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Non-projective measurement
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(what is “inside” collapse)
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e Persistent Rabi oscillations (+expt.)
e \Wavefunction uncollapse (+expts.)
e New experimental proposals

- decoherence suppression by uncollapsing
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Quantum mechanics =
Schrodinger equation + measurement postulate

1) Probability of measurement resultr: p. = [{¥ | ;) |2
where Aly,)=r|y,)

2) Wavefunction after measurement = ‘ l//r> (collapse)

Instantaneous collapse is surely an approximation (though often OK in optics,
also the main point in Bell's ineq.), especially obvious for solid-state systems

What is the evolution due to measurement?
(What is “inside” collapse?)

(controversial for last 80 years, many wrong answers, many correct answers)

Our limited scope: solid-state qubit

(simplest system, {

experimental setups) detector >
I(t), noise S
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Superconducting “charge” qubit ve
1

2
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Y. Nakamura, Yu. Pashkin,
and J.S. Tsai (Nature, 1998)
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Quantum coherent
(Rabi) oscillations

Vion et al. (Saclay group); Science, 2002 | |
Q-factor of coherent (Rabi) oscillations = 25,000 L~

(“quantronium?”) .
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Charge qubits with SET readout

Duty, Gunnarsson, Bladh, Guillaume et al. (Echternach’s

V
_I_g VI I(t) “ Delsing, PRB 2004 group), PRB 2004
2e H
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Setup can be used
for continuous
measurements
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All results are averaged over many measurements (not “single-shot”)
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Some other superconducting qubits

Flux qubit Phase qubit Charge qubit

Mooij et al. (Delft) J. Martinis et al. with circuit QED
(UCSB and NIST) R. Schoelkopf et al. (Yale)
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Scaled switching

Some other superconducting qubits

Flux qubit
J. Clarke et al. (Berkeley)
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“Quantronium” qubit

|. Siddiqi, R. Schoelkopf,
M. Devoret, et al. (Yale)
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Semiconductor (double-dot) qubit

T. Hayashi et al., PRL 2003

(@) pylse generator (b)
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Detector is not separated from qubit,
also possible to use a separate detector
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Some other semiconductor qubits
Spin qubit (QPC meas.) Spin qubit Double-dot qubit

C. Marcus et al. (Harvard) L. Kouwenhoven et al. Gorman, Hasko, Williams
A Yqii (Delft) (Cambridge)
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The system we consider: qubit + detector

1) O 1) o Vg Vv
qubit H(I> e 2)0 |2 :I: I '
i 2) o 1) I |1(t)

--m

Cnapi @i

UV ==

detector— —~ = - I;(t) 2e Ll Yale
(OIS — = =
Double-quantum-qot and Cooper-pair box and Charge qubit with
quantum point contact single-electron transistor circuit QED readout

H=Hgg * Hpgr * HinT
Hqag = (¢/2)(c,"c,—c,c,) + H(c,"c,+¢,"c;) € —asymmetry, H — tunneling
Q = (4H2+e?)12/f — frequency of quantum coherent (Rabi) oscillations

Two levels of average detector current: 1, for qubit state [1), |, for |2)

Response: Al=1,-1, Detector noise: white, spectral density S,

DQD and QPC  Hyer =) Ejafa +) E.afa, + ZI,rT(a;fa, +ala,)
(setup due to S, =2el
Gurvitz, 1997) Hnr = ZUAT (C;rcl = C;rcz)(a;ral + arar) '
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What happens to a qubit state during measurement?

Start with density matrix evolution due to measurement only (H=£=0)

“Orthodox” answer “Decoherence” answer
(1 1) (10) 11y ([ 1 exp (=T't) ) (1 )
22| 7o) 22 2 2 2!
—> —>
1 1| N(00) 11 exp (-I't) 1 1
- = - = L ~ 7 — 0 —
\2 2/ (o1 \2 2/ (U 2 2 ) U 2)

|1> or |2>, depending on the result no measurement result! (ensemble averaged)

Decoherence has nothing to do with collapse!

applicable for: | single quant. system | continuous meas.
Orthodox yes no
Decoherence (ensemble) no yes
Bayesian, POVM, quant. traject., etc. yes yes

Bayesian (POVM, quant. traj., etc.) formalism describes gradual collapse
of a single quantum system, taking into account measurement result
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Bayesian formalism for DQD-QPC system

Qubit evolution due to measurement (quantum back-action):

1) 0 0 w(t)=a®)|1)+41)[2) or p;()
2) O 1) |o(t)]* and |B(t)|* evolve as probabilities,
\J i.e. according to the Bayes rule (same for p;)

N 1(t) 2) phases of a(t) and B(t) do not change
(no dephasing!), p;;/(pj pjj)'"* = const

. | (AK., 1998)
ayes rule (1763, Laplace-1812): measured
posterior prior A 2

probability pro?ab. likE}jhOOd
A P(A) I5(res| A) So simple because:
P(Ai |res) = ! ! 1) QPC happens to be an ideal detector

2k P(A)P(res| A) 2) no Hamiltonian evolution of the qubit
Similar formalisms developed earlier. Key words: Imprecise, weak, selective, or conditional
measurements, POVM, Quantum trajectories, Quantum jumps, Restricted path integral, etc.

