UCR, 5/06/10
Partial collapse and uncollapse of a
wavefunction: theory and experiments
(what is “inside” collapse)

Alexander Korotkov
EE dept. (& Physics), University of California, Riverside

Outline: e Bayesian formalism for quantum measurement
e Persistent Rabi oscillations (+ expt.)
e \Wavefunction uncollapse (+ expts.)

Acknowledgements:

Theory: R. Ruskov, A. Jordan, K. Keane
Expt.: UCSB (J. Martinis, N. Katz et al.),
Saclay (D. Esteve, P. Bertet et al.)

Alexander Korotkov Universitv of California, Riverside

Funding:




Quantum mechanics is weird...

Niels Bohr:
“If you are not confused by
gquantum physics then you
haven't really understood it”

Richard Feynman:
“I think | can safely say that nobody
understands quantum mechanics”

Weirdest part is quantum measurement
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Quantum mechanics =

Schrodinger equation (evolution)
+
collapse postulate (measurement)

1) Probability of measurement result P, =‘ <W ‘ W,—) ‘2

2) Wavefunction after measurement = ¥y

e State collapse follows from common sense
e Does not follow from Schrodinger Eq. (contradicts)

What is “inside” collapse?
What if collapse is stopped half-way?
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What is the evolution due to measurement?
(What is “inside” collapse?)

e controversial for last 80 years, many wrong answers, many correct answers
e solid-state systems are more natural to answer this question

Various approaches to non-projective (weak, continuous,
partial, generalized, etc.) quantum measurements

Names: Davies, Kraus, Holevo, Mensky, Caves, Knight, Plenio, Walls,
Carmichael, Milburn, Wiseman, Gisin, Percival, Belavkin, etc.
(very incomplete list)

Key words: POVM, restricted path integral, quantum trajectories, quantum
filtering, quantum jumps, stochastic master equation, etc.

Our limited scope:

(simplest system,
experimental setups)

[(t), noise S
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“Typical” setup: double-quantum-dot (DQD)

qubit + quantum point contact (QPC) detector
Gurvitz, 1997

1) <$> 1) o ]
HY o 2Yo Py =Hgp * Hper * Hiny
12) & :_:;_//|1> Hog =§O‘Z +Ho,
— — [ 10 Al
N\ 1) — I (t) = I0+72(t)+§(t)

const + signal + noise

Two levels of average detector current: |, for qubit state [1), |, for [2)

Response: Al=1,-1, Detector noise: white, spectral density S,
For low-transparency QPC
Hper = ZI E|ara| T Zr Efa;rar + ZI,rT(a;ral + arar)

HINT ZZLI’AT (CICI _C;CZ)(ajal +arar) Sl - 26'
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Bayesian formalism for DQD-QPC system

= Qubit evolution due to measurement (quantum back-action):
Hog =0
1) o y()=a®|)+p(t)[2) or p;(1)
2) g e 1) |a(t)]? and |B(t)|? evolve as probabilities,

U i.e. according to the Bayes rule (same for p;;)

— 2) phases of a(t) and B(t) do not change

ANTL (no dephasing!), p;;/(pji p;)"? = const
(AK., 1998)

1 e7
Bayes rule (1763, Laplace-1812):  — jﬂ | (t)dt
T
osterior prior measured
pllzobability probab llke}ghOO(\i !1 | )

v P(A) P(res| A)

P (A |res)= > P(A)P(res| A) So simple because:
1) no entaglement at large QPC voltage
2) QPC happens to be an ideal detector
3) no Hamiltonian evolution of the qubit
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Bayesian formalism for a single qubit

o
H?,‘e %Vg : e Time derivative of the quantum Bayes rule
U 1B |=|l I() o Add unitary evolution of the qubit
N 2L = e Add decoherence ¥ (if any)
2Al
,011 Pzz —2H Impy, + pyy 05— 3 [=t)‘ o]
I

,012 L g0, +1TH (011 = 023) + P12 (P11 - pzz) [I(t)‘lol Y P12

A.K., 1998
y=I-(Al )2 /4S,, T —ensemble decoherence ( )

y =0 for QPC detector
Averaging over result I(t) leads to conventional master equation with I

