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Niels Bohr:
“If you are not confused by
quantum physics then you 
haven’t really understood it”

Richard Feynman:
“I think I can safely say that nobody
understands quantum mechanics”

Quantum mechanics is weird…

Weirdest part is quantum measurement
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Quantum mechanics =
Schrödinger equation (evolution)

+
collapse postulate (measurement)

1)  Probability of measurement result   pr =

2)  Wavefunction after measurement   =

2| | |rψ ψ〈 〉
rψ

What is “inside” collapse? 
What if collapse is stopped half-way?

• State collapse follows from common sense
• Does not follow from Schrödinger Eq. (contradicts)
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Various approaches to non-projective (weak, continuous, 
partial, generalized, etc.) quantum measurements

Key words: POVM, restricted path integral, quantum trajectories, quantum
filtering, quantum jumps, stochastic master equation, etc.

Names: Davies, Kraus, Holevo, Mensky, Caves, Knight, Plenio, Walls,
Carmichael, Milburn, Wiseman, Gisin, Percival, Belavkin, etc.
(very incomplete list)

solid-state qubit

detector
I(t), noise S

Our limited scope:
(simplest system, 
experimental setups)

What is the evolution due to measurement?
(What is “inside” collapse?)

• controversial for last 80 years, many wrong answers, many correct answers
• solid-state systems are more natural to answer this question
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“Typical” setup: double-quantum-dot (DQD) 
qubit + quantum point contact (QPC) detector

eH

I(t)

H = HQB + HDET + HINT

Two levels of average detector current: I1 for qubit state |1〉,  I2 for |2〉

Response: ΔI= I1–I2 Detector noise: white, spectral density SI

† † † †
, ( )DET r r r r rl l l l ll r l rH E a a E a a T a a a a= + ++∑ ∑ ∑

† † † †
1 1 2 2, ( ) ( )INT r rl ll rH T c c c c a a a a= Δ − +∑ 2IS eI=

|1Ò

|2Ò

|1Ò
|2Ò

I(t)

|2Ò
|1Ò

Gurvitz, 1997

2 Z XQBH Hε σ σ= +

For low-transparency QPC

0( ) ( ) ( )
2
II t I z t tξΔ

= + +
const +  signal  + noise
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Bayesian formalism for DQD-QPC system

(A.K., 1998)

eH

I(t)

Qubit evolution due to measurement (quantum back-action):

So simple because: 
1) no entaglement at large QPC voltage
2) QPC happens to be an ideal detector
3) no Hamiltonian evolution of the qubit

( ) (res | )
( | res)

( ) (res | )k kk

i i
i

P A P A
P A

P A P A
=

∑

Bayes rule (1763, Laplace-1812):

HQB = 0
|1Ò

|2Ò
1)  |α(t)|2 and |β(t)|2 evolve as probabilities,

i.e. according to the Bayes rule (same for ρii)
2)  phases of α(t) and β(t) do not change

(no dephasing!), ρij /(ρii ρjj)1/2 = const

( ) ( ) | 1 ( ) | 2t t tψ α β= 〉 + 〉 or ( )ij tρ

likelihoodposterior
probability

prior
probab. I1 I2

measured0
1 ( )I t dt

τ

τ ∫
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Bayesian formalism for a single qubit

(A.K., 1998)

Averaging over result I(t) leads to conventional master equation with Γ

2( ) / 4 ,II Sγ Γ Δ Γ − ensemble decoherence= -

Evolution of qubit wavefunction can be monitored if γ=0 (quantum-limited)

eH

I(t) 2e

Vg V

I(t)
• Time derivative of the quantum Bayes rule
• Add unitary evolution of the qubit
• Add decoherence γ (if any)

11 22 12 11 22 0

12 12 11 22 12 11 22 0 12

22 Im [ ]

( ) ( ) [ ]

( )

( )

I

I

IH I
S

Ii i H I
S

I t

I t

ρ ρ ρ ρ ρ

ρ ερ ρ ρ ρ ρ ρ γ ρ

• •

•

Δ

Δ
+

= - = - + -

= + - - - -

0γ = for QPC detector

Natural generalizations:   • add classical back-action
• entangled qubits
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Assumptions needed for the Bayesian formalism:
• Detector voltage is much larger than the qubit energies involved 

eV >> ÑΩ, eV >> ÑΓ, Ñ/eV << (1/Ω, 1/Γ),  Ω=(4H2+ε2)1/2

(no coherence in the detector, classical output, Markovian approximation)

