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Outline: • Current limitations for phase qubits 
• Quantum limits

- binary-output detector
- broadband linear detector
- narrowband linear detector 
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Main current subjects of study
(PI: John Martinis)

• Tunable coupling of phase qubits

• Quantum error detection/correction for phase qubits

(see posters by Kyle Keane 
and by Ricardo Pinto)
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Types of measurement limitations

• Technical limitations/problems 
(gradual improvement possible)

• Theoretical limitations for a particular measurement
method (solution: use proper parameters and/or
a better method) 

• Fundamental quantum limits (no solution, 
but not much of practical limitations)
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Example of limitations for a particular method 
(tunneling measurement of phase qubits)

Cooper et al., 
2004

| 1〉 Several sources for errors:| 0〉
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Solution: avoid too short pulses (<2 ns), 
use proper pulse shape (currently Slepian)

Zhang et al.,
2006
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Solutions: use next level, use non-tunneling measurement (dispersive or
resonant)

Discrimination error

| 0〉
| 1〉 Γ1

Γ0

Theoretical S-curves

error ~3% at the optimal point

Mesoscopic shelving
Englert et al., arXiv:0904.1769
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Zhang et al.
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Repopulation error
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animation by Martinis

Haohua Wang et al. (unpub)Solutions: proper pulse shape, not too short

Cross-talk error

McDermott et al., 2005
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Kofman et al.Solutions: resonator in between
tunable coupling 

(Ansmann et al., 2009)
(Bialczak et al., 2010)

No unsolvable problems in measurement of phase qubits 

(Zhang et al.)
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Quantum limits for qubit measurement

quantum limits = limits due to quantum back-action

quantum backaction = informational back-action
(unexplainable, no mechanism, Bayes, non-unitary)

QM allows fast projective measurement of a qubit
⇒ no quantum limits fundamentally hurting QC

However, quantum limits are within reach in SC qubit 
measurement (we start seeing informational back-action). 
They have importance for QC (secondary, not primary),  
surely important for more general QI and other fields,   
and very interesting fundamentally. 
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Types of measurement (terminology)
• destructive, non-destructive, half-destructive

• invasive, non-invasive (confusing?) 

• linear, switching/bifurcation 

• QND, non-QND  
|1〉→|1〉, |0〉→|0〉 (repeatability of results)
commutes with Hamiltonian ⇒ measurement of energy 

(so comp. basis is energy) or a trick (stroboscopic, etc.)
why care? easier (longer), useful for reinitialization

• single-shot or not (single-shot required for a QC)
switching or linear with reasonable SNR

Characterization
• fidelity: F0=p(“0”, if |0〉), F1=p(“1”, if |1〉); most important for QC 

• quantum efficiency (var. defs.; related to post-measured state) 

• many other characteristics
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General characterization of a non-destructive 
binary-output (single-shot) qubit detector

general POVM (superoperator) for each result:

16 +16 – 4 = 28 real parameters to describe (too many!)

28 = 2 (meas. axis) + 2 (fidelity) + 2×3 (unitary) + 2×9 (decoherence)

Simplifications:

1) Textbook projective only 2 parameters (meas. axis)

2) Perfect fidelity F0=F1=1; then only meas. axis is interesting

3) QND |0Ú→|0Ú, |1Ú→|1Ú; then 6 parameters  

(6 more parameters affect only reinitialization)
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QND binary-output detector
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result 0:

result 1:

6 parameters:  fidelity (F0, F1), decoherence (D0, D1), and phases (φ0, φ1)

(simple 
Bayes)
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Corresponding quantum limits
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natural to introduce quantum efficiencies by comparing with quantum limits

ensemble decoherence:

(easy to realize η0=1, but difficult η0=η1=1) 

A.K., 2008
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Quantum limits for linear qubit detectors
Broadband (QPC, SET, etc.) or narrowband (cQED)

broadband, “QND”
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≡ ∫
/ 2ID S τ=

decoherence
classical backaction (unitary)

1 0
noise I

I I I
S

Δ = - K=γ=0 for symmetric QPC

Γ = (ΔI)2/4SI + γ’

γ’ ≥ 0  ⇒ Γ ≥ (ΔI)2/4SI

ensemble 
decoherence rate

single-qubit 
decoherence

~ information flow [bit/s] A.K., 1998, 2000
Pilgram et al., 2002
Clerk et al., 2002
Averin, 2000,2003

1
2mτΓ ≥

22 /( )Im S Iτ = Δ
“measurement time” (S/N=1)

A.K., 1998, 2000

quantum backaction (non-unitary)
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For non-zero K (classical backaction)

Γ = (ΔI)2/4SI +K2SI/4 + γ ⇒ Γ ≥ (ΔI)2/4SI +K2SI/4

εO, εBA: sensitivities [J/Hz] limited by output noise and back-action

Known since 1980s (Caves, Clarke, Likharev, Zorin, Vorontsov, Khalili, etc.)

