Wavefunction uncollapsing: theory and experiment

Alexander Korotkov

University of California, Riverside

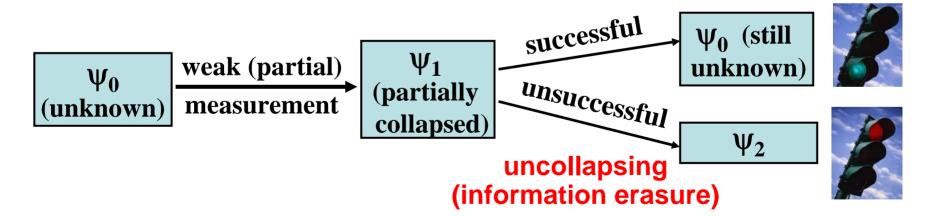
In collaboration with:

Andrew Jordan (Univ. of Rochester, theory)

Nadav Katz, M. Neeley, M. Ansmann, R. Bialczak, M. Hofheinz, E. Lucero, A. O'Connell, H. Wang, A. Cleland, and John Martinis (*UC Santa Barbara*, experiment)

Support:

PRL 97, 166805 (2006) Science 312, 1498 (2006) quant-ph/0806.3547


The problem

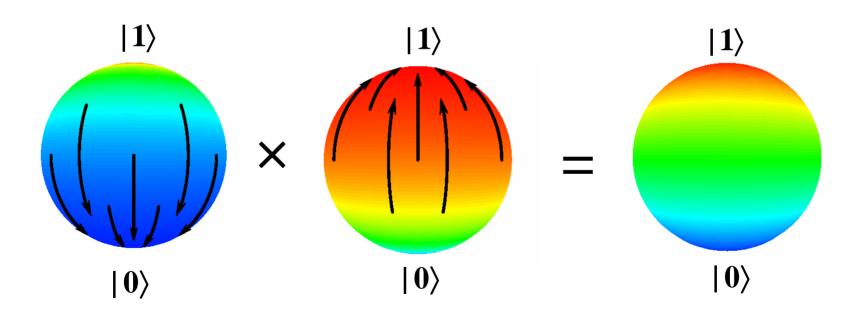
It is impossible to undo "orthodox" quantum measurement (for an unknown initial state)

Is it possible to undo weak (partial) quantum measurement?

Yes! (but with a finite probability)

If uncollapsing is successful, an unknown state is fully restored

"Quantum Un-Demolition measurement"


(Not a "quantum eraser"!)

Uncollapsing of a qubit state

Evolution due to partial (weak, continuous, etc.) measurement is **non-unitary** (though coherent if detector is good!), therefore it is impossible to undo it by Hamiltonian dynamics.

How to uncollapse? One more measurement!

(similar to Koashi-Ueda, PRL-1999)

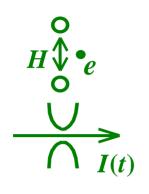
(Figure partially adopted from A. Jordan, A. Korotkov, and M. Büttiker, PRL-2006

First example: double-dot qubit with no tunneling, measured by QPC

$$\hat{H}_{QB} = (\varepsilon/2)(c_1^{\dagger}c_1 - c_2^{\dagger}c_2) + H(c_1^{\dagger}c_2 + c_2^{\dagger}c_1)$$

Assume "frozen" qubit: $\varepsilon = H = 0$

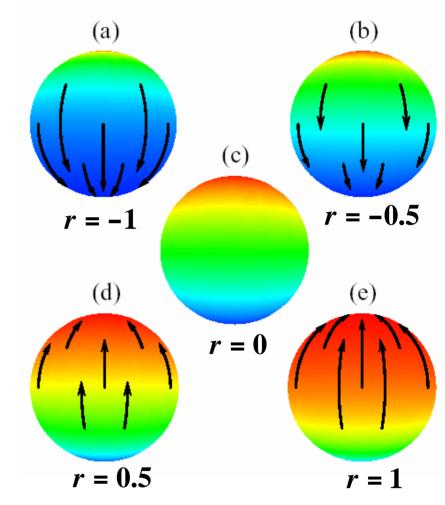
Bayesian evolution due to measurement (Korotkov-1998)