• Simpler if weak response, |ΔI | << I0,  (coupling C ~ Γ/Ω is arbitrary)           

Derivations:  
1) “logical”: via correspondence principle and comparison with 

decoherence approach (A.K., 1998) 
2) “microscopic”: Schr. eq. + collapse of the detector (A.K., 2000) 

qubit detector pointer
quantum 
interaction

frequent
collapse

classical
information

( )n
ij tρ ( )kn t

n – number of electrons
passed through detector

3) from “quantum trajectory” formalism developed for quantum optics
(Goan-Milburn, 2001; also: Wiseman, Sun, Oxtoby, etc.) 

4) from POVM formalism (Jordan-A.K., 2006) 
5) from Keldysh formalism (Wei-Nazarov, 2007)

quantum
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Why not just use Schrödinger 
equation for the whole system?

qubit

detector
information

Technical reason: Outgoing information (measurement result)  
makes it an open system

Impossible in principle!

Philosophical reason: Random measurement result, but 
deterministic Schrödinger equation

Einstein: God does not play dice
Heisenberg: unavoidable quantum-classical boundary
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Quantum limit for ensemble decoherence
Γ = (ΔI)2/4SI + γ

γ ≥ 0  ⇒ Γ ≥ (ΔI)2/4SI

ensemble 
decoherence rate

single-qubit 
decoherence

~ information flow [bit/s]

εO, εBA: sensitivities [J/Hz] limited by output noise and back-action

Known since 1980s (Caves, Clarke, Likharev, Zorin, Vorontsov, Khalili, etc.)

η ≤
detector ideality (quantum efficiency)

100%

A.K., 1998, 2000
S. Pilgram et al., 2002
A. Clerk et al., 2002
D. Averin, 2000,2003

2( ) / 41 II Sγη Δ
Γ Γ

= - =

1
2mτΓ ≥

(εO εBA - εO,BA
2)1/2 ≥ /2   ⇔ Γ ≥ (ΔI)2/4SI + K2SI/4

22 /( )Im S Iτ = Δ
“measurement time” (S/N=1)

Danilov, Likharev,
Zorin, 1983

Translated into energy sensitivity: (εO εBA)1/2 ≥ /2

Quantum limits for measurement are due to quantum (informational) back-action
10/38
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POVM vs. Bayesian formalism

Measurement (Kraus) operator 
Mr (any linear operator in H.S.) :

†

†Tr( )
r r

r r

M M
M M

ρ
ρ

ρ
→

General quantum measurement (POVM formalism) (Nielsen-Chuang, p. 85,100):

† 1r rr M MCompleteness : =∑

†Tr( )r r rP M Mρ=Probability :

|| ||
r

r

M
M

ψ
ψ

ψ
→ or

2|| ||r rP M ψ= or
(People often prefer linear evolution

and non-normalized states)

Relation between POVM and 
quantum Bayesian formalism:

decomposition †
r r r rM U M M=

Bayesunitary

• POVM is essentially a projective measurement in an extended Hilbert space
• Easy to derive: interaction with ancilla + projective measurement of ancilla
• For extra decoherence: incoherent sum over subsets of results

Mathematically POVM and quantum Bayes are almost equivalent

We focus not on the mathematical structures, but on
particular setups and experimental consequences
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Can we verify the Bayesian formalism 
experimentally?

Direct way:

prepare partial
measur.

control
(rotation)

projective
measur.