Names: Davies, Kraus, Holevo, Mensky, Caves, Gardiner, Carmichael, Plenio, Knight,
Walls, Gisin, Percival, Milburn, Wiseman, Habib, etc. (very incomplete list)
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Bayesian formalism for a single qubit

0
H®‘e _]_Vg v e Time derivative of the quantum Bayes rule
o

Vo IE-EI |=|l I  *Add unitary evolution of the qubit
N o 6L L e Add decoherence (if any)

Pu=—Pn=-2(H/n)Imp;, + p;1py (2A1 /S, )[i)‘ lo]

P12 = 1(E/R)pry +I(HR) (011 = P22) + Pra(P11 = P22) (AL SHLLA) - 1y ] -7y,

Hog = (£/2)(c]c, —cic,) + H(c/c, +cic,) (A.K., 1998)
1) = 14, 12) = 1,, Al=l{—1,, 1,=(1{t],)/2, S| — detector noise

y=1I-(Al )’ /4S,, I —ensemble decoherence

Evolution of qubit wavefunction can be monitored if y=0 (quantum-limited)

Averaging over result I(t) leads to  dpy/dt = -dpy/dt = -2(H /7)) Im p;,
conventional master equation:  dp,,/dt =i(g/h)p,, +i(H/R) (0, - py) -T oy,

Ensemble averaging includes averaging over measurement result!
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Assumptions needed for the Bayesian formalism:

e Detector voltage is much larger than the qubit energies involved
eV >>7Q, eV >>al, hleV << (1/Q,1/T")
(no coherence in the detector, classical output, Markovian approximation)

e Simpler if weak response, |Al | << |,, (coupling C~T/Q is arbitrary)

Derivations:

1) “logical”: via correspondence principle and comparison with
decoherence approach (A.K., 1998)

2) “microscopic”: Schr. eq. + collapse of the detector (A.K., 2000)

n
f bit Pij (V) detect j n(Y) g ot classical
qubi <—>f etector T pointer > i~
quantum frequent n — number of electrons
\_ interaction quantum/ collapse passed through detector

3) from “quantum trajectory” formalism developed for quantum optics
(Goan-Milburn, 2001; also: Wiseman, Sun, Oxtoby, etc.)

4) from POVM formalism (Jordan-A.K., 2006)
5) from Keldysh formalism (Wei-Nazarov, 2007)

Universitv of California, Riverside
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Why not just use Schrodinger
equation for the whole system?

qubit
]

detector

>

information

Impossible in principle!

Technical reason: Outgoing information (measurement result)
makes it an open system

Philosophical reason: Random measurement result, but
deterministic Schrodinger equation

Einstein: God does not play dice
Heisenberg: unavoidable quantum-classical boundary
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Fundamental limit for ensemble decoherence

“measurement time” (S/N=1)

I = (A1)?/4S, +v r =25, /[(Al)?
N\ _ (Shnirman & Schén, 1998)
ensemble single-qubit 1
decoherence rate decoherence Tt >—
P
2

~ information flow [bit/s] =/
A.K., 1998, 2000

5 S. Pilgram et al., 2002
y20 = | I' 2 (Al)7/4S, A. Clerk et al., 2002
D. Averin, 2000,2003

2
1- / (Al)”/45S, detector ideality (quantum efficiency)
T T n <100%

77 —
. . 12 Danilov, Likharev,
Translated into energy sensitivity: (€5 €ga)'“ = 7/2  Zorin, 1983

where € is output-noise-limited sensitivity [J/HZ] B K2 /4 B
and €g, is back-action-limited sensitivity [J/Hz] = Eobun Mopt

Sensitivity limitation is known since 1980s (Caves, Clarke, Likharev, Zorin,
Vorontsov, Khalili, etc.); also Zorin-1996, Averin-2000, Clerk et al.-2002, etc.

(€0 €ga- Eopad)l?2 12 < T 2 (A4S, +K2S /4

Alexander Korotkov Universitv of California, Riverside
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POVM vs. Bayesian formalism

General quantum measurement (POVM formalism) (Nielsen-Chuang, p. 85,100):

i
Measurement (Kraus) operator M M, oMy
( ) op Y o oo

M, (any linear operator in H.S.): 4 M| Tr(MrpI\/I;)

Probability: P, =|| M,y ||> or Pr = Tr(M; pM{)

(People often prefer linear evolution

. T _
Completeness : Zr MM, =1 and non-normalized states)

e POVM is essentially a projective measurement in an extended Hilbert space
e Easy to derive: interaction with ancilla + projective measurement of ancilla
e For extra decoherence: incoherent sum over subsets of results

Relation between POVM and ~ decomposition M, =U+/ I\/I;er
quantum Bayesian formalism: s

So, mathematically, POVM and quantum Bayes unitary  Bayes
are very close (Caves was possibly first to notice)