- 1) Diagonal matrix elements of the density matrix evolve according to the classical Bayes rule
- 2) Non-diagonal matrix elements evolve so that the degree of purity $\rho_{ii}/[\rho_{ii}\,\rho_{ii}]^{1/2}$ is conserved

$$\begin{split} \rho_{11}(\tau) &= \frac{\rho_{11}(0) \, \exp[-(\overline{I} - I_1)^2/2D]}{\rho_{11}(0) \, \exp[-(\overline{I} - I_1)^2/2D] + \rho_{22}(0) \, \exp[-(\overline{I} - I_2)^2/2D]} \\ &\frac{\rho_{12}(\tau)}{\left[\rho_{12}(\tau) \, \rho_{22}(\tau)\right]^{1/2}} = \frac{\rho_{12}(0)}{\left[\rho_{12}(0) \, \rho_{22}(0)\right]^{1/2}} \; , \qquad \rho_{22}(\tau) = 1 - \rho_{11}(\tau) \end{split}$$

where
$$\overline{I}=\frac{1}{\tau}\int_0^{\tau}I(t)\,dt,~~D=S_I/2\tau$$
 $\Delta I=I_1-I_2$ -response $S_I=2eI(1-T)$ -shot noise

Graphical representation of the evolution

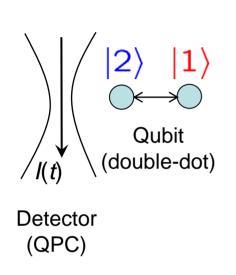


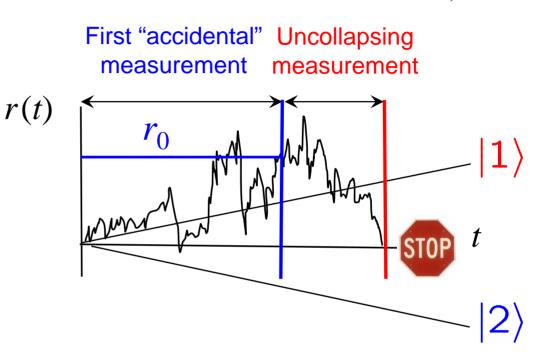
$$\frac{\rho_{11}(t)}{\rho_{22}(t)} = \frac{\rho_{11}(0)}{\rho_{22}(0)} \exp[2r(t)]$$

$$\frac{\rho_{12}(t)}{\sqrt{\rho_{11}(t)\rho_{22}(t)}} = \text{const}$$

where measurement result r(t) is

$$r(t) = \frac{\Delta I}{S_I} \left[\int_0^t I(t') dt' - I_0 t \right]$$


Jordan-Korotkov-Büttiker, PRL-06


If r = 0, then no information and no evolution!

Uncollapsing for qubit-QPC system

Jordan and Korotkov, PRL-2006

Simple strategy: continue measuring until r(t) becomes zero! Then any unknown initial state is fully restored.

(same for an entangled qubit)

It may happen though that r = 0 never happens; then undoing procedure is unsuccessful.

Probability of success

Trick: since non-diagonal matrix elements are not directly involved, we can analyze classical probabilities (as if qubit is in some certain, but unknown state); then simple diffusion with drift

Results:

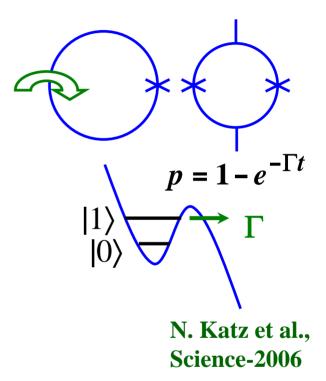
Probability of successful uncollapsing

$$P_S = \frac{e^{-|r_0|}}{e^{|r_0|}\rho_{11}(0) + e^{-|r_0|}\rho_{22}(0)}$$

where r_0 is the result of the measurement to be undone, and $\rho(0)$ is our knowledge about an unknown initial state; in case of an entangled qubit $\rho(0)$ is traced over other qubits

Averaged probability of success (over result r_0)

$$P_{\rm av} = 1 - \operatorname{erf}[\sqrt{t/2T_m}]$$


(does not depend on initial state!)