A.K.,1998

However, difficult: bandwidth, control, efficiency 
(expt. realized only for supercond. phase qubits)

Tricks are needed for real experiments
(proposals 1999-2010)
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Non-decaying (persistent) Rabi oscillations

left right

ground

excited
- Relaxes to the ground state if left alone (low-T)
- Becomes fully mixed if coupled to a high-T

(non-equilibrium) environment
- Oscillates persistently between left and right 

if (weakly) measured continuously

Direct experiment is difficult
A.K., PRB-1999

0 5 10 15 20 25 30
-0.5

0.0

0.5

1.0
ρ11

Reρ11

Imρ11

to verify:
stop & check

time

z
|left〉

|right〉

|g〉|e〉 • ••

z
(measure left-right)
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Indirect experiment: spectrum
of persistent Rabi oscillations 

qubit detector
I(t)

C
A.K., LT’1999
A.K.-Averin, 2000

2 2

0 2 2 2 2 2
( )( )

( )I
IS Sω

ω ω
Ω Δ Γ

= +
− Ω + Γ

peak-to-pedestal ratio = 4η ≤ 4

0( ) ( ) ( )
2
II t I z t tξΔ

= + +

(const + signal + noise)

2( ) / IC I HS= Δ

0.0 0.5 1.0 1.5 2.0
0
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ω/Ω

S I(ω
)/S

0

C=13

10

3
1

0.3

Ω = 2H

integral under the peak ‹ variance ‚z2Ú

ηÜ1
ω/Ω

SI (ω)
amplifier noise fl higher pedestal,

poor quantum efficiency,
but the peak is the same!!!

How to distinguish experimentally
persistent from non-persistent? Easy!

perfect Rabi oscillations: ·z2Ò=·cos2Ò=1/2
imperfect (non-persistent): ·z2ÒÜ 1/2
quantum (Bayesian) result:  ·z2Ò = 1 (!!!)

(demonstrated in Saclay expt.)

0 1 2
0

1

Ω - Rabi frequency

z is Bloch
coordinate
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How to understand ·z2Ò = 1?

0( ) ( ) ( )
2
II t I z t tξΔ

= + +

First way (mathematical)   
We actually measure operator:  z → σz

z2 → σz
2 = 1

Second way (Bayesian)   2
( ) ( ) ( )

4 2I zz z
I IS S S Sξξ ξω ω ωΔ Δ

= + +

Equal contributions (for weak 
coupling and η=1)

(What does it mean?
Difficult to say…)

quantum back-action changes z
in accordance with the noise ξ

Can we explain it in a more reasonable way (without spooks/ghosts)?

No (under assumptions of macrorealism; 
Leggett-Garg, 1985)

z(t)?+1

-1

qubit

detector
I(t)

or some other z(t)?

z
|left〉

|right〉

|g〉|e〉 • ••

“what you see is what you get”: observation becomes reality

15/38
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Leggett-Garg-type inequalities for 
continuous measurement of a qubit

Ruskov-A.K.-Mizel, PRL-2006
Jordan-A.K.-Büttiker, PRL-2006

0 1 2
0

2

4

6

ω/Ω

S I(ω
)/S

0

SI (ω)

≤
4S

0

Experimentally measurable violation

qubit detector
I(t)

Assumptions of macrorealism
(similar to Leggett-Garg’85):

0 ( )  ( / 2) ( ) ( )I t I I z t tξ+ Δ +=

| ( ) | 1,  ( ) ( ) 0z t t z tξ τ≤ 〈 + 〉 =

Then for correlation function
 ( ) ( ) ( )K I t I tτ τ〈 + 〉=

2
1 2 1 2( ) ( ) ( ) ( / 2)K K K Iτ τ τ τ+ − + ≤ Δ

and for area under narrow spectral peak

0
2 2[ ( ) ] (8 / ) ( / 2)IS f S df Iπ− ≤ Δ∫

quantum result

23 ( / 2)
2

IΔ
3
2

×

violation

2( / 2)IΔ
2

8
π

×

(Saclay experiment)

Leggett-Garg,1985
Kij = ·Qi QjÒ

if Q =±1, then
1+K12+K23+K13≥0

K12+K23+K34 -K14 £2

η is not important!
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Experiment with supercond. qubit (Saclay group)

• superconducting charge qubit
(transmon) in circuit QED setup
(microwave reflection from cavity)

• driven Rabi oscillations 

• perfect spectral peaks
• LGI violation (both K & S) 

A. Palacios-Laloy, F. Mallet, 
F. Nguyen, P. Bertet, D. Vion, 
D. Esteve, and  A. Korotkov,
Nature Phys., 2010
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courtesy of 
Patrice Bertet
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Next step: quantum feedback
Goal: persistent Rabi oscillations with zero linewidth (synchronized)

