
QPT basics

Two-qubit decoherence mechanisms 
revealed via quantum process tomography

A. G. Kofman and A. N. Korotkov, arXiv:0903.0671

Quantum operation (completely positive linear map) 
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(i.e. positive Hermitian (d.m.) → positive Hermitian (d.m.); “completely” means even with ancilla)

Can be represented with Kraus operators (not uniquely): 0 0 †[ ] n n
n
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Unique representation:
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where Em is a chosen (arbitrary) basis of operators

“Pauli basis”: products of (I,X,Y,Z) for each qubit (jargon: X=σX, etc.)

Sometimes modified Pauli basis: (I,X,-iY,Z) 



χ-matrix
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• not quite intuitive
• Hermitian, d2× d2, positive-semidefinite
• Tr χ=1 (usually)
• for a unitary operation U
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Markovian decoherence (λ-matrix)
d M
dt
ρ ρ= exp( )L Mtthen = (if treat density matrix as a vector)

cohM M D= +
2 1

†

, 0

[ ]
d

mn m n
m n

Can introduce λ-matrix: D E Eρ λ ρ
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=
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λ-matrix is similar to χ-matrix, 
but Tr λ=0 and different dimension ([χ]=[λt])

If Mcoh=0, then at weak decoherence 0 0,I I
mn m ntχ χ λ χ δ δ≈ + =



Local vs. non-local decoherence

Uncoupled 2-qubit system and local decoherence: (1) (2)χ χ χ= ⊗

Natural to introduce nonlocality parameter for decoherence: 
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Not so easy for coupled system. However, in Markovian case can use λ-matrix:
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NL NLε ε≈ for no coherent evolution and weak decoherence 



Considered models of decoherence
Energy relaxation
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Partially correlated (nonlocal) dephasing
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κ - correlation factor (κ=0 if local)

Noisy coupling
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Specific pattern for each model!
(usually different elements)

0,1,2, …15 = II, IX, IY, IZ,
XI, XX, XY, XZ, … ZZ

If no evolution (memory), then easy:
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If coupled qubits, then should not be easy ideal tχ χ λ≠ +
However, miraculously, for sqrt{iswap} and for largest extra elements of χ, 
it is still a simple addition, that makes distinguishing decoherence models 
very simple.
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QPT for one-qubit uncollapsing
Kyle Keane (started recently)

Nadav Katz et al., PRL-08

Fidelity decreases at large p
due to T1 and selection
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Theoretically fidelity goes to 0.25 at p =1

Actually, problem with definition of χ-matrix,
because probability depends on initial state
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