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Niels Bohr:
“If you are not confused by
quantum physics then you 
haven’t really understood it”

Richard Feynman:
“I think I can safely say that nobody
understands quantum mechanics”
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Quantum mechanics =
Schrödinger equation

+
collapse postulate

1)  Probability of measurement result   pr =

2)  Wavefunction after measurement   =

2| | |rψ ψ〈 〉
rψ

What is “inside” collapse? 
(What if measurement is continuous, 
as typical for solid-state experiments?)

• State collapse follows from common sense
• Does not follow from Schr. Eq. (contradicts; Schr. cat,

random vs. deterministic)
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Einstein-Podolsky-Rosen (EPR) paradox
Phys. Rev., 1935

In a complete theory there is an element corresponding to each element of 
reality. A sufficient condition for the reality of a physical quantity is the 
possibility of predicting it with certainty, without disturbing the system.

1 2 2 1( , ) ( ) ( )n nnx x x u xψ ψ= ∑
1 2 1 2 1 2( , ) exp[( / )( ) ] ~ ( )x x i x x p dp x xψ δ

∞

−∞
= − −∫ =

Bohr’s reply (Phys. Rev., 1935)
It is shown that a certain “criterion of physical reality” formulated …
by A. Einstein, B. Podolsky and N. Rosen contains an essential 
ambiguity when it is applied to quantum phenomena.

(seven pages, one formula: Δp Δq ~ h)

=>  Quantum mechanics is incomplete

1x 2x Measurement of particle 1 
cannot affect particle 2,
while QM says it affects
(contradicts causality)

(nowadays we call it entangled state)

Crudely: No need to understand QM, just use the result
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Bell’s inequality (John Bell, 1964)

a b 1 2 1 2
1 ( )
2

ψ = ↑ ↓ − ↓ ↑

Perfect anticorrelation of results 
for same meas. directions, a b(setup by David Bohm)

Is it possible to explain the QM result assuming local realism 
and hidden variables (without superluminal collapse)?  No!!!

Assume:

=
GG

( , ) 1, ( , ) 1A a B bλ λ= ± = ±
GG (deterministic result with

hidden variable λ)
Then: | ( , ) ( , ) | 1 ( , )P a b P a c P b c− ≤ +

G GG G G G

( ) ( ) ( ) ( )P P P P P≡ + + + −− − + − − −+

( , )
where

QM: For 0°, 90°, and 45°:P a b a b= −
G GG Gi 0.71 1 0.71≤ − violation!

Experiment (Aspect et al., 1982; photons instead of spins, CHSH):
yes, “spooky action-at-a-distance”
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What about causality?
Actually, not too bad: you cannot transmit your own information 

choosing a particular measurement direction a
Result of the other  
measurement does not
depend on direction a

a

or
Randomness saves causality

Collapse is still instantaneous: OK, just our recipe, 
not an “objective reality”, not a “physical” process

Consequence of causality: No-cloning theorem

You cannot copy an unknown quantum state
Proof: Otherwise get information on direction a (and causality violated)

Wootters-Zurek, 1982; Dieks, 1982; Yurke

Application: quantum cryptography
Information is an important concept in quantum mechanics
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Quantum measurement 
in solid-state systems

No violation of locality – too small distances

However, interesting issue of continuous measurement 
(weak coupling, noise ⇒ gradual collapse)

Starting point: qubit

detector
I(t), noise S

What happens to a solid-state qubit (two-level system)
during its continuous measurement by a detector?
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Superconducting “charge” qubit

Vion et al. (Devoret’s group); Science, 2002
Q-factor of coherent (Rabi) oscillations = 25,000

Single Cooper
pair box

Quantum coherent 
(Rabi) oscillations

2e

Vg

n+1

EJ

2
2(2 )ˆ ( )

2
(| 1 | | 1 |)

2

ˆ
J

g
eH n
CE n n n n

n
〉 〈 + + + 〉 〈

= -

-

Y. Nakamura, Yu. Pashkin, 
and J.S. Tsai (Nature, 1998)

2 gn

Δt (ps)

“island”

Josephson
junction

n

n: number of
Cooper pairs
on the island
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More of superconducting charge qubits
Duty, Gunnarsson, Bladh,

Delsing, PRB 2004
Guillaume et al. (Echternach’s 

group), PRB 2004

2e

Vg V I(t)

Cooper-pair box
measured by single-
electron transistor 
(rf-SET)

All results are averaged over many measurements (not “single-shot”) 

Setup can be used 
for continuous 
measurements
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Some other superconducting qubits
Flux qubit

Mooij et al. (Delft)

Phase qubit
J. Martinis et al. 