Evolution of qubit wavefunction can be monitored if y=0 (quantum-limited)

Natural generalizations: e add classical back-action

e entangled qubits
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Assumptions needed for the Bayesian formalism:

e Detector voltage is much larger than the qubit energies involved
eV >> 7Q), eV >> al, hAleV << (1/Q, 1/T), Q=(4H2+g2)1/2
(no coherence in the detector, classical output, Markovian approximation)

e Simpler if weak response, |Al | << |,, (coupling C~T/Q is arbitrary)

Derivations:

1) “logical”: via correspondence principle and comparison with
decoherence approach (A.K., 1998)

2) “microscopic”: Schr. eq. + collapse of the detector (A.K., 2000)

n
f bit Pij (V) detect j n(Y) g ot classical
qubi <—>f etector T pointer > i~
quantum frequent n — number of electrons
\_ interaction quantum/ collapse passed through detector

3) from “quantum trajectory” formalism developed for quantum optics
(Goan-Milburn, 2001; also: Wiseman, Sun, Oxtoby, etc.)

4) from POVM formalism (Jordan-A.K., 2006)
5) from Keldysh formalism (Wei-Nazarov, 2007)

Universitv of California, Riverside
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Why not just use Schrodinger
equation for the whole system?

>

information

Impossible in principle!

Technical reason: Outgoing information (measurement result)
makes it an open system

Philosophical reason: Random measurement result, but
deterministic Schrodinger equation

Einstein: God does not play dice
Heisenberg: unavoidable quantum-classical boundary
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Quantum limit for ensemble decoherence

I = (A|)2/4S +y “measurement time” (S/N=1)
y. JREN 7 =28, /(Al)?
ensemble single-qubit
decoherence rate ‘ decoherence Tr > 1
o2

~ information flow [bit/s] /7 2
A.K., 1998, 2000

5 S. Pilgram et al., 2002
y20 = | I 2 (Al)7/4S, A. Clerk et al., 2002
D. Averin, 2000,2003

2
Y (Al)”/4S, detector ideality (Qquantum efficiency)
T T n <100%

n=1

Transl| in ner nsitivity: 125 %9 Danilov, Likharev,
anslated into energy sensitivity: (€5 €gp)'~ > 7/ Zorin. 1983

€0, €pa: sensitivities [J/Hz] limited by output noise and back-action
Known since 1980s (Caves, Clarke, Likharev, Zorin, Vorontsov, Khalili, etc.)
(€0 €ga- Eopad)l?2 12 < T 2 (A4S, +K2S /4

Quantum limits for measurement are due to quantum (informational) back-action
10/38
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POVM vs. Bayesian formalism

General quantum measurement (POVM formalism) (Nielsen-Chuang, p. 85,100):

i
Measurement (Kraus) operator M M, oMy
( ) op Y o oo

M, (any linear operator in H.S.): 4 M| Tr(MrpI\/I;L)

Probability: P, =|| M,y |[* or Pr = Tr(M; pM{)

(People often prefer linear evolution

. T _
Completeness : Zr MM, =1 and non-normalized states)

e POVM is essentially a projective measurement in an extended Hilbert space
e Easy to derive: interaction with ancilla + projective measurement of ancilla
e For extra decoherence: incoherent sum over subsets of results

Relation between POVM and ~ decomposition M, =U 4/ I\/IrTM r

quantum Bayesian formalism: / v
unitary Bayes

Mathematically POVM and quantum Bayes are almost equivalent

We focus not on the mathematical structures, but on
particular setups and experimental consequences
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Can we verify the Bayesian formalism

experimentally?
Direct way:
partial control projective
prepare = measur. [~ | (rotation) | measur.

