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Partial quantum collapse
and uncollapsing
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Outline: e Introduction (textbook collapse and Bell inequality)

e Beyond the textbook collapse: non-projective
guantum measurement

e Uncollapsing (reversal of weak measurement)

e Recent experiments on partial collapse
and “wavefunction uncollapsing”
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Niels Bohr:
“If you are not confused by
guantum physics then you
haven't really understood it”

Richard Feynman:
“I think | can safely say that nobody
understands quantum mechanics”
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Quantum mechanics =

Schrodinger equation
_|_
collapse postulate

1) Probability of measurement result P, = ‘ (W | Wr> ‘2

2) Wavefunction after measurement = Yy

e State collapse follows from common sense

e Does not follow from Schrodinger equation
(contradicts; random vs. deterministic)

Collapse postulate is controversial since 1920s
(needs an observer, contradicts causality)
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Einstein-Podolsky-Rosen (EPR) paradox

Phys. Rev., 1935
In a complete theory there is an element corresponding to each element of
reality. A sufficient condition for the reality of a physical quantity is the
possibility of predicting it with certainty, without disturbing the system.

W(Xq5 X,y) = Zny/n(xz) U,(X;) (nowadays we call it entangled state)
W (X, %) = [__expl(i/B)(X; = X,) pldp ~ 5(x; = X,)
Measurement of particle 1
Xy Xy :
— — cannot affect particle 2,
i - while QM_says It aff_ects
(contradicts causality)
=> Quantum mechanics is incomplete

Bohr’s reply (Phys. Rev., 1935) (seven pages, one formula: Ap Aq ~h)

It is shown that a certain “criterion of physical reality” formulated ...
by A. Einstein, B. Podolsky and N. Rosen contains an essential
ambiguity when it is applied to quantum phenomena.

Crudely: No need to understand QM, just use the result
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Bell’s inequality (John Bell, 1964)

— T Perfect anticorrelation of mea-

surement results for the same _

(setup due to David Bohm) _ _ Z
measurement directions, d =D

Is it possible to explain the QM result assuming local realism
and hidden variables or collapse “propagates” instantaneously
(faster than light, “spooky action-at-a-distance”)?

Assume: A(3,A)==1, B(b,1)==+1 (deterministic result with
- o — ___ hidden variable 1)
Then: |P(d,b)-P(a,C)|<1+P(b,C)
where P =P(++)+P(-=)-P(+-)-P(-+)
QM: P(d,b)=-db For 0°, 90°, and 45°: 0.715/1—0.71 violation!
Experiment (Aspect et al., 1982; photons instead of spins, CHSH):
yes, “spooky action-at-a-distance”

Alexander Korotkov Universitv of California. Riverside




What about causality?

Actually, not too bad: you cannot transmit your own information
choosing a particular measurement direction a

d Result of the other
@/ — % — measurement does not

________ > or depend on direction a
Randomness saves causality

Collapse is still instantaneous: OK, just our recipe,
not an “objective reality”, not a “physical” process

Consequence of causality: No-cloning theorem
Wootters-Zurek, 1982; Dieks, 1982; Yurke

You cannot copy an unknown quantum state
Proof: Otherwise get information on direction a (and causality violated)

Application: quantum cryptography

Information is an important concept in quantum mechanics
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Quantum measurement
in solid-state systems

No violation of locality — too small distances

However, interesting informational aspects
of continuous quantum measurement
(weak coupling, noise = gradual collapse)

Starting point:

It

What happens to a solid-state qubit (two-level system)
during its continuous (weak) measurement by a detector?
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Superconducting “charge” qubit

2
A A V
Y. Nakamura, Yu. Pashkin, H = (2¢) (N-n,) ‘ |
and J.S. Tsai (Nature, 1998) 2C °
——J(l n><n+1|+|n+1><n|) “jsland”
Ee Joseph-
ZeI Eg son
d > junction
[[]: tunnel junction E 0
[1: capacitor L —
Single Cooper
£ pair box
5| =031 n n+1
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v E
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Quantum coherent N: number of
(Rabi) oscillations Cooper pairs
on the island

Vion et al. (Devoret’s group); Science, 2002

Q-factor of coherent (Rabi) oscillations = 25,000
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More of superconducting charge qubits