Danilov, Likharev,
Zorin, 1983

Translate into energy sensitivity  (for SET; A.K.-2000)

Γ ≥ (ΔI)2/4SI ⇔ (εO εBA)1/2 ≥ /2

Γ ≥ (ΔI)2/4SI +K2SI/4 ⇔ (εO εBA - εO,BA
2 )1/2 ≥ /2

For qubit measurement these long-known quantum limits 
are related to the informational (Bayesian) back-action

Describing a qubit evolution due to measurement 
is a more appropriate language for QC 
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Quantum efficiency for linear qubit detection
quantum efficiency: comparison 
with quantum limit
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0 peak height of persistent Rabi 
oscillations is limited by 4 times 
noise pedestal (quantum limit); 
state of the art: 2%

Palacios-Laloy et al., Nature Phys. (2010)
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Quantum efficiency limits 
fidelity of quantum feedback 
(synchronization of persistent 
Rabi oscillations) 

(same meaning as in optics)
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Narrowband linear measurement
Difference from broadband: two quadratures

System: qubit in cQED setup + parametric amplifier

qubit
(transmon)

Paramp traditionally discussed in terms of noise temperature

resonator
paramp
pumps

microwave
generator

mixer
I(t)

Q(t)

output (two
quadratures)quantum signal 

(2 quadratures)

0

2

θ
ωθ

≥

≥

for phase-sensitive (degenerate, homodyne) paramp

for phase-preserving (non-degenerate, heterodyne) paramp

Likharev, private comm.
Devoret, private comm.

We will discuss it in terms of qubit evolution due to measurement

ωd ωr

ωa ωb

Haus, Mullen, 1962
Giffard, 1976
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Simplest case

qubit
(transmon)

resonator
paramp
pumps

microwave
generator

mixer
I(t

)

Q(t)

output (two
quadratures)

ωd ωr

ωa ωb

Blais et al., 2004
Gambetta et al., 2006, 2008

† †

2
qb

z r zH a a a a
ω

σ ω χ σ= ++

max( , )r
RQ

ω κ= Γ Ω

(dispersive)

(Markovian, “bad cavity”)

outκ κ= (everything collected; i.e. reflection)

χ κ (weak response)

rdω ω= (center of resonance, only
phase change if transmission) |0Ò

|1Ò

cos( )d tω

sin( )dtω

carries information 
about qubit  (σz)
(quantum back-action)

carries information about fluctuating 
photon number in the resonator
(classical back-action)

assume everything most ideal
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qubit

resonator
paramp
pumps

μwave
gen.

mixer

I(t)
Q(t)

ωd ωr

ωa ωb

Phase-sensitive (degenerate) paramp
pumps  ωa+ωb =2ωd

cos( ), cos((2 ) )a a dt tω ϕ δ ω ω ϕ δ+ + − + −
quadrature cos(ωd t +ϕ) is amplified, 
quadrature sin(ωd t +ϕ) is suppressed

|0Ò

|1Ò

cos( )d tω

sin( )dtω

ϕ
amplifie

d

get some information (~cos2ϕ) about qubit state and 
some information (~sin2ϕ) about photon fluctuations

Assume I(t) measures cos(ωd t +ϕ), then Q(t) not needed 
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Same as for QPC/SET, but trade-off (ϕ)
between quantum & classical back-actions

unitary



University of California, RiversideAlexander Korotkov

qubit

resonator
paramp
pumps

μwave
gen.

mixer

I(t)
Q(t)

ωd ωr

ωa ωb

Phase-preserving (nondegenerate) paramp
pumps  ωa+ωb =2(ωd +δω) tϕ δω=

Now information in both I(t) and Q(t).
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Equal contributions to ensemble dephasing
from quantum & classical back-actions

|0Ò

|1Ò

cos( )d tω

sin( )dtω

ϕ
I(t)

Q(t)

tδω

Choose 
I(t)  ↔ cos(ωdt)  (qubit information)
Q(t) ↔ sin(ωdt)   (photon fluct. info)

Small δω ⇒ can follow ϕ(t)
Large δω (>>Γ) ⇒ averaging over ϕ (phase-preserving)

0
1 ( )Q Q t dt

τ
τ

≡ ∫
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Quantum limits for narrowband  detection
If no information loss (good signal collection, good amplifiers, and no 
extra decoherence), then we can monitor (and feedback) qubit exactly

The limit  θ≥ Ñω/2 for phase-preserving amplifiers does not hurt;  
just says that we need to use both quadratures in a smart way

Quantum efficiency in terms of persistent Rabi peak
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action (by feedback):
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Phase-preserving (non-degenerate)
Simple: peak / 2 1/ 2IS S η≤ ≤⇒
After undoing classical back-
action (by feedback):
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In both cases if quantum feedback on both classical and 
quantum back-action, then half of the peak shrinks to line
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Conclusions

● There are many theoretical limitations for measurement
of phase qubits, but all of them have practical solutions

● Quantum limits are not of primary importance for QC,
but still have importance and are within experimental reach

● Quantum limits are related to information acquisition

● Discussed some quantum limits for binary-output and
linear (broadband and narrowband) detection of a qubit

● If use any good (quantum-limited) amplifier (including
phase-preserving), then can monitor and feedback a qubit
precisely. No quantum limitations in this sense. 
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