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Quantum eraser
Quantum eraser proposal by Scully and Drihl (PRA, 1982)
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FIG. 1. (a) Figure depicting light impinging from left
on atoms at sites 1 and 2. Scattered photons ¥, and y,
produce interference pattern on screen. (b) Two-level
atoms excited by laser pulse [|, and emit ¥ photons in
a —b transition. (c) Three-level atoms excited by pulse
1, from ¢ —a and emit photons in g —b transition. (d)
Four-level system excited by pulse /; from ¢ —a fol-
lowed by emission of ¥ photons in @ — & transition.
Sccond pulsc /5 takes atoms from b—b‘. Decay from
b'—c results in emission of ¢ photons.
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FIG. 2. Laser pulses /| and /; incident on atoms at
sites 1 and 2. Scattered photons ¥, and ¥, result from
a b transition. Decay of atoms from b’ —c results in
¢ photon emission. Elliptical cavities reflect ¢ photons
onto commeon photodetector. Electro-optic shutter
transmits ¢ photons only when switch is open. Choice
of switch position determines whether we emphasize
particle or wave nature of ¥ photons.

Interference fringes restored for two-detector
correlations (since “which-path” information
IS erased)

Here only virtual information is erased. Can we really measure

(extract information) and then uncollapse quantum state?
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The problem

Korotkov & Jordan, 2006

It is Impossible to undo “orthodox” quantum
measurement (for an unknown initial state)

Is it possible to undo weak (partial) guantum measurement?
Yes! (but with a finite probability)

If uncollapsing is successful, an unknown state is fully restored

cuccesstul 1w (till
v weak (partial) L4 S unknown)
0 > (partially |_ Uns

I 2

uncollapsing
(information erasure)

Information is erased by another measurement
with “exactly contradicting” result
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Uncollapsing of a qubit state

Evolution due to partial (weak, continuous, etc.) measurement
IS non-unitary (though coherent if detector is good!), therefore
It Is Impossible to undo it by Hamiltonian dynamics.

How to uncollapse? One more measurement!
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o ] (Figure partially adopted from A. Jordan,
(similar to Koashi-Ueda, PRL-1999) A. Korotkov, and M. Biittiker, PRL-2006
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First example: double-dot qubit with

0 no tunneling, measured by QPC
Hg'e FIQB =(¢/2)(c]c, —clc,)+ H(c/c, +cic,)
U Assume “frozen” qubit: €=H =0
M I (t) Bayesian evolution due to measurement (Korotkov-1998)

1) Diagonal matrix elements of the density matrix
evolve according to the classical Bayes rule

2) Non-diagonal matrix elements evolve so that
the degree of purity pij/[Pii pjj]1/2 s conserved

P11(0) exp[-(T - 1,)*/2D]
£11(0) exp[-(T = 1,)%/2D]+ p,, (0) exp[-(T - 1,)*/2D]
P12(7) — P12(0)
Loy, (7) pzz(r)] Y2 1p1(0) ppp (01

p1(7) =

Po(7) =1-py(7)

Al =1,-1, response
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Uncollapsing for DQD-QPC system

Korotkov-Jordan,

12) |1) Measurement result: PRL-2006
_ r(t) = _[ (") dt" - 1,4t] First Uncollapsing
(%) (qub[;[) J-O ° measurement measurement
t
Detector (QPC) If r= O, then no informa- ¥ (t) 1< >

tion and no evolution!

Simple strategy: continue measuring
until result r(t) becomes zero. Then
any initial state is fully restored.

(same for an entangled qubit)

It may happen though that r =0 never crossed,
then undoing procedure is unsuccessful.

e‘|r0|

Probability of success:  Ps = ]

e V11 (0)+e " py(0)

Averaged probability of

success (over result ry): P, =1-erf[Jt/2T], Ty, =2S,/(Al )2
(does not depend on initial state)
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Second example: uncollapsing
of a superconducting phase qubit

1) Start with an unknown state
2) Partial measurement of strength p
3) m-pulse (exchange [0> <> |1>)

4) One more measurement with p=1-¢ It
the same strength p 1) -
5) m-pulse 10)

This i1s what was demonstrated experimentally
(in more detail later)
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General theory of uncollapsing
M, oM/
Tr(M, pM/)

Measurement operator M,. P — (POVM formalism)

(to satisfy completeness,

Undoing measurement operator: C x M eigenvalues cannot be >1)

max(C) = min, \/F, p; are eigenvalues of MM,

min P
Probability of success: Pg < 4
I:)r (pin)

P.(pi,) — probability of result r for initial state p;,,,

min P, — probability of result r minimized over
all possible initial states

Averaged (over r) probability of success: Pa = Zr min P,

(independent of initial state,
(similar to Koashi-Ueda, PRL, 1999) otherwise get information) 4
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<®> Third example: evolving charge qubit

Hv ® -

o° Hog = (£/2)(c/c, —C;¢,) + H(cc, + ;)

% (now non-zero H and ¢, qubit evolves during measurement)
1(t)

1) Bayesian equations to calculate measurement operator
2) unitary operation, measurement by QPC, unitary operation

Fourth example: general uncollapsing
for entangled charge qubits

1) unitary transformation of N qubits

2) null-result measurement of a certain strength by a strongly
nonlinear QPC (tunneling only for state |11..1))

3) repeat 2N times, sequentially transforming the basis vectors
of the diagonalized measurement operator into |11..1)

In all four examples the success probability P
reaches the upper bound (optimal uncollapsing)
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Partial collapse of superconducting phase qubit

N. Katz, M. Ansmann, R. Bialczak, E. Lucero,
R. McDermott, M. Neeley, M. Steffen, E. Weig,
A. Cleland, J. Martinis, A. Korotkov, Science-06

How does a coherent state evolve
0) In time before tunneling event?

