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Quantum collapse due to measurement — fascinating puzzle
of quantum mechanics since 1920s

“orthodox” projective collapse = Bell inequality (problem with causality)

Even more interesting: what is “inside” collapse
(nothing is instantaneous, matter of time scale = non-projective)

The same fascinating feature (as in Bell inequality): @

“spooky” quantum back-action in the process of collapse

Proper question: “how”, not “why”

Most importantly: “spookiness” of qguantum measurement
becomes an experimental subject in solid state systems
(3 experiments already: Santa Barbara & Sacley)

Possibly something useful (not only very interesting)?

In this talk: theory related to experiments (realized and future)
on non-projective collapse of solid-state qubits
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Quantum Bayesian formalism 5« 1908
(Caves-1986,

Evolution due to measurement (“spooky” quantum back-action) Gardiner-91)

1) p;; evolve as probabilities, i.e. according to the Bayes rule O
(for w=a|1)+B|2), |2 and |B|? behave as probabilities) Hg‘e
2) p/(pji pj)"'? = const, i.e. pure state remains pure |
—_— =

(for y=a|1)+B|2), the phases of a(t) and B(t) do not change) ~ A~ 1(t)

Add physical (realistic) evolution

- Hamiltonian evolution, classical back-action, decoherence, etc.
(technically: add terms in the differential equation)

dpy /dt==dp,,/dt ==-2(H /%) Im p,, + p;;p,, QAL /ST (E)-1,]

dpo, /dt=i(e/h)py, +1(H/RB)(p1y = Pr) + Pra(Pyy = P2) (AL SHIT () - L 1=-y04,

Same idea as in POVM, general guant. meas., quantum trajectories, etc.
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Models of continuous measurement

O. _Il/g \% |(t)
ng = \
U 1Bd B4

H qubit =§(I DAA[=]2)2D+H(1)(2[=]2)<1])

Measurement: average signals |, and |,, response Al =1,-1,, white noise S,

uantum efficiency: relation between “spooky” and non-spooky
y
(ratio of “spooky” and total ensemble decoherence)

2
_ (Al)=/ 4S| +— spooky (informational back-action)
" «— total qubit dephasing

n

quantum limited: =1

(coincides with definition via energy sensitivity in units 7/2)
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Persistent Rabi oscillations

excited - Relaxes to the ground state if left alone (low-T)
_L_ . - Becomes fully mixed if coupled to a high-T

left —— = right (non-equilibrium) environment
grOTund - Oscillates persistently between left and right

If (weakly) measured continuously @

1ol b b ba g Phase of Rabi oscilla-
0 [ tions fluctuates (phase
11 - noise, dephasing)
Re plé).S ] LN -
Im P, A \ \ \ \ \ \ Direct experiment
0P W] V \/ [ s difficult (quantum
. \/ \/ i efficiency, bandwidth,
-0.5—llll|llll|llll|lll|llll — COﬂthl)
0 5 10 15 20 25 30

A.K., 1998
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Indirect experiment: spectrum
of persistent Rabi oscillations

C
@HI detector W

12 1 N 1 1
C=13
107 Q=2H i
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Od v 93' T v T v
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(2 - Rabi frequency
peak-to-pedestal ratio = 4n < 4
Q2 (AT

Sy (@) =Sy + (@ -0+’
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A.K., LT'1999
A.K.-Averin, 2000

1(t)=1, +A7|Z(t)+§(t)

(const + signal + noise)

- . . S, (c
amplifier noise = higher pedestal, Q)
poor quantum efficiency, n<l
but the peak is the same!!l o .
0 1/Q 2

integral under the peak < variance (z2)

How to distinguish experimentally
persistent from non-persistent? Easy!

perfect Rabi oscillations: (z2)=(cos?)=1/2
imperfect (non-persistent): (z%) <« 1/2
quantum (Bayesian) result: (z%)=1 (1)

(demonstrated in Saclay expt.)
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How to understand (z2) =17?

qubit

Al
l®) =1y +=-2(®) +& (1) I
detector |——>

First way (mathematical)

We actually measure operator. Z— G, _
(What does it mean?

72 622 =1 Difficult to say...)
Second way (Bayesian)
S (s, LA Al
(@) = EE +T Szz (@) + /fz(a’)
@ quantum back-action changes z Equal contributions (for weak
in accordance with the noise & coupling and n=1)

Can we explain it in a more reasonable way (without spooks/ghosts)?