We emphasize not mathematical structures, but particular setups
(goal: find a proper description) and experimental consequences
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Experimental predictions and proposals
from Bayesian formalism

e Direct experimental verification (1998)

e Measured spectrum of Rabi oscillations (1999, 2000, 2002)
e Bell-type correlation experiment (2000)

e Quantum feedback control of a qubit (2001, 2004, 2009)
e Entanglement by measurement (2002)

e Measurement by a quadratic detector (2003)

e Squeezing of a nanomechanical resonator (2004)

e Violation of Leggett-Garg inequality (2005)

e Partial collapse of a phase qubit (2005)

e Undoing of a weak measurement (2006, 2008)

e Decoherence suppression by uncollapsing (2009)

Alexander Korotkov Universitv of California, Riverside



Persistent Rabi oscillations

excited
— l —— - Relaxes to the ground state if left alone (low-T)
left —d — right ~ Becomes fgllly.mixed if poupled to a high-T
'T' (non-equilibrium) environment
ground - Oscillates persistently between left and right

yA . _
lleft) if (weakly) measured continuously
\ (“reason’: attraction to two points

€)s i+ +|9)  on the Bloch sphere great circle)
/
[right) to verify:
stop & check
P11 h Phase of Rabi oscillations
0.5 fluctuates (dephasing)
Repy; |
0.0 Direct experiment is difficult
Imp,; 7 (good quantum efficiency,
05 : bandwidth, control)
0

10 15 20 25 30

A.K., 1999
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Indirect experiment: spectrum
of persistent Rabi oscillations

AK., LT1999
jél Al A.K.-Averin, 2000
ubit detector——>
1 I (D) =1y+=-2()+E(1)  zisBioch
P S T T T 2 _ _ coordinate
=13 (const + signal + noise)
10- Q=2H i e . . S, (@)
. 0 i amplifier noise = higher pedestal, 1
. : .
% - _ (Al /HS, | ) poor qugntum efficiency, n<l
S 67 | - ut the peak is the same!ll :
A ] \ - 0  T@/Q 2
* ; : f“ﬁ\;_ integral under the peak < variance (z%)
2 - [
1 03 How to distinguish experimentally
00 05 15060/' Qlfs 20 persistent from non-persistent? Easy!

(2 - Rabi frequency _ o 5 5
perfect Rabi oscillations: (z¢)=(cos<)=1/2

imperfect (non-persistent): (z2) <« 1/2
QX(A’T quantum (Bayesian) result: (z2)=1 (1l

(a)Z—QZ)2+F2a)2 |
(demonstrated in Saclay expt.)

Alexander Korotkov Universitv of California, Riverside

peak-to-pedestal ratio = 4n < 4

S|(w)=3, +




Ajey  How to understand (z2)=1?

e)e I *|9)
| 9 qubit

/
[right) 1(tH)=1, +A—|z(t)+<§(t) r ()
2 detector —>

First way (mathematical)

We actually measure operator: Z— G,
(What does it mean?

72 Gzz =1 Difficult to say...)
Second way (Bayesian)
S =S, + A—IZ S + al S
(@) = EE 4 () 5 p £7 (@)

@ guantum back-ac_:tion Chapges z Equal contributions (for weak
in accordance with the noise & coupling and n=1)

(what you see becomes reality)
Can we explain it in a more reasonable way (without spooks/ghosts)?

+1 ?
Z(t); NoO (under assumptions of macrorealism;
1 Leggett-Garg, 1985)

or some other z(t)?

Alexander Korotkov Universitv of California, Riverside
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Leggett-Garg-type inequalities for
continuous measurement of a qubit

EIHH toct Ruskov-A.K.-Mizel, PRL-2006
quot e Ny Jordan-A K -Bttiker, PRL-2006

Assumptions of macrorealism  Leggett-Garg,1985 )

(similar to Leggett-Garg'85): Kij=<(Q;i Q;) Sl = l((”)'_
. < N

1(t) = |0 +(Al/2)z(t)+ &(1) It Q=%1, then §2jij/\'_
Z)IST, (O ZE+N=0 gl =P |
- KiatKpstKyy =Ky =2 T el 2

Then for correlation function : :
quantum result violation

K(z) = (1) I(t+7)) 3 3

K(z))+ K(z,) - K(z; +7,) < (Al /2)° E(Al /2)* x>

and for area under narrow spectral peak ,

j[S,(f)—Sﬂ]df <(8/7%)(Al /2)? (Al /2)? x%

N is not important!  Experimentally measurable violation

(Saclay experiment)
Alexander Korotkov Universitv of California, Riverside




May be a physical (realistic) back-action?

bit detector > Al
qubit j<—> T H(©) =1y +=-2(D) + £ (D)
f S ((o)n OK, cannot explain without back-action
g (G z(t+7)) # 0
75 Nl
0 , But may be there is a simple classical
0 Tw/Q 2 back-action from the noise?