Duty, Gunnarsson, Bladh, Guillaume et al. (Echternach’s

\ \Y
I J T 1) . Delsing, PRB 2004 sroup), PRB 2004
== e e T MR
S 1 e
Cooper-pair box o o, : __j ’
. ‘-r' H| SET island H ZCB island | oy . R i L ]
measured by single-
J (b) Slow 5CB
electron transistor NP+ Vi, cer o o (F o
(SET) -ln;-ssr — Cooper-pair box c % ?'I— e
(actually, RF-SET)
Setup can be used gz ”Z: " @ ]
for continuous By

measurements

1000
pulse width [ps]

All results are averaged over many measurements (not “single-shot”)
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=

Switching probability (%)

Some other superconducting qubits

Flux qubit Phase qubit Charge qubit

Mooij et al. (Delft) J. Martinis et al. with circuit QED
(UCSB and NIST) R. Schoelkopf et al. (Yale)
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Scaled switching

Some other superconducting qubits

Flux qubit
J. Clarke et al. (Berkeley)
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“Quantronium” qubit

|. Siddiqgi, R. Schoelkopf,
M. Devoret, et al. (Yale)
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write qubit resonator
\ y, read
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Semiconductor (double-dot) qubit

T. Hayashi et al., PRL 2003

(@) pylse generator (b) @ @
0 >, a3y =10} d) <
300 nm %] < 100--[}/ é\k‘f l:t . % I
e ~ {] i == S 5: 2 mV
20 0%op 20 {) 00,00, e
H 0 tip ? 20 Eia | (o)
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Gp G| GC Gr GR E L | . |e1=0
| ’
- ﬂ'r
(c) initialization (d) manipulation (c) mcasurcment = | It ’
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s el
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Detector is not separated from qubit,
also possible to use a separate detector
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Some other semiconductor qubits

Spin qubit Double-dot qubit

C. Marcus et al. (Harvard) J. Gorman et al. (Cambridge)
A 1um
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The system we consider: qubit + detector
O _I_Vg VT
qlibit H®oe

(o) — — 1(1)
detector — % I
1(t) M (1) e L L

Double-quantum-qot (DQD) and Cooper-pair box (CPB) and
quantum point contact (QPC) single-electron transistor (SET)

H=Hgp * Hper + Hint
Hog = (e/2)(c,"c,—c,*c) +H(c,"c,+¢c,’c,) € —asymmetry, H —tunneling
Q = (4H?%+e%)Y2[h — frequency of quantum coherent (Rabi) oscillations

Two levels of average detector current: 1, for qubit state [1), |, for |2)

Response: Al=1,-1, Detector noise: white, spectral density S,

DQD and QPC  Hyer =) Ejafa +) E.afa, + ZI,rT(a;fa, +ala,)
(setup due to S, =2el
Gurvitz, 1997) Hinr = ZUAT (C;rcl ~ C;CZ)(a;ral + arar) '
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Quantum Bayesian formalism 5« 1908

Evolution due to measurement (“spooky” quantum back-action)

1) p;; evolve as probabilities, i.e. according to the Bayes rule O
(for w=a|L)+B|2), |a(t)|2 and |B(t)|2 behave as probabilities) Hg‘e

2) p;/(pji pj)"' = const, i.e. pure state remains pure |

(for y=a|1)+B|2), the phases of a(t) and B(t) do not change) ~ A~ 1(t)

P(A)P(R|A)
D P(A)PRIA)

Bayes rule (1763, 1812): P(A |R)=

Add physical (realistic) evolution

- Hamiltonian evolution, classical back-action, decoherence, etc.
(technically: add terms in the differential equation)

Same idea as in POVM, general guant. meas., quantum trajectories, etc.
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Even more general formalism

POVM, general quantum measurement, etc. (known since 1960s)

Nielsen and Chuang, “Quantum information
and quantum computation”, p. 85

Measurement with a result r is characterized
by a linear operator M, : Mr lw)

ly) — :
\/(V/l MM, |v)

Probability: P =(y | MM, |w)
Completeness: Zr |\/|;f|\/|Ir -1

Textbook collapse: when M, is a projection operator

POVM collapse is equivalent to a projective collapse
In a larger Hilbert space (including detector)
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Measurement vs. decoherence
Widely accepted point of view:
measurement = decoherence (environment)
Is it true?