+1 Z(t):? NO (under assumptions of macrorealism;
1 Leggett-Garg, 1985)

or some other z(t)?
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Leggett-Garg-type inequalities for
continuous measurement of a qubit

bit Jotoct Ruskov-A.K.-Mizel, PRL-2006
qubit fe—>{ detector 0 Jordan-A K.-Biittiker, PRL-2006
Assumptions of macrorealism  Leggett-Garg,1985 I
(similar to Leggett-Garg’85): Kij={(Q;Q;) Sal s ,((o)._
. S N
(1) = 1, + (Al /2)2(t) + &(1) TQ=%l,then 3 | ﬂ/\;
_ 1+K 1Ky +K 320 n | .
[z(D <1, (S(1) z(t+7))=0 K Ky +Ky, =K, <2 o
0 1w/ 2
Then for correlation function . .
guantum result violation
K(z) ={1() 1(t+7)) 3 3
K@)+ K@) - Kz +1,) < (A1/2)° - 2 (Al /2)° <
and for area under narrow spectral peak ,
[1S,(f)—s,1df <(8/7%)(Al /2)’ (Al /2)? x%

N is not important! Experimentally measurable V|0Iat|on

(Saclay experiment)
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May be a physical (realistic) back-action?

bit detector > Al
qubit j<—> TG H(©) =1y +=-2(D) + £ (D)
@ S (@) OK, cannot explain without back-action
& (EW) z(t+7)) =0
75 Nl
0 , But may be this is a simple classical
Lo/ 2 back-action from the noise?

In principle, classical explanation cannot be ruled out
(e.g. computer-generated I(t); no non-locality as in optics)

Try reasonable models: linear modulation of
the qubit parameters (H and &) by noise &(t)

No, does not work!
Our (spooky) back-action is quite peculiar: {£(t) dz(t+0)) >0

“what you see is what you get”: observation becomes reality
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Two ways to think about n<1

. Ss. =S5,+S
. deal z 0 1
qubit 1 N > 5
:(l? detector S, ;j} 1 n = (AD)*/ 432
* 48, noise s
— These ways are equivalent
defl’m;‘ssemg [y =0,+T, (same results for any expt.)
= = matter of convenience
1
i di ?eil 1 R A.K., 2002
4|(AI )2 etector | S, |
[y =
4S5,
Al Al

For spectrum: S, (@)= Sy +TSZZ(a)) +7852(a))

different relative contributions
In the two approaches
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S, (o,’/ MHz)

Recent experiment on persistent Rabi
oscillations (P. Bertet et al., Saclay group)

0.5 | | | | | | | | | | | | | | |
i <n>=0.234 <n>=0.78 <n>=1.56 1 Courtesy Of
0.4 -+ .
. I ) Patrice Bertet
nl‘\ S 0
0.2 n N T A ] ﬂ -
0.1 ‘\\ J | ‘\ RN | ?/ / \\ A -
0.0 A Sm " Aol s 7 . o~ A;'_4:_‘.‘ A
O4F——— T T T 1 T T T T T T . .
s GG, * Superconducting qubit
03 |—— Multplied by 1.t K S sl o066 monitored by microwave
S gosol 1 - reflection from cavity
| i i . . . .
02| N\ °xsr - e driven Rabi oscillations
000 lommmet=t"0 1 0 0 101w
01l R V1Y S e perfect spectral peaks
: ‘ ol (M~0.02«1)
“'"""V‘\«MW’ YL TP N ' . :
oo [T i i PR e LGl violation
0 5 10 15 20 25 30
f (MHZ)

First demonstration of persistent Rabi oscillations (?)
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Previous experimental confirmation?
Durkan and Welland, 2001 (STM-ESR experiment similar to Manassen-1989)

APPLIED PHYSICS LETTERS YOLUME 20, NUMBER 3 21 JANUARY 2002
1
Electronic spin detection in molecules using scanning-tunneling- T
= - - =
ITIICI'OSCOpY-BSSlStEd electron-spln resonance s 08
™
C. Durkan® and M. E. Welland c 08
Nunoscule Science Luborutory, Depurtment of Engineering, University of Cumbridge, Trumpington Street, 0 [ a
Cumbridge CB2 1FZ, United Kingdom % 0.4
(Received 8 May 2001; accepted for publication 8 November 2001) ; 0.2 M.A‘Aw\
By combining the spatial resolution of a scanning-tunneling microscope {(STM) with the electronic 'uT} ; b
Hd"ﬂ-.lfJ‘Ma_’i."—‘.f-"\-ﬁ‘q\_--.'\_.h~ﬂnﬁ

spin sensitivity of electron-spin resonance, we show that it is possible to detect the presence of 534 535 535 537 536
localized spins on surfaces. The principle is that a STM is operated in a magnetic field, and the
resulting component of the tunnel current at the Larmor (precession) frequency is measured. This
component is nonzero whenever there is tunreling into or out of a paramagnetic entity. We have - 5 o pse spectta of (=), {b) two different areas (a few nm apact) of

the molecule-covered sample and (¢} bare HOPG. The graphs are shifted
vertically for clarity.