where
$$T_m = 2S_I/(\Delta I)^2$$
 ("measurement time")

Second example: uncollapsing of a superconducting phase qubit

- 1) Start with an unknown state
- 2) Partial measurement of strength p
- 3) π -pulse (exchange $|0\rangle \leftrightarrow |1\rangle$)
- 4) One more measurement with the **same strength** *p*
- 5) π -pulse

This is what was demonstrated experimentally (in more detail later)

General theory of uncollapsing

Measurement operator
$$M_r$$
: $\rho \to \frac{M_r \rho M_r^{\dagger}}{\text{Tr}(M_r \rho M_r^{\dagger})}$ (POVM formalism)

Undoing measurement operator: $C \times M_r^{-1}$ (to satisfy completeness, eigenvalues cannot be >1)

$$\max(C) = \min_{i} \sqrt{p_{i}}, \ p_{i} = \operatorname{Tr}(M_{r}^{\dagger} M_{r} | i \rangle \langle i |)$$

 p_i – probability of the measurement result r for initial state $|i\rangle$

Probability of success:
$$P_S \le \frac{\min_i p_i}{\sum_i p_i \rho_{ii}(0)} = \frac{\min P_r}{P_r(\rho(0))}$$

 $P_r(\rho(0))$ – probability of result r for initial state $\rho(0)$, min P_r – probability of result r minimized over all possible initial states

Averaged (over
$$r$$
) probability of success: $P_{av} \leq \sum_{r} \min P_r$

(independent of initial state)

(similar to Koashi-Ueda, PRL, 1999)

Alexander Korotkov

University of California, Riverside

Comparison of the general bound for uncollapsing success with two examples

General bound:

$$P_S \leq \frac{\min P_r}{P_r(\rho(0))}$$

$$P_{S} \leq \frac{\min(p_{1}, p_{2})}{p_{1}\rho_{11}(0) + p_{2}\rho_{22}(0)}$$

where
$$p_i = (\pi S_I/t)^{-1/2} \exp[-(\overline{I} - I_i)^2 t/S_I] d\overline{I}$$

Coincides with the actual result, so the upper bound is reached, therefore uncollapsing strategy is optimal

Second example (phase qubit)

Probabilities of no-tunneling are 1 and $\exp(-\Gamma t)=1-p$

$$P_S \le \frac{1-p}{\rho_{00}(0) + (1-p)\rho_{11}(0)}$$

uncollapsing for phase qubit is also optimal

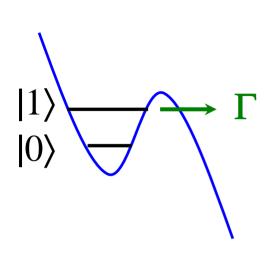
Third example: evolving charge qubit

$$\frac{H \diamondsuit \bullet_{e}}{\bigcirc}$$

$$\hat{H}_{QB} = (\varepsilon/2)(c_1^{\dagger}c_1 - c_2^{\dagger}c_2) + H(c_1^{\dagger}c_2 + c_2^{\dagger}c_1)$$

(now non-zero H and ϵ , qubit evolves during measurement)

- 1) Bayesian equations to calculate measurement operator
- 2) unitary operation, measurement by QPC, unitary operation


Fourth example: general uncollapsing for entangled charge qubits

- 1) unitary transformation of *N* qubits
- 2) null-result measurement of a certain strength by a strongly nonlinear QPC (tunneling only for state |11..1))
- 3) repeat 2^N times, sequentially transforming the basis vectors of the diagonalized measurement operator into |11..1>

(also reaches the upper bound for success probability)

Partial collapse of a phase qubit

N. Katz, M. Ansmann, R. Bialczak, E. Lucero, R. McDermott, M. Neeley, M. Steffen, E. Weig, A. Cleland, J. Martinis, A. Korotkov, Science-06

How does a coherent state evolve in time before tunneling event?

(What happens when nothing happens?)

Qubit "ages" in contrast to a radioactive atom!

