01

10 11 11

av av

. .

D ie e
c c

φρ ρ ρ ρ
ρ ρ ρ

⎛ ⎞⎛ ⎞
→ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

-

0 1 0 1
0 0 1 1av av (1 ) (1 )D i D iD ie e F F e e F F e eφ φφ = − + −- --

0 1 0 1av min ln[ (1 ) (1 ) ]D D F F F F≥ = − − + −
⇒ ensemble
decoherence
bound 

probabilities:

simple 
Bayes!
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Definitions of quantum efficiency
(actual decoherence vs. informational bound)

Similar to the first definition
for linear detectors

min

av

D
D

η =

Taking into account 
phase correlation: 

)
0 1 0 1

1 0(

av

ln | (1 ) (1 ) |iF F F F e
D

φ φ
η

− − + −
=

-

or
0 1 0 1

0 1 0 1
0 1

ln[ (1 ) (1 ) ]

ln[ (1 ) (1 ) ]D D
F F F F

F F e F F e
η

− − + −
=

− − + −- -

Also meaningful to define quantum efficiency 
for each result of the measurement: 

0 1
min min

0 min 1 min
,

D D
D D D D

η η= =
+ +

(useful for “asymmetric” and “half-destructive” detectors, as for phase qubits)

(another definition
possible)
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Quantum efficiency for several 
detector models

Model 1: Indirect projective measurement

qubit ancilla qubit
projective

measurement
detector

00 10 01 11( | 0 | 1 ) | 0 | 0 ( | 0 | 1 ) | 1 ( | 0 | 1 )a a a a ac c c cα β α β〉 + 〉 〉 → 〉 〉 + 〉 + 〉 〉 + 〉 →

00 01

10 11

Norm
Norm

( | 0 | 1 ) / ,  if result 0 
( | 0 | 1 ) / ,  if result 1

c c
c c

α β
α β

〉 + 〉⎧
→ ⎨ 〉 + 〉⎩

2 2
0 00 1 11 0 00 01 1 10 11 0 1| | , | | , arg( ), arg( ), 0, 0F c F c c c c c D Dφ φ∗ ∗= = = = = =

Then

Evolution:

And so 0 1 1, 1η η η η= = = =

0 1but if1,η φ φ≠ ≠

(ideal, but 
not practical)
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Model 2: Linear detector in binary-output mode

qubit linear detector
continuous

result
comparison

with threshold
result
0 or 1

0,1 therf[1 ( )]/ 2F r s= + ± +

0 1 0 1
2

ln[ (1 ) (1 ) ]F F F F
s t

η
γ

− − + −
=

+

0,12 / , 0.7η π η≤ <

Even for an ideal linear detector,
threshold mode is significantly non-ideal

Why? Because we loose information!
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Model 3:  Phase qubit detection

Γ
|0〉
|1〉

1 tp e Γ-= -

/ 2| 0 | 1| 0 | 1
Norm

i te eφα βα β
−Γ〉 + 〉

〉 + 〉 → 

Result 0 (“null result”), then

Result 1, then qubit destroyed

0 1η =
while   η1 and  η cannot be defined

(“half-destructive” measurement)

If imperfections are taken into account 
(Pryadko-A.K., 2007), then η0<1

Fidelity: 1 0 0 0, 1 (or 1 )F p F F p= = = −

Quantum efficiency:

Experimentally
η0≥ 0.8

(using Katz et al., 
Science-06)
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Model 4: Tunneling-into-continuum detector

Can such regime be realized 
by a real SQUID or by 
a bifurcation detector? 

 

for |0〉 
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η > 0.9 is theoretically easy 
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Summary
• Rabi oscillations are persistent if monitored

(observed in Saclay, though with ηá1; LGI violated)

• Quantum feedback of Rabi oscillations: much
harder, but doable (needs somewhat better η
and feedback loop faster than decoherence)

• Quantum uncollapsing demonstrated in UCSB for 
phase qubit, as extension of partial-collapse expt.

• Perfect quantum efficiency seems to be difficult
for binary-outcome detectors (except null-result),
but η>0.9 is possible for tunneling-based detectors
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