Frequency {MHz}

peak

High- RF Spectrum

i pasa filker amplifier 31‘131}’20[‘

|-<A 10K 12-3G11z

(1P TA40213)

< 3.5

noise
(Colm Durkan,

| low-pass STM .
. Al
Tl.p on sample on = Data acquisition p I’lVate comm o)
piezo magnet and control
scanner 10 nim

FIG. |. Schematic of the electronics used in STM-ESR. . . o .
FIG. 2. {Color) 8TM image of a 250 AX 150 A area of HOPG with four

_ ausoried RORA melecules Recently reproduced:
Questionable Messina et al., JAP-2007
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Somewhat similar experiment

“Continuous monitoring of Rabi oscillations in a Josephson flux qubit”

1

H = —E(AO'X +£0,)-W o, cosmyt

(e *VA* + %5 £%0)

T=10mK T=18K T=300K

qubit | spectrum
- —3  analyzer
Dg EI HP4396B

dc source

HF generator

FIG. 1. Measurement setup. The flux qubit is inductively
coupled to a tank circuit. The dc source applies a constant
flux &, = L, The HF generator drives the qubit through a
separate coil at a frequency close to the level separation A /h —
868 MHz. The output voltage at the resonant frequency of the
tank is measured as a function of HF power

low-bandwidth tank = qubit monitoring is impossible

Alexander Korotkov

E. Il'ichev et al., PRL, 2003
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FIG. 3 (color online). The spectral amplitude of the tank
voltage for HF powers P, << P, < P, at 368 MHz, detected
using the setup of Fig. 1. The bottom curve corresponds to the
background noise without an HF signal. The inset shows
normalized voltage spectra for seven values of HF power.
with background subtracted. The shape of the resonance, being
determined by the tank circuit, is essentially the same in each
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Next topic: Quantum feedback for
persistent Rabi oscillations

In simple monitoring the phase of persistent Rabi oscillations
fluctuates randomly:

Z(t) = cos[Qt + @(1)] for n=1
phase noise = finite linewidth of the spectrum

Goal: produce persistent Rabi oscillations without phase noise
by synchronizing with a classical signal  Z4,;..q (1) = €0s(€21)

. 2 _ 1 1 i 2. _ 1
1{(z°)=—+—-=1 ntegral (z°) = — Al
lnteégl'\a ( >' 5" integral (z°) ) 1(t) = |0 +72(t) + &(b)
e, | Al® Al
L 4 - S, =Sy +——S,;, +—S
h 2 l /
0 0 synchronized
0 Lo/ 2 0 L a/y 2 cannot synchronize
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Several ways to organize quantum feedback
First idea: Bayesian feedback

(most straightforward but most difficult experimentally)

The wavefunction is monitored via
Bayesian equations, and then usual
(linear) feedback of the Rabi phase

desired evolution

comparison
circuit

feedback
signal

control stage
H qb~ (barrier height)

environment ’ Z(t) =cos[Qt + Q(t)]
AH,p/H = —Fxg
AQIQ = —Fx¢

Ruskov & A.K., 2002

Alexander Korotkov

How to characterize
feedback efficiency/fidelity?

D = average scalar product
of desired and actual
vectors on Bloch sphere

D=2Trpyesirea £? 1

Experimental difficulties:

e necessity of very fast real-time
solution of Bayesian equations

e wide bandwidth (>, GHz-range)

of the line delivering noisy signal
I(t) to the “processor”
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Performance of Bayesian feedback

Feedback fidelity vs. feedback strength Feedback fidelity vs. detector efficiency

1.00'|'|'I'I'|'|'|'|'|' 10 [ Y T R S I T |

3
o> 1 simple
S 0.954 0.8 analytics _
S e=0
= > _ L
g 0.90 4 gOG
c
S 0O o4 \\analytics _
S 0.85 ]
@ 0.2 - Dots: Monte Carlo
A 0.80 (weak coupling, C=0.1)
F (feedback factor) 00— 71— T 1
00 02 04 06 08 10
C =h(Al )2/S| H - coupling detection efficiency n
F — feedback strength -
8 n<l =D, =1.257

- 2<Trpdesiredp> -1
~1 =D ~(1+n)/2
For ideal detector and wide 1 max ~ (1+7)

bandwidth, feedback fidelity Zhang, Ruskov, A.K., 2005
can be close to 100% Bayesian quantum feedback gives
D = exp(—C/32F) the best possible performance,

Ruskov & A.K., 2002 but very difficult experimentally
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Second idea: direct feedback
(similar to Wiseman-Milburn, 1993)

Squeezing of an optical cavity field by feedback of the homodyne
detection signal (Wiseman-Milburn, 1993)  feedback ~ I(t)-1,

AHp _AQ _ F x( I(At: ;zl" - cos(Qt)jx sin(Qt)

1.0 T E——
>
227 " requires optimal
% 06- . feedback strength
% averaging time
% 0.4 4 1, = (21/Q)/10 N
ks C=1
~0.2 - n=1 o
()
Ruskov & A.K., 2002
0.0+ | | |

0.2 0.4 0.6 0.8
F (feedback strength)

We did not study much this type of feedback
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Third idea: “Simple” quantum feedback

(A.K., 2005)
H =H0[1—F><¢m(t)] ‘
Hyp= Hoy control |
qubit x cos (Qt), T-average X,
C<<1 1 |(t) % ¢m
detector e local oscillator o
: Y|
xsin(Q2t), T-average |—

Idea: use two quadrature components of the detector current I(t)
to monitor approximately the phase of qubit oscillations
(a very natural way for usual classical feedback!)