In principle, classical explanation cannot be ruled out
(e.g. computer-generated I(t); no non-locality as in optics)

Try reasonable models: linear modulation of
the qubit parameters (H and €) by noise &(t)

No, does not work!
Our (spooky) back-action is quite peculiar: {£(t) dz(t+0)) >0
“what you see is what you get”: observation becomes reality

Alexander Korotkov Universitv of California, Riverside




Recent experiment (Saclay group, unpub.)

Stripline resonator

transmon
0.5 T T T T T T T T T T T T T T T
Z n>T0.234 T <n>=0.78 >=1%%1  A. Palacios-Laloy et al.
E (unpublished)
:‘E’ courtesy of
g Patrice Bertet

0 5 1015 2025 0 5 10 152025 0 5 10 15 20 25 30

frequency (MHz - -
e e redueney ) e superconducting charge qubit
= - I\D/Ietlia.ctlorBWcorrected 0.75 : -8/752 (transmon) |n CerUIt QED SetUp
0.3 ultiplied by f, 10.66

A =5MHz 8 i
£ 050

(microwave reflection from cavity)
e driven Rabi oscillations

e perfect spectral peaks
Wb, | e LGl violation (both K and S),

Alexandétiorotkov Universitv of California, Riverside
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Next step: quantum feedback?

Goal: persistent Rabi oscillations with zero linewidth (synchronized)
Types of quantum feedback:

Bayesian Direct “Simple”
Best but very difficult a la Wiseman-Milburn Imperfect but simple
(monitor quantum state (1993) (do as in usual classical

and control deviation) (apply measurement signalto | feedback)

asired evolution  CONtrol with minimal processing) be =F xg,

fe‘fdbaf" : control
control stage | Signal |comparison .

(barrier height) X (Q t) X -
(¢ X COS , T-average j—p
detector Bayesian Pii(9) x I(t)_ IO —cos Ot C<<1 1(t) L - g ¢m
0<Ho X; equations Al /2 detector e local oscil. v 'S_
= 10 . L x sin (Q t), T-average f=p E,
AH fb / H = F x A¢ E 08 | —~1.0 I TR NN [N NN TN SR [ SR NN SN N SN 1
~100 bl L L L 8 . ..? { Nefr=1 Cc=0.1
2 I Y A = 06+ = © 0.8 AD%S.1=1 F
% ] / _2‘_) averaging time o clah l]
5 095 L © 044 1, = (21/Q)10 =] i
= /J 2 c=1 5" sz
_5 000 ] Cenv /Cdet=0_/0.1/ 0.5 s S o2 n=1 i 8 v ==
S 9 S [ 1,7 b
8 el 2 g |
D 085 - O o0 02 04 06 08 gﬂl— -
L] F (feedback strength) A
00'800"{'5'3"4'"5"%';';3'&'10 0.00.0' 0.2 0.4 06 "o
F (feedback strength) Ruskov & A.K., 2002 F/C (feedback strength)
Ruskov & A.K., 2002 A.K., 2005
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Quantum feedback in optics

First experiment: Science 304, 270 (2004)

Real-Time Quantum Feedback
Control of Atomic
Spin-Squeezing
IM Geramia,® Jehn K. Stockten, Hides Mabuchi

Real-time fesdback performed during a quantum nondemaolition measurament
of atomic spin-angular momentum allowed us to influence the quantum sta-
tistics of the measurement outcome We showed that itis possible to hamess
measurement backaction as a form of actuation in quantum contral, and thus
wie describe a valuable tool for quantum information scence, Our fesdback-
mediated procedure generates spin-squeszing, forwhich the reduction in quan-
tum uncertainty and resulting atomic entanglement are not conditioned on the
Measurement outoomee,

First detailed theory:
H.M. Wiseman and G. J. Milburn,
Phys. Rev. Lett. 70, 548 (1993)

25/52 Alexander Korotkov
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Quantum feedback in optics

First experiment: Science 304, 270 (2004)

Real-Time Quantum Feedback
Control of Atomic
Spin-Squeezing

IM Geramia,® Jehn K. Stockten, Hides Mabuchi

1) | Feedback | }
Controller

Feedback

Computer
DAQ

QND Probe
Laser

Real-time fesdback performed during a quantum nondemolition m-.-asur-.-rn-.-nt
of atomic spin-angular momentum allowed us to influence the

tistics of the measurement outcome We showed that It = t-:- h
measurerment backaction as a form of act

[, and Pius
wie describe a valuable tool for q ur fesdback-
mediated procedure generates spi

E’che reduction in quan-
tum uncertainty and resulting ato anglementare not conditioned on the

Measurement outoomee,

PRL 94, 203002 (2005) also withdrawn N T e .=
First detailed theory: Recent experiment:

H.M. Wiseman and G. J. Milburn, Cook, Martin, Geremia,

Phys. Rev. Lett. 70, 548 (1993) Nature 446, 774 (2007)

(coherent state discrimination)
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Undoing a weak measurement of a qubit

(“uncollapse”)
A.K. & Jordan, PRL-2006

e i

NewScientist It is impossible to undo “orthodox” quantum

measurement (for an unknown initial state)