(What happens when nothing happens?)

Main idea: | out), if tunneled
3 _ -I't/2_ip
y=al0)+p|1) - p()=1|el0+fe” TV b eled
| JlaP+|BPe™

(better theory: Pryadko & A.K., 2007)

amplitude of state |0> grows without physical interaction

continuous null-result collapse
(similar to optics, Dalibard-Castin-Molmer, PRL-1992)
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Superconducting phase qubit at UCSB

Courtesy of Nadav Katz (UCSB)
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Experimental techniqgue for partial collapse

Nadav Katz et al.

- I fast SQUID | b Operation (John Martinis’ group)
state  AubIt . amplifier
control a3 sy 52 7se Protocol:

L, 14 S 1) State preparation by
__________________________ 300K| applying microwave pulse
_____________________________ 4K (via Rabi oscillations)

| ’ 2) Partial measurement by
1 qubit biasT lowering barrier for time t
N L Elfg,}m 3) State tomography (micro-
”>< T wave + full measurement)
=T 25mK Iy = lgc Ol Measurement strength
d State Partial Tomography & Final measurement . p — 1 - exp(_rt )
preparation : measu;ement : (6, Qy) : IS aCtua”y COﬂtI’O”Gd
) 5 : 5 by I', not by t

¢ ; : '

I ] 1{\/\/\{% pP=0: no measurement
= 150s __ i1doms  + toms |t p=1: orthodox collapse
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Experimental tomography data
Nadav Katz et al. (UCSB)
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Partial collapse: experimental results

lines - theory

dots and squares — expt.
no flttlng parameters In (a) and (b)

N. Katz et al., Science-06

e In case of no tunneling
(null-result measurement)
phase qubit evolves

e This evolution is well

a

EI.1 EI.E EI3 Elfl

I:IE

EIE

I:I?r

Farial measurement probability g

p=0.25

|

probability p

I:IB

29 1 described by a simple
Bayesian theory, without
fitting parameters

e Phase qubit remains fully
coherent in the process
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Measure pulse amplitude &Y, (V) pl_,IIse ampl

E
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In (c) T1—110 ns, T2—80 ns (measured)

1

of continuous collapse
(experimentally ~80%
< 1 raw data, ~96%o after
account for T1 and T2)

a

EI1 I:I.E EI3 Elfl

Partial measurement probability p probabmty p
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Uncollapsing of a phase qubit state

Korotkov & Jordan, 2006

1) Start with an unknown state
2) Partial measurement of strength p
3) m-pulse (exchange [0> <> |1>)
4) One more measurement with
the same strength p

5) m-pulse iy r
) TP 0

If no tunneling for both measurements,
then initial state is fully restored!

i¢ o —Tt/2
a|0)+e”pe | 1) N
Norm
Norm

t

pzl—e'r

a|0)+p|1) -

=e'(a|0)+B|1)

phase is also restored (spin echo)
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Experiment on wavefunction uncollapsing

tomography & N. Katz, M. Neeley, M. Ansmann,

state
preparation T final measure R. Bialzak, E. Lucero, A. O’'Connell,
AL A MMW : H. Wang, A. Cleland, J. Martinis,
L and A. Korotkov, PRL-2008
Idc P P
— — Uncollapse protocol:
10ns 10ns - partial collapse

| S PR - m-pulse
| | - partial collapse
(same strength)

State tomography with
X, Y, and Z pulses

~10)+|1) Background Py should
Vin = 5 be subtracted to find
wrong uncollapsed | qubrt density matrix
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Experimental results on Bloch sphere

N. Katz et al.
Initial |0)+ 1)
state 1) 10)
Partial ! !
collapse ! f
Uncollapsed

Collapse strength: [0.05< p<0.7
uncollapsing works well!
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Same with polar angle dependence
(another experimental run)
[0)-+]1)

Partial

Uncollapsed

0 - 0 — 0 00—
0051 0051 0051

Both spin echo (azimuth) and uncollapsing (polar angle)

Difference: spin echo — undoing of an unknown unitary evolution,
uncollapsing — undoing of a known, but non-unitary evolution
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Quantum process tomography
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Why getting worse at p>0.67?
Energy relaxation p,=1t/T,=45ns/450ns = 0.1
Selection affected when 1—-p ~ p,

Overall: uncollapsing is well-confirmed experimentally
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Conclusions

e Partial (weak, etc.) guantum measurement can be undone,
though with some probability Pg, which decreases with
Increasing strength of measurement (Pg=0 for orthodox case)

e Arbitrary initial state is uncollapsed exactly in the case of
success (need a detector with perfect quantum efficiency)

e Uncollapsing for a superconducting phase qubit has been
demonstrated, extending the previous experiment on
partial collapse

e Solid-state experiments on non-projective quantum measurement
are now competitive with (sometimes ahead of) optical
experiments (also, recent expt. on persistent Rabi oscillations)
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