e Yes, If not interested in information from detector
(ensemble-averaged evolution)

e NO, If take into account measurement result
(single quantum system)

Measurement result obviously gives us more information
about the measured system, so we know its quantum state
better (ideally, a pure state instead of a mixed state)
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Undoing a weak measurement of a qubit

(quantum uncollapsing)

. . |V A.K. & Jordan, PRL-2006
NewScientist
ARELES T It Is Impossible to undo “orthodox” quantum

(@ measurement (for an unknown initial state)

Is it possible to undo partial quantum measurement?
Yes! (but with a finite probability)

If undoing is successful, an unknown state is fully restored

cuccessiul__w (still
W, weak (partial)> Vi / unknown)

(partially uns"cCesst‘ul
collapsed) \ v,

undoing
(information erasure)

(unknown) | measurement
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Uncollapsing of a qubit state

Evolution due to partial (weak, continuous, etc.) measurement
IS non-unitary (though coherent if detector is good!), therefore
It is Impossible to undo it by Hamiltonian dynamics.

How to undo? One more measurement!

1) 1) 1)
11

=
f ——
|2)

|2)

.. . (Figure partially adopted from )
(similar to Koashi-Ueda, PRL-1999) Jordan-A .K.-Biittiker, PRL-06)
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Uncollapsing for DQD-QPC system

A.K. & Jordan
5 1 First Uncollapsing
Y= | > | > measurement measurement
al|l)+[]2) < 1< e
OO
Qubit

® \ (OQD)
Detector (QPC)

Simple strategy: continue measuring
until result r(t) becomes zero. Then
any initial state is fully restored.

(same for an entangled qubit)

(t)-—[jol(t')dt'—lﬂt]

It may happen though that r =0 never crossed,

then undoing procedure is unsuccessful.
_|r0|
e

Probability of success: P. =
Y ST g Paeil g P
mn mn

Averaged probability of )
success (over result ry): P, =1-erf[(Jt/2T ], Ty =2S,/(Al)
(does not depend on initial state)
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General theory of uncollapsing

CxM r_l (to satisfy completeness,

Uncollapsing operator: eigenvalues cannot be >1)

max(C) = min, \/Fi, p; — eigenvalues of MM,

in P
Probability of success: P, < sl
I:)r (y/in)

P (vi,) — probability of result r for initial state ;,,,

min P, — probability of result r minimized over
all possible initial states

Averaged (over r) probability of success: Pg < zrmin P
(cannot depend on initial state, otherwise get information)

(similar to Koashi-Ueda, 1999)

Alexander Korotkov Universitv of California. Riverside




Partial collapse of a phase qubit

N. Katz, M. Ansmann, R. Bialczak, E. Lucero,

A. Cleland, J. Martinis, A. Korotkov, Science-06

\ R. McDermott, M. Neeley, M. Steffen, E. Weig,

(What happens when nothing happens?)

Main idea: | out), if tunneled
w=a|0)+B|1) > yt)=1|a|0)+fe V%7 |1)
| JlaP+|pPe™

0 \ / How does a coherent state evolve
0) In time before tunneling event?

, if not tunneled

(better theory: Leonid Pryadko & A.K., 2007)

amplitude of state |0) grows without physical interaction

continuous null-result collapse

(similar to optics, Dalibard-Castin-Molmer, PRL-1992)
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Superconducting phase qubit at UCSB

Courtesy of Nadav Katz (UCSB)

| — Luw s ayaons .
o < Ié L A,
Qubit - Reset Compute Meas. Readout
Ly ™1, SQUID X v I, \ / \ amg
X IS@ o’ \J /‘\\_
I .

-
v

S
Repeat 1000x
prob. 0,1
|
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Experimental technique for partial collapse

b Operation

a SQUID
o e e
state o pulse 2MP
control ~'@% SV (1) 50 ¥Vso
7 L
e e R 300K
_____________________________ 4K
biasT
-~ 25 mK Ly = Laet Ol
Partial Tomography & Final measurement
Stat
d pr:pearation : measu‘;ement : @, ‘Qy) :
E E |
0 ——— S
e ; . :
7 ns l 15 ns l

!10ns

10 ns t

v
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Nadav Katz et al.
(John Martinis’ group)

Protocol:
1) State preparation by
applying microwave pulse
(via Rabi oscillations)

2) Partial measurement by
lowering barrier for time t

3) State tomography (micro-
wave + full measurement)