X(t)zjt [1(t") = 1,] cos(Qt") exp[—(t—t')/7] dt’

N ¢, =—arctan(Y / X)
Y (1) =j_oo[|(t')— l,] sin(Qt") exp[-(t—t")/7] dt’
(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth (1/7 ~T"j < Q)

Essentially classical feedback. Does it really work?
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Accuracy of phase monitoring via quadratures

(no feedback yet)
weak coupling C<<1
/_\2.0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 - | L | . l \ l . l , , I
2 3 =1 urg=as/an2f 2
@ n= d=4S/(A)" ¢ 51 tl(AD/S{]=) 2.16 I
1.5 : . . B~
L0 C — dimensionless coupling = Ap=4-0
£ — _uncorrelated noise _ 51, C=0.1 4 m
=104 \\ —Tm—m—m——m——m—m T =
< £ - = 1
= 2 1 N\ _.-----"CZ01,0. ; " (non-Gaussian I
] < : - 8
% 0.3 “004 A 1 1 distributions)
0'0 ] ! | ! | ! | ! | ! | ! | ! | ! 0 ;. =
0 1 2_3 4 5 6 7 8 3 2 -1 0 1 2 3
t[(AD*/S;] (averaging time)

Noise improves the monitoring accuracy!
(purely quantum effect, “reality follows observations”)

dg/dt=—[1(t)=1,]Isin(Qt+@)(Al /S;) (actual phase shift, ideal detector)

ey, /dt =—[1(t) = 1,]sin(Qt + g, ) (X>+Y )2 (observed phase shift)

Noise enters the actual and observed phase evolution in a similar way

Quite accurate monitoring! co0s(0.44)~0.9

Alexander Korotkov
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Simple quantum feedback

~~ | I :
*? N - weak coupling C
g o D — feedback
U . .
S efficiency
~ 0.6
=N D=2F, -1
S Fo = (T p(0) Py (D)
2 0a- o
vV @/ fidelity for different averaging t | max
2 00—
0.0 0

A 0.2 0.3 0.4
F/C (feedback strength)

How to verity feedback operation experimentally?

Simple: just check that in-phase quadrature (X)
of the detector current is positive D=(X)(4/7Al)

(X)=0 for any non-feedback Hamiltonian control of the qubit
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Effect of nonidealities

=
=)

- nonideal detectors (finite

- > =1 _
quantum efficiency n) 2 Neff ¢ 0;1 ]
- qubit energy asymmetry e g cl@AD¥/S =1 T
- frequency mismatch AQ S 06 -
Quantum feedback ‘é T e T T =
still works quite well 2 ' v
()]

(feedback loop must be L M7 -
faster than decoherence) O ,, i
. 0.0 0.2 0.4 0.6 0.8

Main features: F/C (feedback strength)

¢ Fidelity D up to ~90% achievable (for n=1)
e Natural, practically classical feedback setup .
e Averaging t~1/I">1/CQ) (narrow bandwidth!) Slmple enough
e Detector efficiency (ideality) n~0.1 still OK cxXp eriment?!
e Robust to asymmetry € and frequency shift AC)

e Simple verification: positive in-phase quadrature (X)
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One more idea

(not really a feedback, but synchronization
caused by significant dissipation)

_[\l\/\/ Greenberg and Il'ichev, 2004
| (actually my modification
rf :dissipation of their mechanism)
v 1
! I I
| N 2(t) 5/0=0.35
driven Rabi oscillations A/O=0.15

detuning oscillates in time Of\/\/\/\/\/\f 1/T,0=0.075

WDy = Dy, + 0 + Acos(Q21)

r

time tQ/2

(not quite interesting for me personally)
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Quantum feedback in optics

First experiment: Science 304, 270 (2004)

v T

Real-Time Quantum Feedback
Control of Atomic

Feedback
Controller

| ARy * Squeezed
- = e State Computer
Spin-Squeezing
IM Geramia,® Jehn K. Stockten, Hides Mabuchi |
*E- Coherent om;_a Probe
i 5 e . ] aser
Real-time fesdback performed during a quantum nondemaolition measurament st
of atomic spin-angular momentum allowed us to influence the quantum sta- R i e e [ z - ; r—
tistics of the measurement outcome. We showed that itis possible to hamess 3 I 7 e
measurement backaction as a form of actuation in quantum control, and thus movicores, SR [810 L= R
we describe a valuable tool for quantum information science, Our feedback- - oy sasasis 1 IV BarnciadilE TN
mediated procedure generates spin-squeering, forwhich the reduction in quan- Zl wontima e N
turm uncertainty and resulting atomic entanglement arenot conditioned on the ) et
Measurement outcome. g s 1 1 [y
| JI: il_ I: P[rz-y.ﬂ
/P Er=rne ] I — . o bl
= Ogtical Noise Floor i
-|I0 -I5 o ; ‘t.l} 0. 56 10‘0 15‘0 260 2;0
Normalized Measurement Result x-Axis Larmor Rotation Angle (deg)

First detailed theory:
H.M. Wiseman and G. J. Milburn,
Phys. Rev. Lett. 70, 548 (1993)
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Quantum feedback in optics

First experiment: Science 304, 270 (2004)

Real-Time Quantum Feedback
Control of Atomic
Spin-Squeezing
IM Geramia,® Jehn K. Stockten, Hides Mabuchi