Main idea:

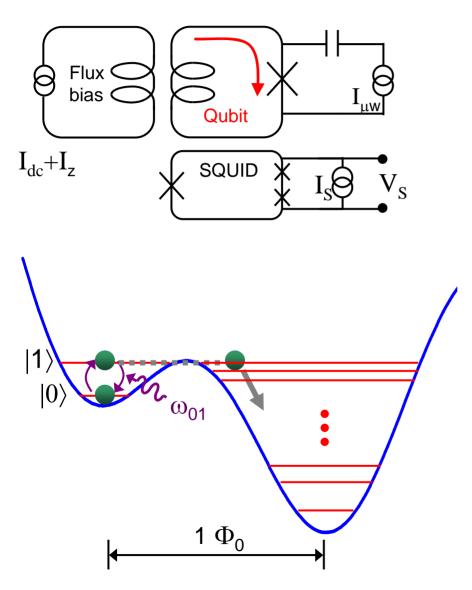
$$\psi = \alpha \,|\, 0\rangle + \beta \,|\, 1\rangle \,\rightarrow$$

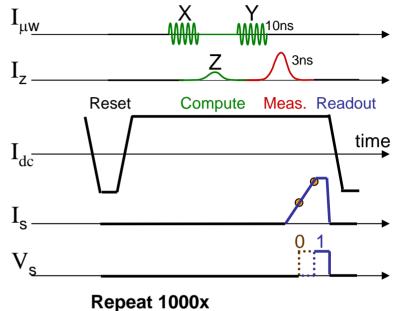
Wall idea:
$$\psi = \alpha | 0 \rangle + \beta | 1 \rangle \rightarrow \psi(t) = \begin{cases} |out\rangle, & \text{if tunneled} \\ \frac{\alpha | 0 \rangle + \beta e^{-\Gamma t/2} e^{i\varphi} | 1 \rangle}{\sqrt{|\alpha|^2 + |\beta|^2 e^{-\Gamma t}}}, & \text{if not tunneled} \end{cases}$$

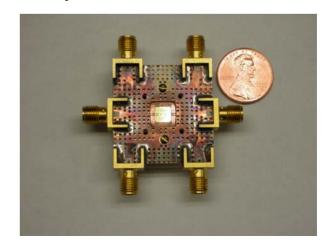
(better theory: Leonid Pryadko & A.K., 2007)

amplitude of state |0> grows without physical interaction

continuous null-result collapse

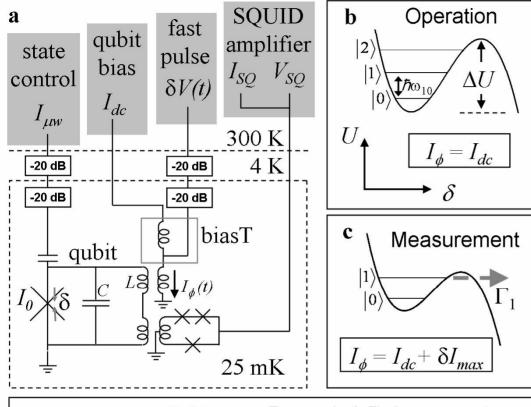

(similar to optics, Dalibard-Castin-Molmer, PRL-1992)




University of California, Riverside Alexander Korotkov ————

Superconducting phase qubit at UCSB

Courtesy of Nadav Katz (UCSB)



prob. 0,1

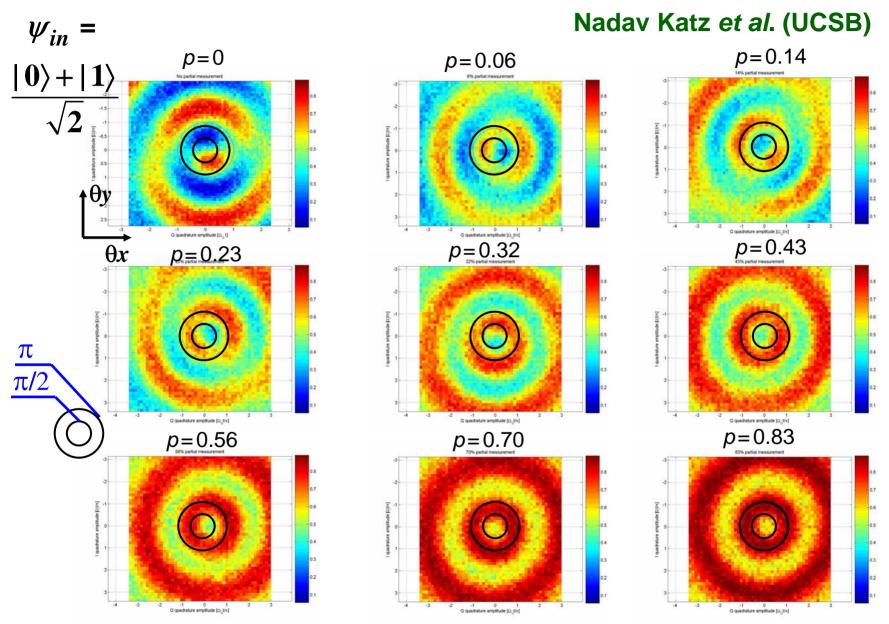
Experimental technique for partial collapse