Types of quantum feedback:
Bayesian Direct “Simple”

0 1 2 3 4 5 6 7 8 9 10
0.80

0.85

0.90

0.95

1.00

Cenv /Cdet= 0 0.1   0.5

C=Cdet=1
τa=0

Ruskov & A.K., 2002

C<<1
detector

I(t)
× cos (Ω t), τ-average

re
l. 

ph
as

eX

Y

φm
qubit

control

× sin (Ω t), τ-average

local oscil.
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ε/H0= 1
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0
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0

C = 0.1
τ [(ΔI)2/SI] = 1 

1

0.1

F/C (feedback strength)
D

(fe
ed
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 fi
de

lit
y)

qubit 

H 

e 

detector Bayesian 
     equations 

I(t) 

control stage 

(barrier height) 

ρij(t) 

 

comparison 
circuit 

desired evolution  

feedback 

signal 

environment 

C<<1 

Best but very difficult a la Wiseman-Milburn
(1993)(monitor quantum state

and control deviation) (apply measurement signal to
control with minimal processing)

Imperfect but simple
(do as in usual classical

feedback)

A.K., 2005
Ruskov & A.K., 2002

fb

0

/ sin( )
( )

cos
/ 2

H H F t
I t I

t
I

Δ = Ω
−⎛ ⎞× − Ω⎜ ⎟Δ⎝ ⎠
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D
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fb /H H F ϕΔ = × Δ
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m

H
F

H
φ

Δ
= ×

(Useful?)
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Quantum feedback in optics
First experiment: Science 304, 270 (2004)

First detailed theory:
H.M. Wiseman and G. J. Milburn, 
Phys. Rev. Lett. 70, 548 (1993)
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Quantum feedback in optics
First experiment: Science 304, 270 (2004)

First detailed theory:
H.M. Wiseman and G. J. Milburn, 
Phys. Rev. Lett. 70, 548 (1993)

paper withdrawn

PRL 94, 203002 (2005) also withdrawn

Recent experiment: 
Cook, Martin, Geremia,
Nature 446, 774 (2007)
(coherent state discrimination)

20/38
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Undoing a weak measurement of a qubit
(“uncollapse”)

It is impossible to undo “orthodox” quantum 
measurement (for an unknown initial state)

Is it possible to undo partial quantum measurement? 
(To restore a “precious” qubit accidentally measured)

Yes! (but with a finite probability)

If undoing is successful, an unknown state is fully restored

ψ0
(unknown)

ψ1
(partially
collapsed)

weak (partial)
measurement

ψ0 (still
unknown)

ψ2

successful

unsuccessful
uncollapse

(information erasure)

A.K. & Jordan, PRL-2006
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Quantum erasers in optics
Quantum eraser proposal by Scully and Drühl, PRA (1982)

Our idea of uncollapsing is quite different:
we really extract quantum information and then erase it

Interference fringes restored for two-detector
correlations (since “which-path” information
is erased)
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Uncollapse of a qubit state
Evolution due to partial (weak, continuous, etc.) measurement is
non-unitary, so impossible to undo it by Hamiltonian dynamics. 

How to undo? One more measurement!

× =

| 0〉

| 1〉

| 0〉 | 0〉

| 1〉 | 1〉

need ideal (quantum-limited) detector
(Figure partially adopted from 
Jordan-A.K.-Büttiker, PRL-06)(similar to Koashi-Ueda, PRL-1999)
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Uncollapsing for DQD-QPC system

r(t)

uncollapsing
measurement

t

r0

first (“accidental”) 
measurement

Detector 
(QPC)

Qubit 
(DQD)I(t)

Simple strategy: continue measuring 
until result r(t) becomes zero! Then
any initial state is fully restored.

However, if r = 0  never happens, then
uncollapsing procedure is unsuccessful.

(same for an entangled qubit)

A.K. & Jordan, 2006

11 22

0

0 0

||

| | | |(0) (0)
S

r

r r
eP

e eρ ρ+

-

-=Probability of success:

00( ) [ ( ') ' ]
I

tIr t I t dt I t
S
Δ

∫= -

If r = 0, then no information 
and no evolution!