NINE LIVES + ONE

i the tade ol B P quasnium ol

Is it possible to undo partial quantum measurement?
(To restore a “precious” qubit accidentally measured)

Yes! (but with a finite probability)

If undoing is successful, an unknown state is fully restored

w Yy (still
weak (partial)> L 41 unknown)

(partially "ﬂsuccessful
collapsed) \ v,

undoing
(information erasure)

Yo

(unknown) | measurement

Alexander Korotkov Universitv of California, Riverside



Quantum erasers in optics
Quantum eraser proposal by Scully and Driithl, PRA (1982)

1
(a)

a a
b
a h Yb Iy Y blI
Iy Y ®
b c B

{b) (e) {d)

FIG. 1. (a) Figure depicting light impinging from left
on atoms at sites 1 and 2. Scattered photons ¥, and y,
produce interference pattern on screen. (b) Two-level
atoms excited by laser pulse [|, and emit ¥ photons in
a —b transition. (c) Three-level atoms excited by pulse
1, from ¢ —a and emit photons in g —b transition. (d)
Four-level system excited by pulse /; from ¢ —a fol-
lowed by emission of ¥ photons in @ — & transition.
Sccond pulsc /5 takes atoms from b—b‘. Decay from
b'—c results in emission of ¢ photons.

ELECTRO-OPTIC

SHUTTER
\u
A A A
lz . _..1//
& DETECTOR 7 /
/

FIG. 2. Laser pulses /| and /; incident on atoms at
sites 1 and 2. Scattered photons ¥, and ¥, result from
a b transition. Decay of atoms from b’ —c results in
¢ photon emission. Elliptical cavities reflect ¢ photons
onto commeon photodetector. Electro-optic shutter
transmits ¢ photons only when switch is open. Choice
of switch position determines whether we emphasize
particle or wave nature of ¥ photons.

Interference fringes restored for two-detector
correlations (since “which-path” information

is erased)

Our idea of uncollapsing is quite different:
we really extract quantum information and then erase it

Alexander Korotkov
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Uncollapse of a qubit state

Evolution due to partial (weak, continuous, etc.) measurement
IS non-unitary (though coherent if detector is good!), therefore
it is impossible to undo it by Hamiltonian dynamics.

How to undo? One more measurement!

1) |1 | 1)

x - .
W f ——
| 0) | 0) | 0)
need ideal (quantum-limited) detector
(similar to Koashi-Ueda, PRL-1999, (Figure partially adopted from
also Nielsen-Caves-1997, Royer-1994, etc.) Jordan-A.K.-Biittiker, PRL-06) ¢
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Uncollapsing for DQD-QPC system

A.K. & Jordan, PRL-2006

|2> |1> H=0 First “accidental” Undoing
M measurement measurement
Qubit r(t) i < >
|(t)¢ (DQD) (®
Detector
(QPC)
Simple strategy: continue measuring |2>
until result r(t) becomes zero! Then any Meas. result:

L e . Al pt
unknown initial state is fully restored. r(t) = S_[ IO 1(t") dt' - 1,t]
|

(same for an entangled qubit)
If r =0, then no information

However, if r = 0 never happens, then and no evolution'

undoing procedure is unsuccessful.
e‘|r0|
Probability of success: P, =

I —I
o, (0)+ 675, (0)

Alexander Korotkov Universitv of California, Riverside
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General theory of uncollapsing

. M pMT
POVM formalism  Measurement operator M,: ~ p —> . 7
(Nielsen-Chuang, p.100) Tr(M, pM/,)

Probability: P, =Tr(M, pMj) Completeness : Zr I\/I;fl\/lr =1

(to satisfy completeness,

. -1
Uncollapsing operator: CxM; eigenvalues cannot be >1)

max(C) = min; \/Fis P, — eigenvalues of I\/Ier
min P
Probability of success: Ps < r

T PP
P (p;n) — probability of result r for initial state p;,,

A.K. & Jordan, 2006

min P, — probability of result r minimized over
all possible initial states

Averaged (over r) probability of success: Py < Zr min P,

(cannot depend on initial state, otherwise get information)
(similar to Koashi-Ueda, 1999)

Alexander Korotkov Universitv of California, Riverside




Partial collapse of a Josephson phase qubit

N. Katz, M. Ansmann, R. Bialczak, E. Lucero,

R. McDermott, M. Neeley, M. Steffen, E. Weig,

A. Cleland, J. Martinis, A. Korotkov, Science-06
> [

N\
How does a qubit state evolve
0) X7 \ in time before tunneling event?

(What happens when nothing happens?)
Qubit “ages” in contrast to a radioactive atom!