A.K.,1998

However, difficult: bandwidth, control, efficiency
(expt. realized only for supercond. phase qubits)

Tricks are needed for real experiments
(proposals 1999-2010)
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Non-decaying (persistent) Rabi oscillations

left

excited

|

f

right

ground

—>Z

(measure left-right)

Z
‘|Ieft)

Alexander Korotkov

- Relaxes to the ground state if left alone (low-T)

- Becomes fully mixed if coupled to a high-T
(non-equilibrium) environment

- Oscillates persistently between left and right
if (weakly) measured continuously

to verify:
stop & check
1.0 —
P11
0.5
Repy; 3
0.0
Imp,; 3
-0.5 I
0 5 10 15 20 25 30
time
A K., PRB-1999

Direct experiment is difficult
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Indirect experiment: spectrum
of persistent Rabi oscillations

AK., LT1999
jél Al A.K.-Averin, 2000
ubit detector——>
1 I (D) =1y+=-2()+E(1)  zisBioch
P S T T T 2 _ _ coordinate
=13 (const + signal + noise)
10- Q=2H i e . . S, (@)
. 0 i amplifier noise = higher pedestal, 1
. : .
% - _ (Al /HS, | ) poor qugntum efficiency, n<l
S 67 | - ut the peak is the same!ll :
A ] \ - 0  T@/Q 2
* ; : f“ﬁ\;_ integral under the peak < variance (z%)
2 - [
1 03 How to distinguish experimentally
00 05 15060/' Qlfs 20 persistent from non-persistent? Easy!

(2 - Rabi frequency _ o 5 5
perfect Rabi oscillations: (z¢)=(cos<)=1/2

imperfect (non-persistent): (z2) <« 1/2
QX(A’T quantum (Bayesian) result: (z2)=1 (1l

(wZ—QZ)Z+F2a)2 |
(demonstrated in Saclay expt.)
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Ajey  How to understand (z2)=1?

e 151 *l9 ,
/ qubit

[right) 1(tH)=1, +A—|z(t)+<§(t) I
2 detector —>

First way (mathematical)

We actually measure operator: Z— G,
(What does it mean?

72 Gzz =1 Difficult to say...)

Second way (Bayesian) A2 Al
S1(@) = Sz += =Sz (@) +—-S,(@)

N\ 2/

@ quantum back—agtion charllges z Equal contributions (for weak
in accordance with the noise & coupling and 1=1)

“what you see is what you get”: observation becomes reality
Can we explain it in a more reasonable way (without spooks/ghosts)?

+1 2(t)?
( ) NoO (under assumptions of macrorealism;
-1 Leggett-Garg, 1985)

or some other z(t)?

Alexander Korotkov Universitv of California, Riverside
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Leggett-Garg-type inequalities for
continuous measurement of a qubit

EIHH toct Ruskov-A.K.-Mizel, PRL-2006
quot e Ny Jordan-A K -Bttiker, PRL-2006

Assumptions of macrorealism  Leggett-Garg,1985 )
(similar to Leggett-Garg'85): Kij=<(Q;i Q;) A 5 l((”)'_
1(t) = 1, +(Al/2)2(t) + &(t) FQ=xl,then 2 | ¥ |
OIS, (EM) 2ty =0 =0 |

<1 +7)) = _ . .
KiatKy+Ksy =Ky =2 o° T

Then for correlation function : :
quantum result violation

K@) =IO 1(t+7)) 3 3

K@)+ K@) - Kz +1,) < (A1/2)° - 2 (Al /2)° X

and for area under narrow spectral peak ,

j[S,(f)—Sﬂ]df <(8/7%)(Al /2)? (Al /2)? x%

N is not important!  Experimentally measurable violation

(Saclay experiment)
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fie(™

Experiment with supercond. qubit (Saclay group)

Strip

=
[

line resonator

courtesy of
Patrice Bertet

T i [ § o

transmon
i (N)=0.23 | 4 (ny=3.9
| photons | .| photons

A. Palacios-Laloy, F. Mallet,
F.Nguyen, P. Bertet, D. Vion,
D. Esteve, and A. Korotkov,
Nature Phys., 2010

0.2

01

e superconducting charge qubit
g2 (transmon) in circuit QED setup
1,3 (microwave reflection from cavity)

\U/ e driven Rabi oscillations
Qm'- o] e perfect spectral peaks

= ww © e LGl violation (both K&S)

7 (ns)

Alexander Korotkov Universitv of California, Riverside



Next step: quantum feedback (Useftul?)