d State preparation Partial Tomography & Final measurement (θ_χ,θ_y) $I_{\mu w}$ 7 ns 15 ns 10 ns 10 ns 10 ns

Nadav Katz et al. (John Martinis' group)

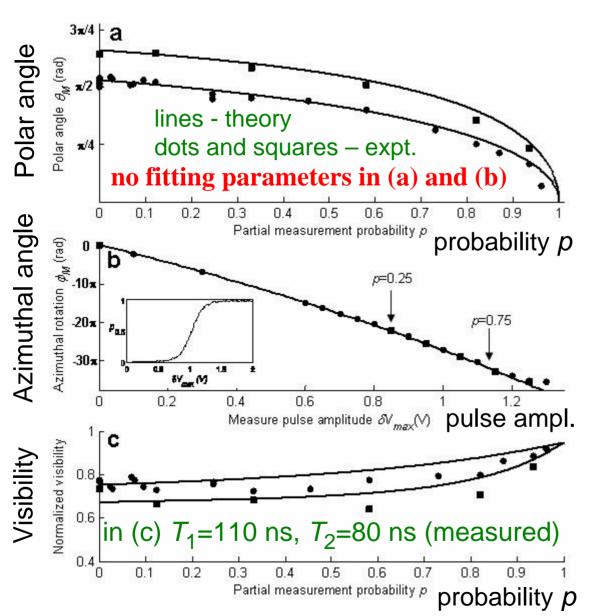
Protocol:

- 1) State preparation by applying microwave pulse (via Rabi oscillations)
- 2) Partial measurement by lowering barrier for time *t*
- 3) State tomography (microwave + full measurement)


Measurement strength

$$p = 1 - \exp(-\Gamma t)$$

is actually controlled
by Γ, not by t

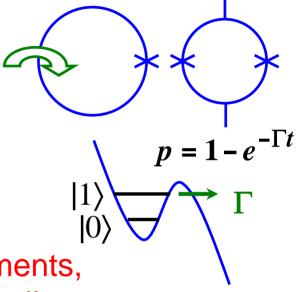

p = 0: no measurement

p=1: orthodox collapse

Experimental tomography data

Partial collapse: experimental results

N. Katz et al., Science-06


- In case of no tunneling (null-result measurement) phase qubit evolves
- This evolution is well described by a simple Bayesian theory, without fitting parameters
- Phase qubit remains fully coherent in the process of continuous collapse (experimentally ~80% raw data, ~96% after account for T1 and T2)

quantum efficiency $\eta_0 > 0.8$

Uncollapsing of a phase qubit state

Jordan and Korotkov, PRL-2006

- 1) Start with an unknown state
- 2) Partial measurement of strength p
- 3) π -pulse (exchange $|0\rangle \leftrightarrow |1\rangle$)
- 4) One more measurement with the **same strength** *p*
- 5) π -pulse

If no tunneling for both measurements, then initial state is fully restored!

$$\alpha |0\rangle + \beta |1\rangle \rightarrow \frac{\alpha |0\rangle + e^{i\phi}\beta e^{-\Gamma t/2} |1\rangle}{\text{Norm}} \rightarrow$$

$$\frac{e^{i\phi}\alpha e^{-\Gamma t/2} |0\rangle + e^{i\phi}\beta e^{-\Gamma t/2} |1\rangle}{\text{Norm}} = e^{i\phi}(\alpha |0\rangle + \beta |1\rangle)$$