(UCSB and NIST)

Charge qubit 
with circuit QED 

R. Schoelkopf et al. (Yale)
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I. Siddiqi, R. Schoelkopf, 
M. Devoret, et al. (Yale)

J. Clarke et al. (Berkeley)

Some other superconducting qubits
“Quantronium” qubitFlux qubit
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Semiconductor (double-dot) qubit
T. Hayashi et al., PRL 2003

Detector is not separated from qubit, 
also possible to use a separate detector

Rabi oscillations
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Some other semiconductor qubits
Double-dot qubit

Gorman, Hasko, Williams 
(Cambridge)

Spin qubit
C. Marcus et al. (Harvard)

Spin qubit
L. Kouwenhoven et al.

(Delft)
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“Which-path detector” experiment

Theory: Aleiner, Wingreen,
and Meir, PRL 1997

2 2( )
(1 )

( )
4 I

eV T
h T T

I
S

Δ
Γ = =

Δ
−

Dephasing rate:

ΔI – detector response,  SI – shot noise

The larger noise, the smaller dephasing!!!

(ΔI)2/4SI ~ rate of “information flow”

Buks, Schuster, Heiblum, Mahalu, 
and Umansky,  Nature 1998

A
-B

lo
op

I(t)
V

QPC
detector
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The system we consider: qubit + detector

Cooper-pair box (CPB) and
single-electron transistor (SET)

eH

I(t)
Double-quantum-qot (DQD) and

quantum point contact (QPC)

qubit

detector
I(t)

H = HQB + HDET + HINT

HQB = (ε/2)(c1
+c1– c2

+c2) + H(c1
+c2+c2

+c1) ε – asymmetry, H – tunneling

Ω = (4H 2+ε2)1/2/Ñ – frequency of quantum coherent (Rabi) oscillations

Two levels of average detector current: I1 for qubit state |1〉,  I2 for |2〉
Response: ΔI= I1–I2 Detector noise: white, spectral density SI

2e

Vg V

I(t)

DQD and QPC
(setup due to 
Gurvitz, 1997)

† † † †
, ( )DET r r r r rl l l l ll r l rH E a a E a a T a a a a= + ++∑ ∑ ∑

† † † †
1 1 2 2, ( ) ( )INT r rl ll rH T c c c c a a a a= Δ − +∑ 2IS eI=

|1Ò

|2Ò
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1 01 1
0 02 2

1 1 0 0
2 2 0 1

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠
⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

/
2

What happens to a qubit state during measurement?
Start with density matrix evolution due to measurement only (H=ε=0 )

“Orthodox” answer

1 1 1 exp( ) 1 0
2 2 2 2 2
1 1 exp( ) 1 10
2 2 2 2 2

t

t

−Γ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

−Γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

→ →

“Conventional” (decoherence) answer 

|1> or |2>, depending on the result no measurement result!  (ensemble averaged)

Orthodox and decoherence answers contradict each other!

applicable for: single quant. system continuous meas.
Orthodox yes no

Decoherence (ensemble) no yes
Bayesian, POVM, quant. traject., etc. yes yes

Bayesian (POVM, etc.) formalism describes gradual collapse of a single 
quantum system, taking into account noisy detector output I(t)
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Bayesian formalism for DQD-QPC system

(A.K., 1998)

Similar formalisms developed earlier.  Key words: Imprecise, weak, selective, or conditional 
measurements, POVM, Quantum trajectories, Quantum jumps, Restricted path integral, etc.