Real-time fesdback performed during a quantum nondemolition m-:dsur-:m-:nt
of atomic spin-angular momertum allowed us to influence the

tistics of the measurement outcome, We shcr.-'.r-:-:l that |t I-: t-:- h
measurement backaction as a form of a-:t r-:-l and ¥hus

wie describe a valuable tool for g I ur feedback-
mediated procedure generates spi th-:r-:-:lu-:tu:-n inquan-
tum uncertainty and resulting .:It:": nglemer®arenot conditioned on the
Measurement outoomee,

PRL 94, 203002 (2005) also withdrawn

First detailed theory:
H.M. Wiseman and G. J. Milburn,
Phys. Rev. Lett. 70, 548 (1993)

Alexander Korotkov

Byn) | Feedback | i
( Controller

Feedback

Computer
DAQ

QND Probe
Laser

7 Pivg)

-10 -5 o 5 10 o 50 100 150 200 250
Normalized Measurement Result x-Axis Larmor Rotation Angle (deg)

Recent experiment:

Cook, Martin, Geremia,
Nature 446, 774 (2007)

(coherent state discrimination)
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Next topic: Undoing a weak measurement

of a qubit (quantum uncollapsing)
s A.K. & Jordan, PRL-2006
MINERVESTONE It Is Impossible to undo “orthodox” quantum
w, (@ measurement (for an unknown initial state)

Is it possible to undo partial quantum measurement?
Yes! (but with a finite probability)

If undoing is successful, an unknown state is fully restored

cuccessiul__w (still
W, weak (partial)> Vi / unknown)

(partially uns"cCesst‘ul
collapsed) \ v,

undoing
(information erasure)

(unknown) | measurement
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Uncollapsing of a qubit state

Evolution due to partial (weak, continuous, etc.) measurement
IS non-unitary (though coherent if detector is good!), therefore
It is Impossible to undo it by Hamiltonian dynamics.

How to undo? One more measurement!

1) |1 | 1)

=
f ——
|1 0)

e
| 0) 10)

need ideal (quantum-limited) detector

. i (Figure partially adopted from
(similar to Koashi-Ueda, PRL-1999) Jordan-A.K .-Bttiker, PRL-06)
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Evolution of a charge qubit with H=0

(a) (b)
H®'e H=0 —
(@)
U
N 1
Pu) _ p;(0) 5 r(t
() py(0) PO
P — const
NGOG,

where measurement result I'(t) is

r=0.5 r=1
Jordan-Korotkov-Biittiker, PRL-06

(t)-—[jﬂl(t')dt'—lot]

If r =0, then no information and no evolution!
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Uncollapsing for DQD-QPC system

A.K. & Jordan
5 1 First Uncollapsing
| > | > measurement measurement
O<—0O < > < >
. r(t)
Qubit

® \ (OQD)
Detector (QPC)

Simple strategy: continue measuring
until result r(t) becomes zero. Then
any initial state is fully restored.

(same for an entangled qubit)

(t)-—[jol(t')dt'—lﬂt]

It may happen though that r =0 never crossed,

then undoing procedure is unsuccessful. |
I |
e o

Probability of success:  Ps = M ]

e" "o, (0)+e " p,,(0)

Averaged probability of

success (over result ry): P, =1-erf[Jt/2T ], Ty, =2S,/(Al )2
(does not depend on initial state)
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General theory of uncollapsing

- MrPM;L
POVM formalism  Measurement operator M, 2 —> 7
(Nielsen-Chuang, p.85) Tr(M, pM/,)

Probability: P, =Tr(M, pM;f) Completeness . Zr I\/I;fl\/lr =1

CxM r—l (to satisfy completeness,

Uncollapsing operator: eigenvalues cannot be >1)

max(C) = min, \/Fi, p; —eigenvalues of MM,

in P
Probability of success: P, < skl
F)r(loin)

P.(pin) — probability of result r for initial state p,,,

min P, — probability of result r minimized over
all possible initial states

Averaged (over r) probability of success: Py < Zrmin P,

(cannot depend on initial state, otherwise get information)

(similar to Koashi-Ueda, 1999)
Alexander Korotkov Universitv of California. Riverside




General bound for DQD-QPC system

General bound: P, < min P,
PI" (plll)
DQD+QPC P, < — N (P> Po)
system ,011(0) + P,0,,(0)

where p; = (7S, /1) ?exp[-(T - 1,)*t/S,1dT

Coincides with the actual result, so the upper bound is reached,
therefore uncollapsing strategy is optimal
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Second example: uncollapsing
of a superconducting phase qubit

1) Start with an unknown state
2) Partial measurement of strength p
3) m-pulse (exchange [0) <> |1))
4) One more measurement with
the same strength p
5) mw-pulse

N. Katz et al.,
Science-2006,
PRL-2008

This is what was demonstrated experimentally

(in more detail later)

Alexander Korotkov Universitv of California. Riverside



jﬂ,) Third example: evolving charge qubit

HW ¢ n

o° Hog = (£/2)(c/c, - ¢;¢,) + H(c[c, +cic))

% (now non-zero H and &, qubit evolves during measurement)
()