Meas. result:

H=0
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General theory of uncollapsing
Measurement operator Mr :

†

†Tr( )
r r

r r

M M
M M

ρ
ρ

ρ
→

Uncollapsing operator: 1
rC M −×

max( ) min ,i i iC p p= – eigenvalues of

Probability of success:
in

min
( )S

r

r

PP
P ρ

≤

Pr(ρin) – probability of result r for initial state ρin, 
min Pr – probability of result r minimized over

all possible initial states
minav rrP P≤

(to satisfy completeness, 
eigenvalues cannot be >1)

POVM formalism

Averaged (over r ) probability of success: ∑

(Nielsen-Chuang, p.100)

Completeness : † 1r rr M M =∑

†
r rM M

Probability : †Tr( )r r rP M Mρ=

(cannot depend on initial state, otherwise get information)
(similar to Koashi-Ueda, 1999)

A.K. & Jordan, 2006
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Partial collapse of a Josephson phase qubit

Γ
|0〉
|1〉 How does a qubit state evolve

in time before tunneling event?

Main idea:

2 2

/2
| , if tunneled

| 0 | 1| 0 | 1 ( ) , if not tunneled
| | | |

i

t

t e

out

et

e

ϕα βψ α β ψ

α β Γ

Γ

〉⎧
⎪

〉 + 〉〉 + 〉 → ⎨
⎪

+⎩
-

-= =

(similar to optics, Dalibard-Castin-Molmer, PRL-1992)
continuous null-result collapse

N. Katz, M. Ansmann, R. Bialczak, E. Lucero, 
R. McDermott, M. Neeley, M. Steffen, E. Weig, 
A. Cleland, J. Martinis, A. Korotkov, Science-06

amplitude of state |0〉 grows without physical interaction

(What happens when nothing happens?)

(better theory: L. Pryadko & A.K., 2007)

finite linewidth only after tunneling!
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Superconducting phase qubit at UCSB

Idc+Iz

Qubit

Flux 
bias

|0〉
|1〉

ω01

1 Φ0

VS
SQUID

Repeat 1000x
prob. 0,1

Is

Idc
time

Reset Compute    Meas. Readout

Iz

Iμw

Vs

0 1

X Y

Z

10ns 

3ns 

Iμw

IS

Courtesy of Nadav Katz (UCSB)
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Experimental technique for partial collapse 
Nadav Katz et al.
(John Martinis group)

Protocol:
1) State preparation

(via Rabi oscillations)
2) Partial measurement by

lowering barrier for time t
3) State tomography (micro-

wave + full measurement)

Measurement strength 
p = 1 - exp(-Γt ) 

is actually controlled
by Γ, not by t

p=0: no measurement
p=1: orthodox collapse
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Experimental tomography data
Nadav Katz et al. (UCSB, 2005)

p=0 p=0.14p=0.06

p=0.23

p=0.70p=0.56

p=0.43p=0.32

p=0.83

θx

θy

| 0 | 1
2

inψ
〉 + 〉

=

π/2
π
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Partial collapse: experimental results

in (c) T1=110 ns, T2=80 ns (measured)

no fitting parameters in (a) and (b)P
ol

ar
 a

ng
le

A
zi

m
ut

ha
l a

ng
le

V
is

ib
ili

ty

probability p

probability p

pulse ampl.

N. Katz et al., Science-06

• In case of no tunneling 
phase qubit evolves 

• Evolution is described 
by the Bayesian theory  
without fitting parameters

• Phase qubit remains  
coherent in the process 
of continuous collapse 
(expt. ~80% raw data,
~96% corrected for T1,T2)

lines - theory
dots and squares – expt.

quantum efficiency
0 0.8η >

30/38



University of California, RiversideAlexander Korotkov

Uncollapse of a phase qubit state
1)   Start with an unknown state
2)   Partial measurement of strength p
3)   π-pulse (exchange |0Ú ↔ |1Ú)
4)   One more measurement with 

the same strength p
5) π-pulse

If no tunneling for both measurements, 
then initial state is fully restored!