Main idea: | out), if tunneled

w=a|0)+B|1) > pt)={a|0)+pe "% 1)
e+ plreT

(better theory: Pryadko & A.K., 2007)
amplitude of state |0> grows without physical interaction
finite linewidth only after tunneling
continuous null-result collapse
(similar to optics, Dalibard-Castin-Molmer, PRL-1992)

Alexander Korotkov Universitv of California, Riverside

, if not tunneled




Superconducting phase qubit at UCSB

Courtesy of Nadav Katz (UCSB)

= e
Flux < AANG
bias Iuw L, A~ >
Qubit Reset Compute Meas. Readout
lacTL, saub X s@ YV I \ J \ timg
X o> \J /‘\\_
I >

i...lé
v

S
Repeat 1000x
prob. 0,1
|
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Experimental technique for partial collapse

a  fast SQUID b Operation
State ql}blt amplifier
control so Vso
L |
e e R 300K |
____________________________ 4K
biasT
= 25 mK Ly = Lae ! Ol
Partial Tomography & Final measurement
d state ' mzaI:urement U og) !
preparation p ' (X: y) '
' | '
: : :
s : i |
7ns 15 ns 1 10 ns ! 10ns t

v

Alexander Korotkov

Universitv of California, Riverside

Nadav Katz et al.
(John Martinis group)

Protocol:
1) State preparation by
applying microwave pulse
(via Rabi oscillations)

2) Partial measurement by
lowering barrier for time t

3) State tomography (micro-
wave + full measurement)

Measurement strength
Pp=1-exp(-It)

Is actually controlled
by I', not by t
P=0: no measurement
p=1: orthodox collapse




Experimental tomography data
Nadav Katz et al. (UCSB, 2005)

1 3 [
Dousdiruen smolitude |01 ih]
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Polar angle

Falar angle By irad)

Azimuthal angle

Visibility

Mormalized visihility

(rad)

)

Azirmuthal rotation @

Gl
&

S

=

Partial collapse: experimental results
N. Katz et al., Science-06

o

e In case of no tunneling
(null-result measurement)

lines - theor :
| 4 phase qubit evolves

dots and squares — expt. T

no Iﬁttipg plarameters in (a)land (b) . « This evolution is well

a

=

-
=
-]

T

o
=
H

o
=
]

| | | | |
0.1 02 0.3 0.4 0& 0.5 07 na o9 1
Farial measurement probability g

. described by a simple
probability P gayesian theory, without
=025 fitting parameters

|

0.75
Fl e Phase qubit remains fully
coherent in the process

—_

02 04 06 08 1 12 of continuous collapse
Measure pulse amplitude 8V, _ (V) pUISe ampl

= (experimentally ~80%

. 2 raw data, ~96% after

cl
(a7

08k ™
}‘—-5-.—. - A »
m

account for T1 and T2)

in (c) T4=110 ns, T,=80 ns (measured) quantum efficiency
0.1 0z 0.3 0.4 0.5 06 0.7 0.8 0.9 1
Fartial measurement prabability o probablllty p 770 > 0°8
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Uncollapse of a phase qubit state
A.K. & Jordan, 2006
1) Start with an unknown state

2) Partial measurement of strength P
3) m-pulse (exchange |0) <> |1))
4) One more measurement with

the same strength P

5) Tm-pulse

p=1-e1t

1y

If no tunneling for both measurements, 0)
then initial state is fully restored!

a|0)+ege TV 1)
Norm

ei¢ae_rt/2 10) + ei¢ﬂe_r”2 1)
Norm

a|0)+ 5|1) > —

=e'(a|0)+p|1))

phase is also restored (spin echo)
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Experiment on wavefunction uncollapse

N. Katz, M. Neeley, M. Ansmann,
oreperation comography & R. Bialzak, E. Lucero, A. O'Connell,
H. Wang, A. Cleland, J. Martinis,

T
,WNVW_, and A. Korotkov, PRL-2008
,—«/uw W

4 p p
—>
— — time Nature News
10 ns 10 ns ature-2008

Uncollapse protocol:

- partial collapse

- m-pulse

- partial collapse
(same strength)

State tomography with
X, Y, and no pulses

_10+]1)

- Pl ~

-~ ’
- e, 2

Tomographic probabilities

Vin Background P should
wrong uncollapsed be subtracted to find

0 L Il Il . . .
0.06 0.08 0.1 0.12 0.14
Partial meas. pulse amp. [V] quIt denSIty matrix
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Experimental results on the Bloch sphere

Initial 1) 10)—i|1) 10)+ | 1) N. Katz et al.
state 22 22 | 0)
S - i o
Partially @4 %\k 25 N
collapsed 1 ST S
5'530,5 y |
0 § 0.-—-‘
0 %5 1 X 0051
(e) 2 NN (g)/’/ﬁ‘ %ﬁ& (h) 7 @x
Uncollapsed }%, %
. SR
uncollapsing [ &Z "/
works well! 05|
O‘é' 0 ) | — 0 .
0051 0051 0051 0051

Both spin echo (azimuth) and uncollapsing (polar angle)

Difference: spin echo — undoing of an unknown unitary evolution,
uncollapsing — undoing of a known, but non-unitary evolution
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Quantum process tomography

N. Katz et al.

Real]  Imagiy] (Martinis group)

—

@)
c
)
Q.
@®©
= 05
o
O
c
>

fidelity of

- uncollapsing works 1
(b) "~ with good fidelity! N

0.1 0.2 0.3 0.4 0.5 0.6 OI.? 0.8 0.9 1
partial meas. prob. p

(=]

[w]

Why getting worse at p>0.67
Energy relaxation p.=t/T,=45ns/450ns = (.1
Selection affected when 1-p ~ p,.

