CSQ, 4/26/10

Quantum limits in measurement of superconducting qubits

Alexander Korotkov

University of California, Riverside

Outline:

- ine: Current limitations for phase qubits
 - Quantum limits
 - binary-output detector
 - broadband linear detector
 - narrowband linear detector

Alexander Korotkov

Main current subjects of study (PI: John Martinis)

- Tunable coupling of phase qubits
- Quantum error detection/correction for phase qubits

(see posters by Kyle Keane and by Ricardo Pinto)

Alexander Korotkov

Types of measurement limitations

- Technical limitations/problems (gradual improvement possible)
- Theoretical limitations for a particular measurement method (solution: use proper parameters and/or a better method)
- Fundamental quantum limits (no solution, but not much of practical limitations)

Example of limitations for a particular method (tunneling measurement of phase qubits)

Several sources for errors:

Non-adiabatic error

Solution: avoid too short pulses (<2 ns), use proper pulse shape (currently Slepian)

Solutions: use next level, use non-tunneling measurement (dispersive or Mesoscopic shelving resonant)

—— University of California, Riverside

2)

Alexander Korotkov

Quantum limits for qubit measurement

quantum limits = limits due to quantum back-action

quantum backaction = informational back-action
(unexplainable, no mechanism, Bayes, non-unitary)

QM allows fast projective measurement of a qubit \Rightarrow no quantum limits fundamentally hurting QC

However, quantum limits are within reach in SC qubit measurement (we start seeing informational back-action). They have importance for QC (secondary, not primary), surely important for more general QI and other fields, and very interesting fundamentally.

Types of measurement (terminology)

- destructive, non-destructive, half-destructive
- invasive, non-invasive (confusing?)
- linear, switching/bifurcation
- QND, non-QND

|1>→|1>, |0>→|0> (repeatability of results)
 commutes with Hamiltonian ⇒ measurement of energy (so comp. basis is energy) or a trick (stroboscopic, etc.)
 why care? easier (longer), useful for reinitialization

 single-shot or not (single-shot required for a QC) switching or linear with reasonable SNR

Characterization

- fidelity: $F_0 = p("0", \text{ if } |0\rangle), F_1 = p("1", \text{ if } |1\rangle); \text{ most important for QC}$
- quantum efficiency (var. defs.; related to post-measured state)
- many other characteristics

Alexander Korotkov

General characterization of a non-destructive binary-output (single-shot) qubit detector

general POVM (superoperator) for each result:

16 + 16 - 4 = 28 real parameters to describe (too many!)

28 = 2 (meas. axis) + 2 (fidelity) + 2×3 (unitary) + 2×9 (decoherence)

Simplifications:

- 1) Textbook projective only 2 parameters (meas. axis)
- 2) Perfect fidelity $F_0 = F_1 = 1$; then only meas. axis is interesting (6 more parameters affect only reinitialization)
- **3) QND** $|0\rangle \rightarrow |0\rangle$, $|1\rangle \rightarrow |1\rangle$; then 6 parameters

Alexander Korotkov

QND binary-output detector A.K., 2008

6 parameters: fidelity (F_0 , F_1), decoherence (D_0 , D_1), and phases (ϕ_0 , ϕ_1)

$$\begin{array}{ll} \text{result 0:} & \begin{pmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{pmatrix} \to \frac{1}{P_0} \begin{pmatrix} F_0 \rho_{00} & \sqrt{F_0 (1-F_1)} e^{-D_0} e^{i\phi_0} \rho_{01} \\ c.c. & (1-F_1) \rho_{11} \end{pmatrix} \\ \text{result 1:} & \begin{pmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{pmatrix} \to \frac{1}{P_1} \begin{pmatrix} (1-F_0) \rho_{00} & \sqrt{(1-F_0)F_1} e^{-D_1} e^{i\phi_1} \rho_{01} \\ c.c. & F_1 \rho_{11} \end{pmatrix} \\ P_0 = F_0 \rho_{00} + (1-F_1) \rho_{11}, P_1 = (1-F_0) \rho_{00} + F_1 \rho_{11} \end{pmatrix}$$
(simple bayes)