1) Bayesian equations to calculate measurement operator
2) unitary operation, measurement by QPC, unitary operation

Fourth example: general uncollapsing
for entangled charge qubits

1) unitary transformation of N qubits

2) null-result measurement of a certain strength by a strongly
nonlinear QPC (tunneling only for state |11..1))

3) repeat 2N times, sequentially transforming the basis vectors
of the diagonalized measurement operator into |11..1)

(also reach the upper bound for success probability)
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Quantum erasers in optics
Quantum eraser proposal by Scully and Driithl, PRA (1982)

1
(a)

a a
b
a h Yb Iy Y blI
Iy Y ®
b c B

{b) (e) {d)

FIG. 1. (a) Figure depicting light impinging from left
on atoms at sites 1 and 2. Scattered photons ¥, and y,
produce interference pattern on screen. (b) Two-level
atoms excited by laser pulse [|, and emit ¥ photons in
a —b transition. (c) Three-level atoms excited by pulse
1, from ¢ —a and emit photons in g —b transition. (d)
Four-level system excited by pulse /; from ¢ —a fol-
lowed by emission of ¥ photons in @ — & transition.
Sccond pulsc /5 takes atoms from b—b‘. Decay from
b'—c results in emission of ¢ photons.

ELECTRO-OPTIC

SHUTTER
\u
A A A
lz . _..1//
& DETECTOR 7 /
/

FIG. 2. Laser pulses /| and /; incident on atoms at
sites 1 and 2. Scattered photons ¥, and ¥, result from
a b transition. Decay of atoms from b’ —c results in
¢ photon emission. Elliptical cavities reflect ¢ photons
onto commeon photodetector. Electro-optic shutter
transmits ¢ photons only when switch is open. Choice
of switch position determines whether we emphasize
particle or wave nature of ¥ photons.

Interference fringes restored for two-detector
correlations (since “which-path” information

IS erased)

Our idea of uncollapsing is quite different:
we really extract information and then erase it

Alexander Korotkov
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Partial collapse of a phase qubit

N. Katz, M. Ansmann, R. Bialczak, E. Lucero,
R. McDermott, M. Neeley, M. Steffen, E. Weig,
A. Cleland, J. Martinis, A. Korotkov, Science-06

How does a coherent state evolve
0) In time before tunneling event?

(What happens when nothing happens?)
Qubit “ages” in contrast to a radioactive atom!

Main idea: | out), if tunneled

w=a|0)+B|1) > pt)={a|0)+pe "% 1)
e+ plreT

(better theory: Leonid Pryadko & A.K., 2007)

, if not tunneled

amplitude of state |0) grows without physical interaction

continuous null-result collapse
(similar to optics, Dalibard-Castin-Molmer, PRL-1992)
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Superconducting phase qubit at UCSB

Courtesy of Nadav Katz (UCSB)

= e

Flux 7 3ns
bias < |uvé Iz N J\ >
Qubit Reset Compute Meas. Readout
lgctl, SQUID X Is@ </ l4c \ [ \ img

X o \J /‘\\_

1, .

0.1

S
Repeat 1000x
prob. 0,1
|
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Experimental technique for partial collapse

b Operation

a SQUID
o e e
state o pulse 2MP
control ~'@% SV (1) 50 ¥Vso
7 L
e e R 300K
_____________________________ 4K
biasT
-~ 25 mK Ly = Laet Ol
Partial Tomography & Final measurement
Stat
d pr:pearation : measu‘;ement : @, ‘Qy) :
E E |
0 ——— S
e ; . :
7 ns l 15 ns l

!10ns

10 ns t

v

Alexander Korotkov

Universitv of California. Riverside

Nadav Katz et al.
(John Martinis’ group)

Protocol:
1) State preparation by
applying microwave pulse
(via Rabi oscillations)

2) Partial measurement by
lowering barrier for time t

3) State tomography (micro-
wave + full measurement)

Measurement strength
Pp=1-exp(-It)
Is actually controlled
by I', not by t

P=0: no measurement
p=1: orthodox collapse




Experimental tomography data

Nadav Katz et al. (UCSB)
p=0.0
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Polar angle

Falar angle By irad)

Azimuthal angle

Azimuthal rotation Bos (rad)

Visibility

Mormalized visihility

ta
%
oo

Partial collapse: experimental results
N. Katz et al., Science-06

x2 ¢ In case of no tunneling
lines - theory (null-result measurement)
=f  dots and squares — expt. : phase qubit evolves

no fitting parameters in (a) and (b)

| | | | |
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e This evolution is well

Farial measurement probability g o described by a Simple
0 probability P Bayesian theory, without
A0x} FTEE fitting parameters
2051 gy, / Lo e Phase qubit remains fully
30xf e’ coherent in the process
i : , | S of continuous collapse
0 0.z 0.4 0.6 0.8 1 1.2 .
7 Measure pulse amplitude &, (V) pUIse ampl (experlmentally ~80%
¢ 5 raw data, ~96% after
O & s .t . account for T1 and T2)
0B} N 3 ) B
in (c) T{=110 ns, T,=80 ns (measured) guantum efficiency
0.4 ' ' ' ' : : : : : '
0 0.1 0.2 0.3 0.4 0.5 0.6 0.y 0.8 0.9 1
Fartial measurement prabability o prObabIhty p 770 > 0°8
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Uncollapsing of a phase qubit state