Names: Davies, Kraus, Holevo, Mensky, Caves, Gardiner, Carmichael, Plenio, Knight,
Walls, Gisin, Percival, Milburn, Wiseman, Habib, etc. (very incomplete list)

eH

I(t)

Qubit evolution due to measurement (quantum back-action):

So simple because: 
1) QPC happens to be an ideal detector
2) no Hamiltonian evolution of the qubit( ) (res | )

( | res)
( ) (res | )k kk

i i
i

P A P A
P A

P A P A
=
∑

Bayes rule (1763, Laplace-1812):

H=0|1Ò

|2Ò 1)  |α(t)|2 and |β(t)|2 evolve as probabilities,
i.e. according to the Bayes rule (same for ρii)

2)  phases of α(t) and β(t) do not change
(no decoherence!), ρij /(ρii ρjj)1/2 = const

( ) ( ) | 1 ( ) | 2t t tψ α β= 〉 + 〉 or ( )ij tρ

likelihoodposterior
probability

prior
probab.
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Bayesian formalism for a single qubit

|1Ò Æ I1,  |2Ò Æ I2, ΔI=I1-I2 , I0=(I1+I2)/2   
SI – detector noise

† † † †
1 1 2 2 1 2 2 1

ˆ ( ) ( )
2QBH c c c c H c c c cε

= − + +

(A.K., 1998)

Averaging over result I(t) leads to
conventional master equation:

12 11 22 011 22

12 11 22 12 11 22 0 1212

2( / ) Im (2 / )[ ]

( / ) ( / ) ( ) ( ) ( / )[ ]

( )

( )

I

I

H I S I

i i H I S I

I t

I t

ρ ρ ρ ρ ρ

ρ ε ρ ρ ρ ρ ρ ρ γ ρ

• •

•

Δ

+ Δ

= - = - + -

= + - - - -

=

= =

2

2

( ) / 4 ,

1 / ( ) / 4
I

I

I S

I S

γ

η γ η

Γ Δ Γ −

Γ Δ Γ − ≤

ensemble decoherence
detector ideality (efficiency), 100%

= -

= - =

Ideal detector (η=1, as QPC) does not decohere a qubit, 
then random evolution of qubit wavefunction can be monitored

eH

I(t)
2e

Vg V

I(t)

11 22 12

12 12 11 22 12

2( / ) Im
( / ) ( / ) ( )

d dt d dt H
d dt i i H
ρ ρ ρ
ρ ε ρ ρ ρ ρΓ
/ = - / = -

/ = + - -

=
= =

Ensemble averaging includes averaging over measurement result!
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Assumptions needed for the Bayesian formalism:
• Detector voltage is much larger than the qubit energies involved 

eV >> ÑΩ, eV >> ÑΓ, Ñ/eV << (1/Ω, 1/Γ)
(no coherence in the detector, classical output, Markovian approximation)

• Simpler if weak response, |ΔI | << I0,  (coupling C ~Γ/Ω is arbitrary)           

Derivations:  
1) “logical”: via correspondence principle and comparison with 

decoherence approach (A.K., 1998) 
2) “microscopic”: Schr. eq. + collapse of the detector (A.K., 2000) 

qubit detector pointer
quantum 
interaction

frequent
collapse

classical
information

( )n
ij tρ ( )kn t

n – number of electrons
passed through detector

3) from “quantum trajectory” formalism developed for quantum optics
(Goan-Milburn, 2001; also: Wiseman, Sun, Oxtoby, etc.) 

4) from POVM formalism (Jordan-A.K., 2006) 
5) from Keldysh formalism (Wei-Nazarov, 2007)

quantum
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Fundamental limit for ensemble decoherence
Γ = (ΔI)2/4SI + γ

Translated into energy sensitivity: (ЄO ЄBA)1/2 ≥ =/2
where ЄO is output-noise-limited sensitivity [J/Hz] 
and ЄBA is back-action-limited sensitivity [J/Hz] 

Sensitivity limitation is known since 1980s (Clarke, Tesche, Likharev, etc.); 
also Averin-2000, Clerk et al.-2002, Pilgram et al.-2002, etc.