/ 2

/ 2 / 2

| 0 | 1| 0 | 1
Norm

| 0 | 1 ( | 0 | 1 )
Norm

i t

i it t
i

e e

e e e e e

φ

φ φ
φ

α βα β

α β α β

−Γ

−Γ −Γ

〉 + 〉
〉 + 〉 → →

〉 + 〉
= 〉 + 〉

 

Γ
|0〉
|1〉

1 tp e Γ-= -

A.K. & Jordan, 2006

phase is also restored (spin echo)
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Experiment on wavefunction uncollapse
N. Katz, M. Neeley, M. Ansmann,
R. Bialzak, E. Lucero, A. O’Connell,
H. Wang, A. Cleland, J. Martinis, 
and A. Korotkov, PRL-2008

tomography & 
final measure

state
preparation

7 ns

partial 
measure p

p

time
10 ns

partial 
measure p

p

10 ns 7 ns

π

Iμw

Idc

State tomography with 
X, Y, and no pulses

Background PB should  
be subtracted to find
qubit density matrix

| 0 | 1
2inψ 〉+ 〉

=

Uncollapse protocol:
- partial collapse
- π-pulse
- partial collapse

(same strength)

Nature News
Nature-2008 Physics
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Experimental results on the Bloch sphere

Both spin echo (azimuth) and uncollapsing (polar angle)
Difference: spin echo – undoing of an unknown unitary evolution,

uncollapsing – undoing of a known, but non-unitary evolution

N. Katz et al. Initial
state

Partially
collapsed

Uncollapsed

| 1〉 | 0〉
| 0 | 1

2
i〉 − 〉 | 0 | 1

2
〉+ 〉

uncollapsing 
works well!
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Quantum process tomography

Overall: uncollapsing is well-confirmed experimentally

Why getting worse at p>0.6?  
Energy relaxation  pr = t /T1= 45ns/450ns = 0.1
Selection affected when 1-p ~ pr

p = 0.5

N. Katz et al.
(Martinis group) 

uncollapsing works 
with good fidelity!
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Experiment on uncollapsing
using single photons

Kim et al., Opt. Expr.-2009

• very good fidelity of uncollapsing (>94%)
• measurement fidelity is probably not good

(normalization by coincidence counts)
35/38

initial 
state

after
partial 
collapse

after 
uncollapse



University of California, RiversideAlexander Korotkov

Suppression of T1-decoherence 
by uncollapsing

Ideal case (T1 during storage only)

for initial state |ψin〉=α |0〉 +β |1〉

|ψf〉= |ψin〉 with probability (1-p)e-t/T1

|ψf〉= |0〉 with (1-p)2|β|2e-t/T1(1-e-t/T1) 

procedure preferentially selects
events without energy decay

Protocol:

partial collapse 
towards ground 
state (strength p)

storage period t

π π

uncollapse
(measurem.
strength pu)

ρ11

(low temperature)

A.K. & K. Keane, 
PRA-2010
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pu= p

pu= 1- e-t/T1 (1-p)

e-t/T1
 = 0.3
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complete 

suppression

best for 11 (1 )exp( / )up p t T- = - -

Trade-off: fidelity vs. probability
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Realistic case (T1 and Tϕ at all stages)

measurement strength p

Q
P

T 
fid

el
ity

, p
ro

ba
bi

lit
y

fidelity

probability

without
uncollapsing

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(1-pu) κ3κ4 = (1-p) κ1κ2

κ2 = 0.3

κ1 =  κ3 =  κ4 = 1, 0.999,
κ ϕ = 1, 0.95

0.99. 0.9

as in
expt.

}

1/it T
i eκ −

=
/t Te ϕ

ϕκ Σ−
=

• Easy to realize experimentally
(similar to existing experiment)

• Improved fidelity can be observed 
with just one partial measurement

A.K. & K. Keane, 
PRA-2010Trade-off: fidelity vs. selection probability

• Tϕ-decoherence is not affected
• fidelity decreases at p→1 due to T1

between 1st π-pulse and 2nd meas.

Uncollapse seems the only way
to protect against T1-decoherence 
without quantum error correction 
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Conclusions

● It is easy to see what is “inside” collapse: simple Bayesian
formalism works for many solid-state setups

● Rabi oscillations are persistent if weakly measured 

● Collapse can sometimes be undone if we manage 
to erase extracted information (uncollapsing)

● Continuous/partial measurements and uncollapsing
may be useful

● Three direct solid-state experiments have been realized, 
many interesting experimental proposals are still waiting
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