A.K. & Jordan, 2006

1) Start with an unknown state
2) Partial measurement of strength P

3) m-pulse (exchange |0) <> |1))
4) One more measurement with
the same strength [

5) m-pulse 1)
If no tunneling for both measurements, 0)
then initial state is fully restored!

a|0)+ege TV 1)

p=1-e1t

a|0)+ 5|1) > —>
Norm
ig  _-Tt/2 i¢ o —Tt/2 _
e’xe 0)+e e 1
e fe 10 e @al0)+ i)
Norm

phase is also restored (spin echo)
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Probability of success

Success probability if no tunneling during first measurement:

-T't
P, = e 1-p

T o ®+e T 0 (0)  poo®+(1-p)pyy(0)

where p(0) is the density matrix of the initial state (either averaged
unknown state or an entangled state traced over all other qubits)

Total (averaged) success probability: P,, = 1-p

For measurement strength p increasing to 1, success probability
decreases to zero (orthodox collapse), but still exact uncollapsing

min P,
P, (Py)

Compare with the general upper bound Pg <
coincides = optimal uncollapsing

Alexander Korotkov Universitv of California. Riverside




Experiment on wavefunction uncollapsing

tomoaranhy & N. Katz, M. Neeley, M. Ansmann,
preparation final measure R. Bialzak, E. Lucero, A. O’Connell,
H. Wang, A. Cleland, J. Martinis,

o
I—\/WW\r AW MNVW—» and A. Korotkov, PRL-2008 (soon)
puw

| P P
dc h.
—>
) , — time Nature News
10 ns 10 ns Nature=2008

| S s opree zmemeemet Uncollapse protocol:

| A | - partial collapse

- T-pulse

- partial collapse
(same strength)

State tomography with
X, Y, and no pulses

Tomographic probabilities

G _0)+]1)
NPT | Vin = 2 Background Pz should
. 0 el be subtracted to find
806 0.08 0.1 0.12 0.14 qub|t density mautrix

Partial meas. pulse amp. [V]
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Experimental results on Bloch sphere

N. Katz et al.
Initial [0)+1]1)
state D 107
Partial ;i i
collapse ! f
Uncollapsed

Collapse strength:  [0.0S< p<0.7

uncollapsing works well!
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Same with polar angle dependence
(another experimental run)

Partial

Uncollapsed

0 : - 0 ol —
0051 ag051 0051

Both spin echo (azimuth) and uncollapsing (polar angle)

Difference: spin echo — undoing of an unknown unitary evolution,
uncollapsing — undoing of a known, but non-unitary evolution =

Alexander Korotkov Universitv of California. Riverside



Quantum process tomography

N. Katz et al.
~ magyy  (Martinis group)

Real[y] -

(&)}
w £
o wn 1 T T T T T T T T T
Al b uncollapsing works .
1ol (b)  with good fidelity!
R | | | | | [ I I |

-] 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 1

partial meas. prob. p

Why getting worse at p>0.67?
Energy relaxation p.=t/T,=45ns/450ns = (.1
Selection affected when 1-p ~ p,.

Overall: uncollapsing is well-confirmed experimentally
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Last topic: quantum efficiency of

binary-outcome qubit detectors

A.K., PRB-2008

Measurement fidelities FO and (soon)

Fo = probability to get result O for a qubit in state |0),
F, = probability to get result 1 for a qubit in state |1)

How to define quantum efficiency?

Let us use the same idea as for linear detectors:
by comparing actual with quantum-limited

- quantum-limited ensemble decoherence
n actual (total) ensemble decoherence

Why need? For quantum feedback, non-unitary gates, etc.

Alexander Korotkov Universitv of California. Riverside



General binary-output qubit detector

Quantum-limited (ideal) detector: pure qubit state remains pure

Use POVM language: linear measurement operators My and M, (result O or 1)
p— M. pM!/Tr(M.pM)  for resulti, probability P, =Tr(M,pM.)
Each operator M; : 8 -1(phase) =7 real parameters
7+7=14, but completeness (My;*"My+M;*M;=1), so 14 — 4=10
|deal binary-output qubit detector is described by

10 real parameters (including fidelities Fy and F;)
Non-ideal detector

Again use POVM, now arbitrary one-qubit superoperators for 1=0,1
= 16 +16 — 4 = 28 real parameters for a general (non-ideal) detector

28 (general) — 10 (ideal) = 18 (quantum efficiencies)

Quantum efficiency (ideality) of a general binary-outcome
qubit detector is described by 18 real parameters.