γ ≥ 0  ⇒ Γ ≥ (ΔI)2/4SI

ensemble 
decoherence rate

single-qubit 
decoherence

~ rate of information 
acquisition [bit/s]

η ≤
detector ideality (quantum efficiency)

100%

A.K., 1998, 2000
S. Pilgram et al., 2002
A. Clerk et al., 2002
D. Averin, 2003

2( ) / 41 II Sγη Δ
Γ Γ

= - =

1
2mτΓ ≥
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Measurement vs. decoherence

measurement  = decoherence (environment)

Widely accepted point of view:

Is it true?
• Yes, if not interested in information from detector

(ensemble-averaged evolution)

• No,  if take into account measurement result
(single quantum system)
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Experimental predictions and proposals
from Bayesian formalism

• Direct experimental verification (1998)

• Measured spectral density of Rabi oscillations (1999, 2000, 2002)

• Bell-type correlation experiment (2000)

• Quantum feedback control of a qubit (2001)

• Entanglement by measurement (2002)

• Measurement by a quadratic detector (2003) 

• Simple quantum feedback of a qubit (2004)

• Squeezing of a nanomechanical resonator (2004)

• Violation of Leggett-Garg inequality (2005)

• Partial collapse of a phase qubit (2005)

• Undoing of a weak measurement (2006)
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Persistent Rabi oscillations

left right

ground

excited - Relaxes to the ground state if left alone (low-T)
- Becomes fully mixed if coupled to a high-T

(non-equilibrium) environment
- Oscillates persistently between left and right 

if (weakly) measured continuously 

A.K., 1998

0 5 10 15 20 25 30
-0.5

0.0

0.5

1.0
ρ11

Reρ11

Imρ11

to verify:
stop & check

Phase of Rabi oscillations
fluctuates (dephasing)

Direct experiment is difficult 
(good quantum efficiency, 
bandwidth, control)

time
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Measured spectrum of Rabi oscillations

qubit detector
I(t)

C What is the spectral density SI (ω)
of detector current?

A.K., LT’99
A.K.-Averin, 2000
A.K., 2000
Averin, 2000
Goan-Milburn, 2001
Makhlin et al., 2001
Balatsky-Martin, 2001
Ruskov-A.K., 2002 
Mozyrsky et al., 2002 
Balatsky et al., 2002
Bulaevskii et al., 2002
Shnirman et al., 2002
Bulaevskii-Ortiz, 2003
Shnirman et al., 2003

2 2

0 2 2 2 2 2
( )( )

( )I
IS Sω

ω ω
Ω Δ Γ

= +
−Ω + Γ

1 2
00, ( ) / 4I Sε η −= Γ = Δ

2( ) / IC I HS= Δ

(result can be obtained using various
methods, not only Bayesian method)

Spectral peak can be seen, but
peak-to-pedestal ratio ≤ 4η ≤ 4

Assume classical output, eV » =Ω

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

ω/Ω

S I(ω
)/S

0

C=13

10

3
1

0.3

Contrary:
Stace-Barrett, 

PRL-2004
0.0 0.5 1.0 1.5 2.0

0
1
2
3
4
5
6

ω/Ω

S I
( ω

)/ S
0

α=0.1
η=1

ε/H=0
1
2 classical

level

0( ) ( ) ( )
2
II t I z t tξΔ

= + +

(const + signal + noise)

Ω - Rabi frequency
Expt. confirmed (Saclay)
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Bell-type (Leggett-Garg-type) inequalities 
for continuous measurement of a qubit

Ruskov-A.K.-Mizel, PRL-2006
Jordan-A.K.-Büttiker, PRL-2006

0 1 2
0

2

4

6

ω/Ω

S I(ω
)/S

0

SI (ω)

≤
4S

0

Experimentally measurable violation of classical bound

qubit detector
I(t)

0 ( )  ( / 2) ( ) ( )

Assumptions of macrorealism
(similar to Leggett-Garg’85):