Overall: uncollapsing is well-confirmed experimentally
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Recent experiment on uncollapsing
using single photons
Kim et al., Opt. Expr.-2009

'Dark port” \: [ *Diark por” H i (a)
I~
1L
i
I:.sl',
II
ISIE'II
-0.5}
-1.nl‘L.
(a) (b) (c) (@) Ik‘u“‘p : X
Z Z ™
> - b
: ! L —
L 0.9
- -
‘ L E 0.8
: i =07
L 06
= 0.4 05 06 07 08 09 10
Partial Collapse Strength (o)
; g | I 4
B < | ¥ . . .
! e very good fidelity of uncollapsing (>94%)

e measurement fidelity is probably not good
(normalization by coincidence counts) /=

Alexander Korotkov Universitv of California, Riverside




Suppression of T,-decoherence

by uncollapsmg

| Protocol: T, 7{ |
Mrage period 1 J_
/ (zero temperature) /
éartial collapse unco’IIapse
towards ground (measurem.

state (strength p)  strength p,,)

(almost same as existing experiment!)

|deal case (T, during storage only, T=0)
for initial state |y; )=a [0) +B |1)
lwo= v, with probability (1-p)e
lwp= 10) with (1-p)?|p|2e™T"(1-eVT")

-t/T1

procedure preferentially selects
events without energy decay

Trade-off: fidelity vs. selection probability

Alexander Korotkov

X
o

S
Fa
= o
@

QPT fidelity (

o 9
(@)] (@] ~
1 ] 1 1

0.0

where

12,
—t/T

= optimum: 1-p,=¢€ 1a-p)

Korotkov & Keane,
arXiv:0908.1134

1 Ideal

-
’4

................................

uncollapsing

1.0

0.2 0.4 0.6 0.8
measurement strength p

Unraveling of energy relaxation
® —t/2T
aff e 1

—t/T
Vi _
a*ﬂe—t/le 1-| B ot/

= P, [0X0|+(1- p) [§)¥ |

p, =181 -

~t/2T, |

=(a|0)+ pe 1))/ Norm
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An issue with quantum process
tomography (QPT)

QPT fidelity is usually F, = Tr(¥yegireq £) Analytics for the ideal case

where 7 is the QPT matrix. Average state fidelity

However, QPT is developed for a linear = 1 + lI1(1 +C)
quantum process, while uncollapsing av = C C?
(after renormalization) is non-linear. “Naive” QPT fidelity

A better way: average state fidelity F — _1+ 1 + 4+C

£ 4 41+C) 2(2+C)
Fav = Tr(oUy lvinXvin D d [yi) where C =(1-p)1—e™Th

Without selection p,=1-¢ Ft(l p)
=5 (d +1)F _ 1.04——~1——!
F,=Fa = r v~ d=2 ,] Ideal e m Yy
. . . LLx 08-
Another way: “naive” QPT fidelity 07 o7 o Y. - i
(via 4 standard initial states) LN e - without & =031
R uncollapsing
The two ways practically coincide 08—
(within line thickness) measurement strength p

Alexander Korotkov Universitv of California, Riverside




Realistic case (T, and T at all stages)

b 10 l 1 | | ; |
2 fidelity I
3 08—
S (1-Py)xsry= (1P,
o
= O T Rwithout
= uncollapsing
qJ 04-' S - pro
-O - ~Z < .
4= ~~..:~a~b~//~/t]<
E 02_ KI = e_tl /Tl S« .o
@] o 5/To
®
0.0 +—— | | . |
00 02 04 06 08 10

measurement strength p

e decoherence due to pure dephasing
is not affected

e T,-decoherence between first nt-pulse
and second measurement causes
decrease of fidelity at p close to 1

Trade-off: fidelity vs. selection probability

Alexander Korotkov

+
L

| Protocol: - imi
N
Protecteq 4
meas meas

e Easy to realize experimentally
(similar to existing experiment)

e Increase of fidelity with p can be
observed experimentally

e Improved fidelity can be observed
with just one partial measurement

Uncollapse seems to be the only
way to protect against T,-decohe-
rence without encoding in a larger
Hilbert space (QEC, DFS)

A.K. & Keane,
arXiv:0908.1134
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One more experimental proposal:

Persistent Rabi oscillations
revealed in low-frequency noise

Hopefully, simple enough for semiconductor qubits

Goal: something easy for experiment, but still
with a non-trivial measurement effect
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Setup: one qubit & two detectors

I IA() B(t)1 loff 1 I_‘l off
Ta B
For single-shot measurements
@ O+—0 @ partial collapse can be revealed
Q via correlations of [1, and [l;.
qubit (Korotkov, PRB-2001)
QPCA (DQD) QPCB Same idea with another
averaging — weak values
Single-shot measurements are not yet available (Romito et al., PRL-2008)

