APS, Pittsburgh, 3/18/09

# **Persistent Rabi oscillations revealed in low-frequency noise**

**Alexander Korotkov** 

University of California, Riverside

**Outline**:

- Introduction (recent experiments on weak collapse of solid-state qubits)
  - Idea of the new experimental proposal
  - Calculation results and estimates



## Non-projective (weak, continuous) measurement of a charge qubit

Korotkov, 1998



Evolution due to measurement ("spooky" quantum back-action)  $\psi(t) = \alpha(t) |1\rangle + \beta(t) |2\rangle$  or  $\rho_{ii}(t)$ 

|α(t)|<sup>2</sup> and |β(t)|<sup>2</sup> evolve as probabilities,
i.e. according to the Bayes rule (same for ρ<sub>ii</sub>)
phases of α(t) and β(t) do not change
(no decoherence!), ρ<sub>ii</sub>/(ρ<sub>ii</sub> ρ<sub>ii</sub>)<sup>1/2</sup> = const

Similar to POVM, general quantum meas., quantum trajectories, etc.



## **Existing solid-state experiments (3 expts.)**

#### 1. Partial collapse of a phase qubit

N. Katz et al., Science-06 (Martinis group, UCSB)



# 2. Uncollapse of a phase qubit (by erasing classical information) N. Katz et al., PRL-08 (Martinis group, UCSB) $\alpha |0\rangle + \beta |1\rangle \rightarrow (\alpha |0\rangle + e^{i\phi}\beta e^{-\Gamma t/2} |1\rangle) / \text{Norm} \rightarrow e^{i\phi}(\alpha |0\rangle + \beta |1\rangle)$

Alexander Korotkov





**University of California, Riverside** 

## **Persistent Rabi oscillations**



- Relaxes to the ground state if left alone (low-T)
- Becomes fully mixed if coupled to a high-T (non-equilibrium) environment
- Oscillates persistently between left and right if (weakly) measured continuously





Alexander Korotkov





# **Existing solid-state experiments (cont.)**

#### 3. Persistent Rabi oscillations

A. Palacios-Laloy et al. (Saclay group, unpublished)



courtesy of Patrice Bertet

- superconducting charge qubit (transmon)
- circuit QED setup

 driven Rabi oscillations

All experiments so far are with superconducting qubits. Can we do something with semiconductor qubits?

Technology is still not very good ⇒ need a non-demanding (but non-trivial) experiment

**Alexander Korotkov** 

University of California, Riverside

## **Setup: one qubit & two detectors**



 $\tau_A$   $\tau_B$ For single-shot measurements partial collapse revealed via **correlations** of  $\int I_A$  and  $\int I_B$ . (Korotkov, PRB-2001)

off

off

Same idea with another averaging → weak values (Romito et al., PRL-2008)

Single-shot measurements are not yet available  $\Rightarrow$  use train (comb) of meas. pulses in QND regime

#### **One-detector stroboscopic QND measurement**



Stroboscopic QND:

Braginsky et al., 1978 Jordan-Buttiker, 2005 Jordan-Korotkov, 2006

**Stroboscopic QND measurement synchronizes (!) phase of persistent Rabi oscillations (attracts to either 0 or \pi)** 

Alexander Korotkov — University of California, Riverside -





anticorrelation between  $I_A$  and  $I_B$ 

## **Idea of the experiment**

Imperfect QND  $\Rightarrow$  random switching between two Rabi phases (0 and  $\pi$ )  $\Rightarrow$  low-frequency telegraph noise



#### correlation (still QND!)

correlation/anticorrelation between low-frequency (telegraph) noises indicates presence of persistent Rabi oscillations

Alexander Korotkov — University of California, Riverside –





## **Numerical results**





#### **Estimates**



Assume:

QPC current I = 100 nA response  $\Delta I/I = 0.1$ duty cycle  $\delta t/T=0.2$  (symmetric) Rabi frequency ~ 2 GHz

Then:

"attraction" (collapse) time 1.5 ns (few Rabi periods) switching rate  $\Gamma_s \approx \frac{1}{4T_2} + \frac{1}{1\mu s} + \frac{\varphi^2}{13 \text{ ns}}$  (many Rabi periods) need  $T_2 > 10 \text{ ns}$   $\frac{S_{\text{telegraph}}}{S_{\text{shot}}} \approx 600 \times \min(\frac{T_2}{250 \text{ ns}}, 1)$  (relatively large noise signal) seems to be reasonable and doable



Alexander Korotkov

University of California, Riverside



## **Summary**

- Proposed experiment: persistent Rabi oscillations may be revealed in one-qubit-two-detectors setup (new features compared to Saclay experiment: synchronization and non-driven Rabi)
- Mechanism: stroboscopic QND measurement attracts to one of two Rabi phases ⇒ strong telegraph noise; correlation/anticorrelation in two detector noises reveals persistent Rabi oscillations
- Experiment may be realized with semiconductor or superconducting qubits