I t I I Q t tξ+ Δ +=

| ( ) | 1,  ( ) ( ) 0Q t t Q tξ τ≤ 〈 + 〉 =

Then for correlation function
 ( ) ( ) ( )K I t I tτ τ〈 + 〉=

2
1 2 1 2( ) ( ) ( ) ( / 2)K K K Iτ τ τ τ+ − + ≤ Δ

and for area under spectral peak

0
2 2[ ( ) ] (8 / ) ( / 2)IS f S df Iπ− ≤ Δ∫

quantum result

23 ( / 2)
2

IΔ
3
2

×

violation

2( / 2)IΔ
2

8
π

×

Leggett-Garg,1985
Kij = ·Qi QjÒ

if Q =±1, then
1+K12+K23+K13≥0

K12+K23+K34 -K14 £2
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Recent experiment (Saclay group, unpub.)

courtesy of 
Patrice Bertet
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• superconducting charge qubit
(transmon) in circuit QED setup

• driven Rabi oscillations 

A. Palacios-Laloy et al.
(unpublished) 

• perfect spectral peaks
• LGI violation 
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Quantum feedback control of a qubit

qubit 

H 

e 

detector Bayesian 
     equations 

I(t) 

control stage 

(barrier height) 

ρij(t) 

 

comparison 
circuit 

desired evolution  

feedback 

signal 

environment 

C<<1 

Goal: persistent Rabi oscillations with perfect phase

Ruskov & A.K., 2001

Hqb= HσX

Idea: monitor the Rabi phase φ by continuous measurement and apply 
feedback control of the qubit barrier height, ΔHFB/H = −F×Δφ

To monitor phase φ we plug detector output I(t) into Bayesian equations

Since qubit state can be monitored, the feedback is possible!
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Performance of Bayesian feedback

2

desired

( ) / coupling
  feedback strength 

= 2 Tr 1

IC I S H
F

D ρ ρ

= Δ −
−

〈 〉 −

=

Feedback fidelity vs. feedback strength

For ideal detector and wide
bandwidth, feedback fidelity
can be close to 100%

D = exp(−C/32F)

Ruskov & A.K., 2002

0 1 2 3 4 5 6 7 8 9 10
0.80

0.85

0.90

0.95

1.00

F  (feedback factor)

D
  (

sy
nc

hr
on

iz
at

io
n 

de
gr

ee
)

Cenv /Cdet= 0 0.1   0.5

C=Cdet=1
τa=0

Zhang, Ruskov, A.K., 2005

Feedback fidelity vs. detector efficiency

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
simple

analytics

Dots:  Monte Carlo  
(weak coupling, C=0.1)

ε = 0
analytics

detection efficiency η

D
m

ax

max1 1.25Dη η⇒ ≈�

max1 (1 ) / 2Dη η≈ ⇒ ≈ +

Experimental difficulties:
• need real-time solution of Bayesian eqs. 
• wide bandwidth (àΩ) of the output I(t)  
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Simple quantum feedback of a solid-state qubit
(A.K., 2005)

Idea: use two quadrature components of the detector current I(t)
to monitor approximately the phase of qubit oscillations
(a very natural way for usual classical feedback!)

Goal: maintain coherent 
(Rabi) oscillations for
arbitrarily long time

0( ) [ ( ') ] cos( ') exp[ ( ') / ] '
t

X t I t I t t t dtτ
−∞

= − Ω − −∫
0( ) [ ( ') ] sin( ') exp[ ( ') / ] '

t
Y t I t I t t t dtτ

−∞
= − Ω − −∫

arctan( / )m Y Xφ = −

(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth (1 / ~ )dτ Γ << Ω

detector
I(t)

×cos(Ω t), τ-average

ph
as

e

X

Y

φm
qubit

H =H0 [1– F×φm(t)]
control

×sin(Ω t), τ-average

Hqb= HσX

C <<1
local oscillator

Essentially classical feedback. Does it really work?



University of California, RiversideAlexander Korotkov

Fidelity of simple quantum feedback

Simple: just check that in-phase quadrature 〈X〉
of the detector current is positive (4 / )

2 1

Tr ( ) ( )
Q

Q des

D F

F t tρ ρ

≡ −

≡ 〈 〉

D X Iτ= 〈 〉 Δ

How to verify feedback operation experimentally?