Measurement strength
Pp=1-exp(-It)
Is actually controlled
by I', not by t

P=0: no measurement
p=1: orthodox collapse




Experimental tomography data

Nadav Katz et al. (UCSB)
p=0.0
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Polar angle

Falar angle By irad)

Azimuthal angle

Azimuthal rotation Bos (rad)

Visibility

Mormalized visihility

ta
%
oo

Partial collapse: experimental results
N. Katz et al., Science-06

x2 ¢ In case of no tunneling
lines - theory (null-result measurement)
=f  dots and squares — expt. : phase qubit evolves

no fitting parameters in (a) and (b)

| | | | |
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e This evolution is well

Farial measurement probability g o described by a Simple
0 probability P Bayesian theory, without
A0x} FTEE fitting parameters
2051 gy, / Lo e Phase qubit remains fully
30xf e’ coherent in the process
i : , | S of continuous collapse
0 0.z 0.4 0.6 0.8 1 1.2 .
7 Measure pulse amplitude &, (V) pUIse ampl (experlmentally ~80%
¢ 5 raw data, ~96% after
O & s .t . account for T1 and T2)
0B} N 3 ) B
in (c) T{=110 ns, T,=80 ns (measured) guantum efficiency
0.4 ' ' ' ' : : : : : '
0 0.1 0.2 0.3 0.4 0.5 0.6 0.y 0.8 0.9 1
Fartial measurement prabability o prObabIhty p 770 > 0°8

Alexander Korotkov Universitv of California. Riverside



Uncollapsing of a phase qubit state

A.K. & Jordan, 2006

1) Start with an unknown state
2) Partial measurement of strength P
3) m-pulse (exchange |0) <> 1))
4) One more measurement with
the same strength D

5) T-pulse

If no tunneling for both measurements,
then initial state is fully restored!

a|0)+ege TV 1)

a|0)+ 5|1) > —>
Norm
ig  _-Tt/2 i¢ o —Tt/2 _
e’xe 0)+e e 1
e fe 10 e @al0)+ i)
Norm

phase is also restored (spin echo)
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Experiment on wavefunction uncollapsing

tomoaranhy & N. Katz, M. Neeley, M. Ansmann,
preparation final measure R. Bialzak, E. Lucero, A. O’Connell,
H. Wang, A. Cleland, J. Martinis,

T
— W W and A. Korotkov, PRL-2008
puw

|dc p P
—>
«—> «—> time Nature News
10 ns 10 ns Nature=2008

| S s opree zmemeemet Uncollapse protocol:

| A | - partial collapse

- T-pulse

- partial collapse
(same strength)

State tomography with
X, Y, and no pulses

Tomographic probabilities

G _[0)+]1)
NPT | Vin = 2 Background Pz should

. [ O be subtracted to find
g.os 0.08 0.1 0.12 0.14 qub|t density matl‘iX

Partial meas. pulse amp. [V]
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Experimental results on Bloch sphere

N. Katz et al.
Initial [0)+1]1)
state D 107
Partial ;i i
collapse ! f
Uncollapsed

Collapse strength:  [0.0S< p<0.7

uncollapsing works well!
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Same with polar angle dependence
(another experimental run)

Partial

Uncollapsed

0 : - 0 ol —
0051 ag051 0051

Both spin echo (azimuth) and uncollapsing (polar angle)

Difference: spin echo — undoing of an unknown unitary evolution,
uncollapsing — undoing of a known, but non-unitary evolution =
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Quantum process tomography

N. Katz et al.
~ magyy  (Martinis group)

Real[y] -

(&)}
w £
o wn 1 T T T T T T T T T
Al b uncollapsing works .
1ol (b)  with good fidelity!
R | | | | | [ I I |

-] 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 1

partial meas. prob. p

Why getting worse at p>0.67?
Energy relaxation p.=t/T,=45ns/450ns = (.1
Selection affected when 1-p ~ p,.

Overall: uncollapsing is well-confirmed experimentally
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Conclusions

e Quantum measurement is not as simple as in a textbook

e In many cases quantum collapse happens gradually
(possible to describe how but impossible to understand why)

e A partial collapse can be reversed (uncollapsing),
though with a probability less than 100%

e Partial collapse and uncollapsing have been recently
demonstrated experimentally
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