Too many!!l Impractical. What to do? Consider only “QND” detectors
|0) > |0), |1) —> |1) (qubit does not evolve itself, 5,-coupling)

Alexander Korotkov Universitv of California. Riverside




Decoherence bound for a QND detector

General description of a QND detector: only 6 parameters
(fidelities F, and F,, decoherences Dy and D4, and angles ¢, and ¢,)

D, _ig
result 0: (Poo ,001] — L (F‘)p‘m \/Fﬂ(l_ F)e e 0P01J

Pu  Pu Po |\ c.c. 1-F)p,, simple
_ : '
[Poo Pm) 1((1=F)py JA-F)F e ep, Bayes!
result 1: — —
P  Pu Py C.C. Fo1
probabilities: P, =F,0,0 + 1 —=F)p, P =A—=F)pee + F1o11
average over (,000 pOIJ 5| Po € aVeI¢av:001
two results: P Pu C.C. Pi1

e—DaVei¢av =\/F0(1_F1)e—D0ei¢0 +\/(1—F0)F1 e—Dlei¢1

=> ensemble
decoherence Dgyy 2 Dmin = _ln[\/Fo(l -F)+ \/(1 -F)F ]

bound
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Definitions of quantum efficiency
(actual decoherence vs. informational bound)

D .
Similar to the first definition n= min
for linear detectors D,y
Taking into account . —In| \/Fo A-F,)+ \/(1 - FO)Flei(¢1_¢0) |
phase correlation: n= 5
av
N AN AN

D,

—In[\F,(1—F)e 0+ JA-F,)Fe ™

Also meaningful to define quantum efficiency
for each result of the measurement:

min

(another definition

770 = =
D,+D, .. possible)

s T
DO + Dmin

(useful for “asymmetric” and “half-destructive” detectors, as for phase qubits)
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Quantum efficiency for several
detector models

Model 1: Indirect projective measurement

i : - projective
@%ﬂ ancilla qubit |< >| detector
measurement

Evolution:
(@]0)+4(1))[0,) > a|0)(Cyy |0,) +Ciy [10)+ B [1)(Cyy [04) +Cy [15)) =

(aCyy | 0) + fCy; | 1))/ Norm, if result 0
(aCyy |0+ SCi; | 1))/ Norm, if result 1

Then

Fo =[Cpo 1, F =lcy %, @y = arg(Co Cy)» # = arg(Cy,Cy;), D, =0, D, =0

1 (ideal, but
not practical)

And so no=n =1, ﬁ=77
but 7 #1, if @, # ¢,
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Model 2: Linear detector in binary-output mode

. . continuous comparison result
@%ﬂ linear detector osult > with threshold > 0or 1
result thre- result 1.0 . - .I L 1 mleas'. stlr en'gt ﬂ :
. 7 1deal linear detector S=0.1
S 08— in binary mode —S=1 I
) S=2
S - 2/ -
= 0.6 7 =
E | N /d\ = Jt/2r, |
2 0.4+ =
= - \ nl(rth) = |
= +
Fo1 =[1+erf(xry, +5)]/2 S )2 n@ 201+, B
s(l,-I i
meas. strength s=,/t/2z, 0.0 (I 1 -0)|
-3 -2 1 0 1
—ln[\/FO(l -F)+ \/(1 —F,)F, | threshold Iy

n= : .
s? 4yt Even for an ideal linear detector,

threshold mode is significantly non-ideal
n<22ln, ny,<0.7

Why? Because we loose information!
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Model 3:

0)

Experimentally

No= 0.8

(using Katz et al.,
Science-06)

Alexander Korotkov

Phase qubit detection

Result 0 (“null result”), then
a|0)+e?pge T2 1)

a|0)+4|1) >
Norm

Result 1, then qubit destroyed

Fidelity: F =p, F,=1 (or Fy=1-p,)

Quantum efficiency: 77, =1
while 1; and M cannot be defined

(“half-destructive” measurement)

If imperfections are taken into account
(Pryadko-A.K., 2007), then n,<1
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Model 4: Tunneling-into-continuum detector

:— 1.0
qubit e 1 MN;-solid \
Vo o) 0.8 1 - dotted
for [1) g‘ 1 rljF():;OO
| —_— 1, =
tunneling § 0.6 1“1/1“0—1 5
I'gorly é =o //
el — = 04— Fp=exp(-I'jt) P
= - - / -
5 1 "S-
— / -
_ — ~ = |
Non-destructive for both results & i n() 1 I
= o -
S .04 S -
I | LI I | LI ]

Ideal for null result: 77, = 1 ' 00 02 04 06 08 1.0

However, 7, <1, 17 <1 . .
= fidelity F,=1-exp(-I';t)
Approaches ideality (7, =1,7=1) . .
only when Tyt <T',t <1 (otherwise Can such regime be realized

lost information in excitation profile) by a real SQUID or by
n>0.9 is theoretically easy a bifurcation detector?
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Summary

e Rabi oscillations are persistent if monitored
(observed in Saclay, though with n<1; LGI violated)

e Quantum feedback of Rabi oscillations: much
harder, but doable (needs somewhat better n
and feedback loop faster than decoherence)

e Quantum uncollapsing demonstrated in UCSB for
phase qubit, as extension of partial-collapse expt.

e Perfect quantum efficiency seems to be difficult
for binary-outcome detectors (except null-result),
but n>0.9 is possible for tunneling-based detectors

Alexander Korotkov Universitv of California. Riverside
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