〈X〉=0 for any non-feedback Hamiltonian control of the qubit

Dmax ≈ 90%

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0
ηeff =

0.5

0.2

0.1

ε/H0= 1
0.5

0

ΔΩ/CΩ=0.2

0

C = 0.1
τ [(ΔI)2/SI] = 1 

1

0.1

F/C (feedback strength)

D
(fe

ed
ba

ck
 e

ffi
ci

en
cy

)

Simple enough for real experiment!

Robust to imperfections
(inefficient detector, frequency
mismatch, qubit asymmetry) 
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Quantum feedback in optics
First experiment: Science 304, 270 (2004)

First detailed theory:
H.M. Wiseman and G. J. Milburn, 
Phys. Rev. Lett. 70, 548 (1993)
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Quantum feedback in optics
First experiment: Science 304, 270 (2004)

First detailed theory:
H.M. Wiseman and G. J. Milburn, 
Phys. Rev. Lett. 70, 548 (1993)

paper retracted in 2008

PRL 94, 203002 (2005) also withdrawn

Recent experiment: 
Cook, Martin, Geremia,
Nature 446, 774 (2007)
(coherent state discrimination)
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Two-qubit entanglement by measurement

Ha Hb

DQDa QPC DQDb

I(t)

Ha Hb

Vga VgbV

qubit a qubit bSET

I(t)
qubit 1 qubit 2

detector
I(t)

entangled

ρ (t)

Collapse into |BellÚ state (spontaneous entanglement) 
with probability 1/4 starting from fully mixed state

Ruskov & A.K., 2002

Two evolution scenarios:

Symmetric setup, no qubit interaction

Peak/noise
= (32/3)η
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Quadratic quantum detection
Mao, Averin, Ruskov, & A.K., PRL-2004

Ha Hb

Vga VgbV

qubit a qubit bSET

I(t)

Peak only at 2Ω, peak/noise = 4η

Nonlinear detector:

Quadratic detector:

spectral peaks at Ω, 2Ω and 0

2 2

0 2 2 2 2 2
4 ( )( )

( 4 )I
IS Sω

ω ω
Ω Δ Γ

= +
− Ω + Γ

Ibias

V(f)

ω/Ω

Three evolution scenarios: 1) collapse into |↑↓-↓↑Ú, current IÆ∞, flat spectrum
2) collapse into |↑↑ - ↓↓Ú, current IÆÆ, flat spectrum; 3) collapse into remaining 
subspace, current (IÆ∞+ IÆÆ)/2, spectral peak at  2Ω
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QND squeezing of a nanomechanical resonator
Ruskov, Schwab, & A.K., PRB-2005

I(t)

m,ω0

∼
V(t)

x

QPC

resonator 

Potential application: ultrasensitive force measurements

Experimental status:
ω0/2π ∼1 GHz (=ω0∼80 mK), Roukes’ group, 2003
Δx/Δx0 ∼ 5 [SQL Δx0=(=/2mω0)1/2], Schwab’s group, 2004
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C0 – coupling with detector, η – detector efficiency,
T – temperature, Q – resonator Q-factor

(So far in experiment  η1/2C0Q~0.1)
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Undoing a weak measurement of a qubit
(“uncollapse”)

It is impossible to undo “orthodox” quantum 
measurement (for an unknown initial state)

Is it possible to undo partial quantum measurement? 
(To restore a “precious” qubit accidentally measured)

Yes! (but with a finite probability)

If undoing is successful, an unknown state is fully restored

ψ0
(unknown)

ψ1
(partially
collapsed)

weak (partial)
measurement

ψ0 (still
unknown)

ψ2

successful

unsuccessful
undoing

(information erasure)

A.K. & Jordan, PRL-2006
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Quantum erasers in optics
Quantum eraser proposal by Scully and Drühl, PRA (1982)

Our idea of uncollapsing is quite different:
we really extract quantum information and then erase it

Interference fringes restored for two-detector
correlations (since “which-path” information
is erased)
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Uncollapsing of a qubit state
Evolution due to partial (weak, continuous, etc.) measurement 
is non-unitary (though coherent if detector is good!), therefore 

it is impossible to undo it by Hamiltonian dynamics.

How to undo? One more measurement!