= use train (comb) of meas. pulses in QND regime

One-detector stroboscopic QND measurement

+  At=2m/CQ2 (one pulse per Rabi period) Stroboscopic QND:
V(D) [ :'| ﬂ ﬂ ﬂ ﬂ ﬂ time Braginsky, Vorontsov,

g Khalili, 1978
Z(t; AVVVVVAV VYV Jordan. Buttiker, 2005
1] VVVVVVVVVVVV/ Jordan, Korotkov, 2006

Stroboscopic QND measurement synchronizes (!) phase
of persistent Rabi oscillations (attracts to either 0 or )

Alexander Korotkov Universitv of California, Riverside




Idea of experiment

| A(1) Ig(t)
I 1 Perfect QND = correlation/anticorr.

@ s @ between currents in two detectors
Q Imperfect QND = random switching
qubit between two Rabi phases (0 and =)
QPCA (DQD) (QPCB = low-frequency telegraph noise
same combs on V, and V; n-shifted combs on V, and Vg

VAol 1opp r Vaolp o popop

ANV LAYV

z(t) Z(t)

D RAAAAANANS D RAAAAAAAN
N0 0 ¢

VOl 0 0 0 0t Vs®L ]

anticorrelation between |, and I correlation (still QND!)

correlation/anticorrelation between low-frequency (telegraph)
noises indicates presence of persistent Rabi oscillations
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Analytical results for current noise

[a® O]

StA T=21/Q

<
<

n
»

»

@ et @ Va®| [ _| _| t

qubit
QPCA (DQD) QPCB

2
St St 1/2T
S|a(@) =S,—L+| =2 | (Al,)? :
IA(@) = S T (T J (AlA) 1+(w/2I)*
L J) O 4

shot noise telegraph noise
§t 5tB 1/2I
®) =+ Al , Al 2
A, 18(@) =+ ° 1+ (w/2l)?
(fully Correlated/antlcorrelated in first approx.)

. 1.9 5 MM StaM , +StZM
S + [¢ + )
4T, 4z M+ Mg 12T

Myg =06t g(Al \5) /4S, 5, Spp=2el,g(1-Txg)
Assumed: ¢ <1, St T, St<4S/(Al)*, T,>T

Q- G

combs)

¢@/C2 (phase shift @)
z
S
= SlA
-
< J\ SiB
g-n 0 nm
= (phase shift
> between
b
Y
o
)
2
'S
=

Correlat. factor K =~ 1
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Numerical results

Low-frequency telegraph noise
(dashed) and cross-noise (solid)

~ 04 +
3 solid - cross-noise I
. a - (correlation) I N
= dashed - one-detector ,A‘
o 024 telegraph noise / B
~ /
N2 /o

] -7 TS~ - = -
~ 7 Nk
=, 00- v >
mﬁ i — o6t/T=0.05 |
@ -0.2 ot/T=0.1 |

2 1/T,=0
£ 1 T(AL, 5)?/4S , 5=1 harmonic [
-04 | : |
-0.5 0.0 05

Calculation based on numerical
solution of the master equation

@/21 (phase shift)

Alexander Korotkov Universitv of California, Riverside



Estimates

1 A IB(t)I Assume:
@ OO @ QPC current 1=100 nA
@) response Al/l=0.1
qubit duty cycle t/T=0.2 (symmetric)

QPCA (DQD) QPCB Rabi frequency ~ 2 GHz

Then:
“attraction” (collapse) time 1.5 ns (few Rabi periods)

1 1 2 o
switching rate I's = + + 2 (many Rabi periods)

4T, 1us 13ns

need T,>10ns
S

T _ : :
telegraph _. 600 x min(—2—, 1) (relatively large noise signal)
Shot 250 ns

seems to be reasonable and doable
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Useful modification

vol[l [ [l : Va0 ] : ] IJ | U :
veOl I [ [t — Ol ] [l T

(zero average, easier for rf)

) ] (harmonic rf
Any alternative explanation? is also OK)

—”' O 1 t)“_ 1) no oscillations — then no corr./anticorr.

2) unsynchronized Rabi oscillations — then
D 0«0 6@ different dependence on ¢ (cos ¢ instead of ¢~2);
| 1% 7 also [S,qeq (f) df at least twice smaller

(<)

QPC A QPC B 3) resonant frequency - driven Rabi?
Then oscillations between |g) and |e) (both
® do not give a signal) with different frequency.

Driven Rabi decreases corr./anticorr. (not an
alternative explanation, but should be avoided)

Good news: both phases insensitive to driven Rabl
Alexander Korotkov University of California. Riverside
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Conclusions

e It is easy to see what is “inside” collapse: simple Bayesian
formalism works for many solid-state setups

e Rabi oscillations are persistent if weakly measured
e Collapse can sometimes be undone (uncollapsing)
e Three direct solid-state experiments have been realized

e Many interesting experimental proposals are still waiting
Two last proposals:
- suppression of T,-decoherence by uncollapsing
- persistent Rabi oscillations revealed via noise
correlation in two detectors
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