Goal: persistent Rabi oscillations with zero linewidth (synchronized)
Types of quantum feedback:

Bayesian Direct “Simple”
Best but very difficult a la Wiseman-Milburn Imperfect but simple
(monitor quantum state (1993) (do as in usual classical
and control deviation) (apply measurement signalto feedback)

deird evoion - cONtrol with minimal processing) be =F x4,

fe‘fdbaf" : control
control stage | Signal |comparison .

(barrier height) X (Q t) X -
(¢ X COS , T-average j—p
detector Bayesian Pii(9) x I(t)_ IO —cos Ot C<<1 1(t) L - g ¢m
0<Ho X; equations Al /2 detector e local oscil. v 'S_
= 10 . L x sin (Q t), T-average f=p E,
AH fb / H = F x A¢ E 08 | —~1.0 I TR NN [N NN TN SR [ SR NN SN N SN 1
~100 bl L L L 8 . ..? { Nefr=1 Cc=0.1
2 I Y A = 06+ = © 0.8 AD%S.1=1 F
% ] / _2‘_) averaging time o clah l]
5 095 L © 044 1, = (21/Q)10 =] i
= /J 2 c=1 5" sz
_5 000 ] Cenv /Cdet=0_/0.1/ 0.5 s S o2 n=1 i 8 v ==
S 9 S [ 1,7 b
8 el 2 g |
D 085 - O o0 02 04 06 08 gﬂl— -
L] F (feedback strength) A
00'800"{'5'3"4'"5"%';';3'&'10 0.00.0' 0.2 0.4 06 "o
F (feedback strength) Ruskov & A.K., 2002 F/C (feedback strength)
Ruskov & A.K., 2002 A.K., 2005
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Quantum feedback in optics

First experiment: Science 304, 270 (2004)

Real-Time Quantum Feedback
Control of Atomic
Spin-Squeezing
IM Geramia,® Jehn K. Stockten, Hides Mabuchi

Real-time fesdback performed during a quantum nondemaolition measurament
of atomic spin-angular momentum allowed us to influence the quantum sta-
tistics of the measurement outcome We showed that itis possible to hamess
measurement backaction as a form of actuation in quantum contral, and thus
wie describe a valuable tool for quantum information scence, Our fesdback-
mediated procedure generates spin-squeszing, forwhich the reduction in quan-
tum uncertainty and resulting atomic entanglement are not conditioned on the
Measurement outoomee,

First detailed theory:
H.M. Wiseman and G. J. Milburn,
Phys. Rev. Lett. 70, 548 (1993)

Alexander Korotkov

v T

Feedback
Controller

| ARy * Squeezed
T State Computer
DAQ
’*—"_\F Coherent QND Probe
ary State Laser

Ply,)

- -
500 Trajoctories ‘
I T

P{yayy)
o
=

Inial Spin Projecton | -
T T ] ) Uncondiioned ;
. Gonchlonal Scuemting | 3 7 Uncartairey Product )’ 4
‘a
1 \
i \ J
‘\

(unormaiized)~, sk Contormd M s
f Uncartainty Products \ |
Y i 1pat - N -
- I '\ Initial Spin Projoction Viariance U
= 4 Histogram "; 'y Pory)
o | A |I I Conditionad
! . JI: \ Plyzyy)
1| Operry- Loy
D Unconditional Squeszing { ; ﬁ‘ v
- with Quanturn Feedback | 0.1 -I__Hmsgmm IIl:Sr;jalr—- e
|:|_3 Plya)
Oplical Noise Floor
-10 -5 o 5 10 [} 50 100 150 200 250
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Quantum feedback in optics

First experiment: Science 304, 270 (2004)

Real-Time Quantum Feedback
Control of Atomic
Spin-Squeezing

IM Geramia,® Jehn K. Stockten, Hides Mabuchi

1) | Feedback | }
Controller

Feedback

Computer
DAQ

QND Probe
Laser

Real-time fesdback performed during a quantum nondemolition m-.-asur-.-rn-.-nt
of atomic spin-angular momentum allowed us to influence the

tistics of the measurement outcome We showed that It = t-:- h
measurerment backaction as a form of act