× =

| 0〉

| 1〉

| 0〉 | 0〉

| 1〉 | 1〉

(Figure partially adopted from 
Jordan-A.K.-Büttiker, PRL-06)(similar to Koashi-Ueda, PRL-1999)

need ideal (quantum-limited) detector
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Evolution of a charge qubit

eH

I(t)

Jordan-Korotkov-Büttiker, PRL-06

1r =-

0r =

0.5r =-

1r =0.5r =

11 11

22 22

( ) (0) exp[2 ( )]
( ) (0)
t r t
t

ρ ρ
ρ ρ

=

12

11 22

( ) const
( ) ( )

t
t t

ρ
ρ ρ

=

where measurement result r(t) is

00( ) [ ( ') ' ]
I

tIr t I t dt I t
S
Δ
∫= -

H=0

If r = 0, then no information and no evolution!
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Uncollapsing for DQD-QPC system

r(t)

Undoing 
measurement

t

r0

First “accidental”
measurement

Detector 
(QPC)

Qubit 
(DQD)I(t)

Simple strategy: continue measuring 
until result r(t) becomes zero! Then any 
unknown initial state is fully restored.

(same for an entangled qubit)

It may happen though that  r = 0  never happens; 
then undoing procedure is unsuccessful.

A.K. & Jordan, PRL-2006

11 22

0

0 0

||

| | | |(0) (0)
S

r

r r
eP

e eρ ρ+

-

-=Probability of success:

00( ) [ ( ') ' ]
I

tIr t I t dt I t
S
Δ
∫= -
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General theory of uncollapsing
Measurement operator Mr :

†

†Tr( )
r r

r r

M M
M M
ρ

ρ
ρ

→

Uncollapsing operator: 1
rC M −×

max( ) min ,i i iC p p= – eigenvalues of

Probability of success:
in

min
( )S

r

r

PP
P ρ

≤

Pr(ρin) – probability of result r for initial state ρin, 
min Pr – probability of result r minimized over

all possible initial states
minav rrP P≤

(to satisfy completeness, 
eigenvalues cannot be >1)

POVM formalism

Averaged (over r) probability of success: ∑

(Nielsen-Chuang, p.85)

Completeness : † 1r rr M M =∑

†
r rM M

Probability : †Tr( )r r rP M Mρ=

(cannot depend on initial state, otherwise get information)
(similar to Koashi-Ueda, 1999)

A.K. & Jordan, 2006
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Partial collapse of a “phase” qubit

Γ
|0〉
|1〉 How does a coherent state evolve

in time before tunneling event?

Main idea:

2 2

/2
| , if tunneled

| 0 | 1| 0 | 1 ( ) , if not tunneled
| | | |

i

t

t e

out

et

e

ϕα βψ α β ψ

α β Γ

Γ

〉⎧
⎪

〉 + 〉〉 + 〉 → ⎨
⎪

+⎩
-

-= =

(better theory: Pryadko & A.K., 2007)

(similar to optics, Dalibard-Castin-Molmer, PRL-1992)
continuous null-result collapse

N. Katz, M. Ansmann, R. Bialczak, E. Lucero, 
R. McDermott, M. Neeley, M. Steffen, E. Weig, 
A. Cleland, J. Martinis, A. Korotkov, Science-06

amplitude of state |0> grows without physical interaction

Qubit “ages” in contrast to a radioactive atom!
(What happens when nothing happens?)
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Superconducting phase qubit at UCSB

Idc+Iz

Qubit

Flux 
bias

|0〉
|1〉

ω01

1 Φ0

VS
SQUID

Repeat 1000x
prob. 0,1

Is

Idc
time

Reset Compute    Meas. Readout

Iz

Iμw

Vs

0 1

X Y

Z

10ns 

3ns 

Iμw

IS

Courtesy of Nadav Katz (UCSB)
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Experimental technique for partial collapse 
Nadav Katz et al.
(John Martinis’ group)

Protocol:
1) State preparation by 

applying microwave pulse 
(via Rabi oscillations)

2) Partial measurement by
lowering barrier for time t

3) State tomography (micro-
wave + full measurement)