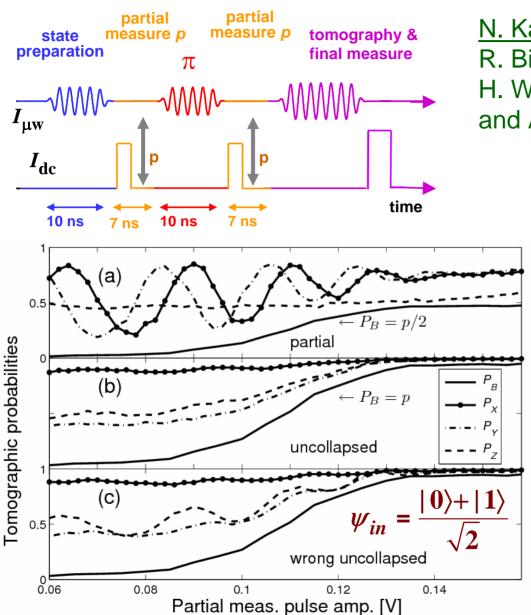
phase is also restored (spin echo)

Probability of success

Success probability if no tunneling during first measurement:

$$P_S = \frac{e^{-\Gamma t}}{\rho_{00}(0) + e^{-\Gamma t}\rho_{11}(0)} = \frac{1 - p}{\rho_{00}(0) + (1 - p)\rho_{11}(0)}$$

where $\rho(0)$ is the density matrix of the initial state (either averaged unknown state or an entangled state traced over all other qubits)


Total (averaged) success probability:
$$P_{av} = 1 - p$$

For measurement strength *p* increasing to 1, success probability decreases to zero (orthodox collapse), but still exact undoing

Optimal uncollapsing (reaches fundamental upper bound)

Experiment on wavefunction uncollapsing

N. Katz, M. Neeley, M. Ansmann, R. Bialzak, E. Lucero, A. O'Connell, H. Wang, A. Cleland, <u>J. Martinis</u>, and A. Korotkov, quant-ph/0806.3547

Uncollapse protocol:

- partial collapse
- π -pulse
- partial collapse (same strength)

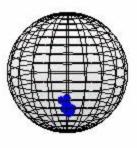
State tomography with X, Y, and Z pulses

Background P_B should be subtracted to find qubit density matrix

Experimental results on Bloch sphere

N. Katz et al.

Initial state

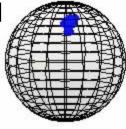

 $|1\rangle$

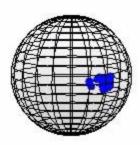
$$\frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

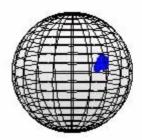
$$\frac{|\hspace{.06cm}0\hspace{.02cm}\rangle + i\hspace{.05cm}|\hspace{.06cm}1\hspace{.02cm}\rangle}{\sqrt{2}}$$

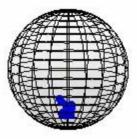
 $|\hspace{.06cm}0\hspace{.02cm}\rangle$