[, and Pius
wie describe a valuable tool for q ur fesdback-
mediated procedure generates spi

E’che reduction in quan-
tum uncertainty and resulting ato anglementare not conditioned on the

Measurement outoomee,

PRL 94, 203002 (2005) also withdrawn N T e .=
First detailed theory: Recent experiment:
H.M. Wiseman and G. J. Milburn, Cook, Martin, Geremia,
Phys. Rev. Lett. 70, 548 (1993) Nature 446, 774 (2007)
(coherent state discrimination)
20/38
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Undoing a weak measurement of a qubit

(“uncollapse”)
A.K. & Jordan, PRL-2006

e e e —————

NEWSCiEI'ItiSt H 1 : 114 ”
NINE LIVES +ONE It is impossible to undo orthodc_)x_ _quantum
. measurement (for an unknown initial state)
l Is it possible to undo partial quantum measurement?

(To restore a “precious” qubit accidentally measured)
Yes! (but with a finite probability)

If undoing is successful, an unknown state is fully restored

cuccesstW 1w (still
v weak (partial) L 41 / unknown)
0 >| (partially |__UNsucceggp,

measurement
i wron) collapsed) \ v,

uncollapse
(information erasure)
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Quantum erasers in optics
Quantum eraser proposal by Scully and Driithl, PRA (1982)

1
(a)

a a
b
a h Yb Iy Y blI
Iy Y ®
b c B

{b) (e) {d)

FIG. 1. (a) Figure depicting light impinging from left
on atoms at sites 1 and 2. Scattered photons ¥, and y,
produce interference pattern on screen. (b) Two-level
atoms excited by laser pulse [|, and emit ¥ photons in
a —b transition. (c) Three-level atoms excited by pulse
1, from ¢ —a and emit photons in g —b transition. (d)
Four-level system excited by pulse /; from ¢ —a fol-
lowed by emission of ¥ photons in @ — & transition.
Sccond pulsc /5 takes atoms from b—b‘. Decay from
b'—c results in emission of ¢ photons.

ELECTRO-OPTIC

SHUTTER
\u
A A A
lz . _..1//
& DETECTOR 7 /
/

FIG. 2. Laser pulses /| and /; incident on atoms at
sites 1 and 2. Scattered photons ¥, and ¥, result from
a b transition. Decay of atoms from b’ —c results in
¢ photon emission. Elliptical cavities reflect ¢ photons
onto commeon photodetector. Electro-optic shutter
transmits ¢ photons only when switch is open. Choice
of switch position determines whether we emphasize
particle or wave nature of ¥ photons.

Interference fringes restored for two-detector
correlations (since “which-path” information

is erased)

Our idea of uncollapsing is quite different:
we really extract quantum information and then erase it

Alexander Korotkov
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Uncollapse of a qubit state

Evolution due to partial (weak, continuous, etc.) measurement is
non-unitary, so impossible to undo it by Hamiltonian dynamics.

How to undo? One more measurement!

|_1_> 1)
N v
| 0) | 0)

need ideal (quantum-limited) detector

. : (Figure partially adopted from
(similar to Koashi-Ueda, PRL-1999) Jordan-A K_-Biittiker, PRL-06)
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Uncollapsing for DQD-QPC system

A.K. & Jordan, 2006

|2> |1> H=0 first (accidental”) uncollapsing
M measurement measurement
Qubit r(t) i <€ >
I(t\)$ (DQD) ( )
Detector
(QPC)
Simple strategy: continue measuring |2>
until result r(t) becomes zero! Then Meas. result:t
o e 0 o AI
any initial state is fully restored. r(t) = s_[ IO L(t7) dt" - 1,t]
|

(same for an entangled qubit)
If r =0, then no information

However, if r = 0 never happens, then and no evolution'

uncollapsing procedure is unsuccessful. )
=l
0
e

Probability of success: Ps = |

e |

I -l
0|,011(0) +€ Olpzz (0)
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General theory of uncollapsing

. M pMT
POVM formalism  Measurement operator M,: ~ p —> . 7
(Nielsen-Chuang, p.100) Tr(M, pM/,)