Measurement strength 
p = 1 - exp(-Γt ) 

is actually controlled
by Γ, not by t

p=0: no measurement
p=1: orthodox collapse
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Experimental tomography data
Nadav Katz et al. (UCSB)

p=0 p=0.14p=0.06

p=0.23

p=0.70p=0.56

p=0.43p=0.32

p=0.83

θx

θy

| 0 | 1
2

inψ
〉 + 〉

=

π/2
π
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Partial collapse: experimental results

in (c) T1=110 ns, T2=80 ns (measured)

no fitting parameters in (a) and (b)P
ol

ar
 a

ng
le

A
zi

m
ut

ha
la

ng
le

V
is

ib
ili

ty

probability p

probability p

pulse ampl.

N. Katz et al., Science-06

• In case of no tunneling 
(null-result measurement) 
phase qubit evolves 

• This evolution is well
described by a simple
Bayesian theory, without 
fitting parameters

• Phase qubit remains fully 
coherent in the process 
of continuous collapse 
(experimentally ~80% 
raw data, ~96% after
account for T1 and T2) 

lines - theory
dots and squares – expt.
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Uncollapsing of a phase qubit state

1)   Start with an unknown state
2)   Partial measurement of strength p
3)   π-pulse (exchange |0Ú↔ |1Ú)
4)   One more measurement with 

the same strength p
5) π-pulse 

If no tunneling for both measurements, 
then initial state is fully restored!

/ 2

/ 2 / 2

| 0 | 1| 0 | 1
Norm

| 0 | 1 ( | 0 | 1 )
Norm

i t

i it t
i

e e

e e e e e

φ

φ φ
φ

α βα β

α β α β

−Γ

−Γ −Γ

〉 + 〉
〉 + 〉 → →

〉 + 〉
= 〉 + 〉

 

Γ
|0〉
|1〉

1 tp e Γ-= -

A.K. & Jordan, 2006

phase is also restored (spin echo)
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Experiment on wavefunction uncollapsing
N. Katz, M. Neeley, M. Ansmann,
R. Bialzak, E. Lucero, A. O’Connell,
H. Wang, A. Cleland, J. Martinis, 
and A. Korotkov, PRL-2008

tomography & 
final measure

state
preparation

7 ns

partial 
measure p

p

time
10 ns

partial 
measure p

p

10 ns 7 ns

π

Iμw

Idc

State tomography with 
X, Y, and no pulses

Background PB should  
be subtracted to find
qubit density matrix

| 0 | 1
2inψ 〉+ 〉

=

Uncollapse protocol:
- partial collapse
- π-pulse
- partial collapse

(same strength)

Nature News
Nature-2008 Physics
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Initial
state

Partial
collapse

Uncollapsed

| 1〉

Experimental results on Bloch sphere

0.05 0.7p< <

N. Katz et al. 

Collapse strength:

uncollapsing works well!

| 0〉
| 0 | 1

2
〉+ 〉 | 0 | 1

2
i〉 + 〉
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Same with polar angle dependence
(another experimental run)

Both spin echo (azimuth) and uncollapsing (polar angle)
Difference: spin echo – undoing of an unknown unitary evolution,

uncollapsing – undoing of a known, but non-unitary evolution
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Quantum process tomography

Overall: uncollapsing is well-confirmed experimentally

Why getting worse at p>0.6?  
Energy relaxation  pr = t /T1= 45ns/450ns = 0.1
Selection affected when 1-p ~ pr

p = 0.5

N. Katz et al.
(Martinis group) 

uncollapsing works 
with good fidelity!
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Recent experiment on uncollapsing
using single photons

Kim, Cho, Ra, Kim, arXiv:0903.3077

• very good fidelity of uncollapsing (>94%)
• measurement fidelity is probably not good

(normalization by coincidence counts)
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Conclusions

● Continuous quantum measurement is not equivalent to 
decoherence (environment) if detector output (information)
is taken into account

● It is easy to see what is “inside” collapse: simple Bayesian
formalism works for many solid-state setups

● Collapse can sometimes be undone (uncollapsing)

● A number of experimental predictions have been made

● Three direct solid-state experiments have been realized;
hopefully, more experiments are coming soon
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