Partial collapse

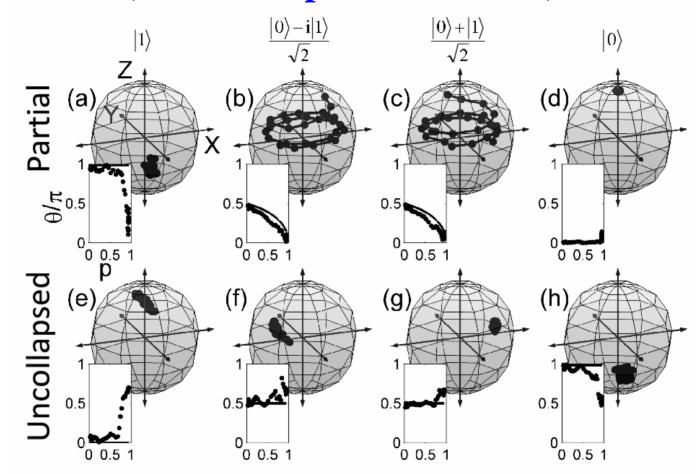








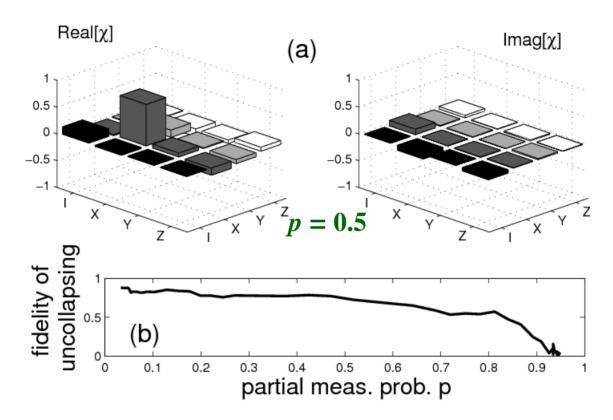
Uncollapsed


Collapse strength:

$$0.05$$

uncollapsing works well!

Same with polar angle dependence (another experimental run)



Both spin echo (azimuth) and uncollapsing (polar angle)

Difference: spin echo – undoing of an unknown unitary evolution, uncollapsing – undoing of a known, but non-unitary evolution

Quantum process tomography

Why getting worse at p>0.6?

Energy relaxation $p_{\rm r} = t/T_{\rm 1} = 45 {\rm ns}/450 {\rm ns} = 0.1$ Selection affected when $1-p \sim p_{\rm r}$

Overall: uncollapsing is well-confirmed experimentally

Quantum erasers in optics

Quantum eraser proposal by Scully and Drühl, PRA (1982)

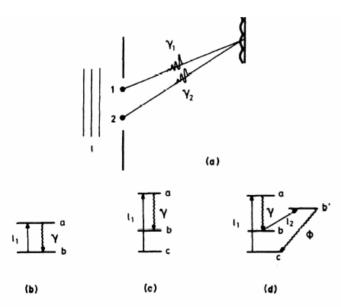


FIG. 1. (a) Figure depicting light impinging from left on atoms at sites 1 and 2. Scattered photons γ_1 and γ_2 produce interference pattern on screen. (b) Two-level atoms excited by laser pulse l_1 , and emit γ photons in $a \rightarrow b$ transition. (c) Three-level atoms excited by pulse l_1 from $c \rightarrow a$ and emit photons in $a \rightarrow b$ transition. (d) Four-level system excited by pulse l_1 from $c \rightarrow a$ followed by emission of γ photons in $a \rightarrow b$ transition. Sccond pulse l_2 takes atoms from $b \rightarrow b'$. Decay from $b' \rightarrow c$ results in emission of ϕ photons.

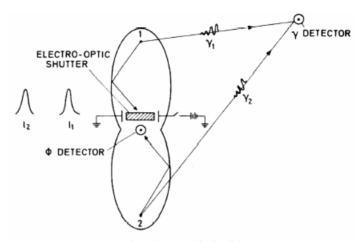


FIG. 2. Laser pulses l_1 and l_2 incident on atoms at sites 1 and 2. Scattered photons γ_1 and γ_2 result from $a \rightarrow b$ transition. Decay of atoms from $b' \rightarrow c$ results in ϕ photon emission. Elliptical cavities reflect ϕ photons onto common photodetector. Electro-optic shutter transmits ϕ photons only when switch is open. Choice of switch position determines whether we emphasize particle or wave nature of γ photons.

Interference fringes restored for two-detector correlations (since "which-path" information is erased)

Our idea of uncollapsing is quite different: we really extract information and then erase it

Conclusions

- Partial (weak, etc.) quantum measurement can be undone, though with a finite probability $P_{\rm S}$, which decreases with increasing strength of measurement ($P_{\rm S}$ =0 for orthodox case)
- Arbitrary initial state is uncollapsed exactly in the case of success (need a detector with perfect quantum efficiency)
- Uncollapsing is different from the quantum eraser
- Uncollapsing for a superconducting phase qubit has been demonstrated, extending the previous experiment on partial collapse (would be very interesting to demonstrate for a charge qubit as well; SET cannot be used)