Corresponding quantum limits

Alexander Korotkov

result 0:
$$\frac{|\rho_{01}^{\text{after}}|}{|\rho_{01}|} \le \frac{1}{P_0} \sqrt{F_0(1-F_1)}$$
 result 1: $\frac{|\rho_{01}^{\text{after}}|}{|\rho_{01}|} \le \frac{1}{P_1} \sqrt{F_1(1-F_0)}$
ensemble decoherence: $\frac{|\rho_{01}^{\text{after}}|}{|\rho_{01}|} \le \sqrt{F_0(1-F_1)} + \sqrt{(1-F_0)F_1}$

natural to introduce quantum efficiencies by comparing with quantum limits (easy to realize $\eta_0=1$, but difficult $\eta_0=\eta_1=1$)

University of California, Riverside

10/19

Quantum limits for linear qubit detectors

Broadband (QPC, SET, etc.) or narrowband (cQED)

quantum backaction (non-unitary) broadband, "QND" $\overline{I} \equiv \frac{1}{\tau} \int_0^{\tau} I(t) \, dt$ $\frac{\rho_{11}(\tau)}{\rho_{00}(\tau)} = \frac{\rho_{11}(0)}{\rho_{00}(0)} \frac{\exp[-(\overline{I} - I_1)^2 / 2D]}{\exp[-(\overline{I} - I_0)^2 / 2D]}$ **|1⟩** • $D = S_I / 2\tau$ **|0**> o $\int \rho_{10}(\tau) = \rho_{10}(0) \sqrt{\frac{\rho_{11}(\tau) \rho_{00}(\tau)}{\rho_{11}(0) \rho_{00}(0)}} \exp(iK\overline{I}\tau) \exp(-\gamma\tau)$ **|0**> [►] decoherence I(t)classical backaction (unitary) $K=\gamma=0$ for symmetric QPC A.K., 1998, 2000 $\Delta I = I_1 - I_0$ noise S_I "measurement time" (S/N=1) $\Gamma = (\Delta I)^2 / 4S_I + \gamma'$ $\tau_m = 2S_I / (\Delta I)^2$ single-qubit ensemble $\Gamma \tau_m \geq \frac{1}{2}$ decoherence rate decoherence ~ information flow [bit/s] A.K., 1998, 2000 Pilgram et al., 2002 Clerk et al., 2002 $\gamma' \geq 0 \implies |\Gamma \geq (\Delta I)^2 / 4S_I$ Averin, 2000,2003 University of California, Riverside **Alexander Korotkov**

For non-zero *K* (classical backaction)

$$\Gamma = (\Delta I)^2 / 4S_I + K^2 S_I / 4 + \gamma \quad \Rightarrow \quad \Gamma \ge (\Delta I)^2 / 4S_I + K^2 S_I / 4$$

Translate into energy sensitivity (for SET; A.K.-2000)

$$\begin{split} \Gamma \geq (\Delta I)^2 / 4S_I & \Leftrightarrow \quad (\epsilon_O \epsilon_{BA})^{1/2} \geq \hbar/2 \\ \text{Danilov, Likharev,} \\ \text{Zorin, 1983} \\ \Gamma \geq (\Delta I)^2 / 4S_I + K^2 S_I / 4 & \Leftrightarrow \quad (\epsilon_O \epsilon_{BA} - \epsilon_{O,BA}^2)^{1/2} \geq \hbar/2 \\ \epsilon_O, \epsilon_{BA} \text{: sensitivities [J/Hz] limited by output noise and back-action} \end{split}$$

Known since 1980s (Caves, Clarke, Likharev, Zorin, Vorontsov, Khalili, etc.)

For qubit measurement these long-known quantum limits are related to the informational (Bayesian) back-action

Describing a qubit evolution due to measurement is a more appropriate language for QC

Quantum efficiency for linear qubit detection

quantum efficiency: comparison with quantum limit

$$\eta = \frac{\hbar^2 / 4}{\varepsilon_0 \varepsilon_{BA}} = \frac{1}{2\Gamma \tau_m} = 1 - \frac{\gamma'}{\Gamma}$$

(same meaning as in optics)

relevant quantities

peak height of persistent Rabi oscillations is limited by 4 times noise pedestal (<u>quantum limit</u>); state of the art: 2%

30

Quantum efficiency limits fidelity of quantum feedback (synchronization of persistent Rabi oscillations)

Alexander Korotkov

Narrowband linear measurement

Difference from broadband: two quadratures

Alexander Korotkov

System: qubit in cQED setup + parametric amplifier

Paramp traditionally discussed in terms of noise temperature

 $\begin{array}{l} \theta \geq 0 & \mbox{for phase-sensitive (degenerate, homodyne) paramp} \\ \theta \geq \frac{\hbar \omega}{2} & \mbox{for phase-preserving (non-degenerate, heterodyne) paramp} \\ & \mbox{Haus, Mullen, 1962} \\ & \mbox{Giffard, 1976} \end{array} \\ \label{eq:homodyne} We will discuss it in terms of qubit evolution due to measurement} \\ & \mbox{Likharev, private comm.} \\ & \mbox{Devoret, private comm.} \end{array}$

Phase-sensitive (degenerate) paramp

pumps $\omega_a + \omega_b = 2\omega_d$ quadrature $\cos(\omega_d t + \varphi)$ is amplified, $\cos(\omega_a t + \varphi + \delta), \cos((2\omega_a - \omega_d)t + \varphi - \delta)$ quadrature $sin(\omega_d t + \varphi)$ is suppressed Assume I(t) measures $\cos(\omega_d t + \varphi)$, then Q(t) not needed get some information ($\sim \cos^2 \varphi$) about qubit state and some information ($\sim \sin^2 \varphi$) about photon fluctuations $\overline{I} = \frac{1}{\tau} \int_0^{\tau} I(t) dt \qquad D = S_I / 2\tau$ $\frac{\rho_{11}(\tau)}{\rho_{00}(\tau)} = \frac{\rho_{11}(0)}{\rho_{00}(0)} \frac{\exp[-(\bar{I} - I_1)^2 / 2D]}{\exp[-(\bar{I} - I_0)^2 / 2D]}$ $\int \rho_{10}(\tau) = \rho_{10}(0) \sqrt{\frac{\rho_{11}(\tau) \rho_{00}(\tau)}{\rho_{11}(0) \rho_{00}(0)}} \exp(iK\overline{I}\tau)$ $\Gamma = \frac{(\Delta I \cos \varphi)^2}{4S_I} + K^2 \frac{S_I}{4} = \frac{\Delta I^2}{4S_I} = \frac{8\chi^2 \overline{n}}{\kappa}$ (rotating frame) (rotating frame) Same as for QPC/SET, but trade-off (φ) between quantum & classical back-actions Alexander Korotkov University of California, Riverside

Quantum limits for narrowband detection

If no information loss (good signal collection, good amplifiers, and no extra decoherence), then we can monitor (and feedback) qubit exactly

The limit $\theta \ge \hbar \omega/2$ for phase-preserving amplifiers does not hurt; just says that we need to use both quadratures in a smart way

Quantum efficiency in terms of persistent Rabi peak

Phase-sensitive (degenerate) $\begin{array}{lll} \text{Simple:} & S_{\text{peak}} \,/\, S_I \leq 4 \cos^2 \varphi \ \Rightarrow \ \eta \leq \cos^2 \varphi \\ \text{After undoing classical back-} & \frac{S_{\text{peak}}}{S_I} \leq 4 \ \Rightarrow \ \eta \leq 1 \end{array}$ Phase-preserving (non-degenerate) Simple: $S_{\text{peak}} / S_I \leq 2 \implies \eta \leq 1/2$ After undoing classical back-action (by feedback): $\frac{S_{\text{peak}}}{S_r} \le 4 \implies \eta \le 1$

In both cases if quantum feedback on both classical and quantum back-action, then half of the peak shrinks to line

Conclusions

- There are many theoretical limitations for measurement of phase qubits, but all of them have practical solutions
- Quantum limits are not of primary importance for QC, but still have importance and are within experimental reach
- Quantum limits are related to information acquisition
- Discussed some quantum limits for binary-output and linear (broadband and narrowband) detection of a qubit
- If use any good (quantum-limited) amplifier (including phase-preserving), then can monitor and feedback a qubit precisely. No quantum limitations in this sense.

19/19