Probability: P, =Tr(M, pMj) Completeness : Zr I\/I;fl\/lr =1

(to satisfy completeness,

. -1
Uncollapsing operator: CxM; eigenvalues cannot be >1)

max(C) = min; \/Fis P, — eigenvalues of I\/Ier
min P
Probability of success: Ps < r

T PP
P (p;n) — probability of result r for initial state p;,,

A.K. & Jordan, 2006

min P, — probability of result r minimized over
all possible initial states

Averaged (over r) probability of success: Py < Zr min P,

(cannot depend on initial state, otherwise get information)
(similar to Koashi-Ueda, 1999)

Alexander Korotkov Universitv of California, Riverside
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Partial collapse of a Josephson phase qubit

N. Katz, M. Ansmann, R. Bialczak, E. Lucero,

R. McDermott, M. Neeley, M. Steffen, E. Weig,

A. Cleland, J. Martinis, A. Korotkov, Science-06
> [

N\
How does a qubit state evolve
0) X7 \ in time before tunneling event?

(What happens when nothing happens?)

Main idea: | out), if tunneled
w=a|0+pB]1) > wt)y={a|0)+Be V%7 |1)
P+ BPe™

(better theory: L. Pryadko & A.K., 2007)

, if not tunneled

amplitude of state |0) grows without physical interaction

finite linewidth only after tunneling!

continuous null-result collapse
(similar to optics, Dalibard-Castin-Molmer, PRL-1992)
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Superconducting phase qubit at UCSB

Courtesy of Nadav Katz (UCSB)

= e
Flux < AANG
bias Iuw L, A~ >
Qubit Reset Compute Meas. Readout
lacTL, saub X s@ YV I \ J \ timg
X o> \J /‘\\_
I >

i...lé
v

S
Repeat 1000x
prob. 0,1
|
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Experimental technique for partial collapse

b Operation

4 qubit fast SQIIJ;,.D
state bing pulse ampuner
control SV (1) 50 ¥Vso
; > L
. 300K/ .
_____________________________ 4K
biasT
-~ 25 mK Iy = L ™ Ol
Partial Tomography & Final measurement
d s::;earation ' measurement ' 8,6, '
' P ) '
| : :
[¢ : | ]
' ' '
L . W
7ns : 15 ns l :

!10ns

10 ns t

v

Alexander Korotkov

Universitv of California, Riverside

Nadav Katz et al.
(John Martinis group)

Protocol:
1) State preparation
(via Rabi oscillations)

2) Partial measurement by
lowering barrier for time t

3) State tomography (micro-
wave + full measurement)

Measurement strength
Pp=1-exp(-It)

Is actually controlled
by I', not by t
P=0: no measurement
p=1: orthodox collapse




Experimental tomography data
Nadav Katz et al. (UCSB, 2005)

1 3 \
Dousdiruen smolitude |01 ih]
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Partial collapse: experimental results
N. Katz et al., Science-06

ta
%
oo

e In case of no tunneling

Polar angle

Falar angle By irad)

lines - theory phase qubit evolves
i dots and squares — expt. R
no ﬁttlng parameters in (a) and (b) e Evolution is described
0 01 02 03 04 05 06 07 08 08 | by the Bayesian theory

Farial measurement probability g

probability p  without fitting parameters

0

p=0.25

|

0=}

: 1
20x| P /
30x o

e Phase qubit remains
coherent in the process
of continuous collapse

Azimuthal angle
Azimuthal rotation Bos (rad)

] an i'f;m 14 ”
. el 1' (expt. ~80% raw data,
- Measure pulse amplituds; ¥, (v) pulse ampl ~96% corrected for T,,T,)
= g ¢ s —n
% E III.EEI— . ~— 7 % . *
o 5 of ¥ : uantum efficienc
> £ |in(c )T1—11O ns, T2 80 ns (measured) . y
2 L . . 7> 0.8
0 0.1 IZI.E IIIS Elfl EI5 IZIE 0.y EIB EIEI 1

Fartial measurement prabability o

probability p
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Uncollapse of a phase qubit state
A.K. & Jordan, 2006
1) Start with an unknown state

2) Partial measurement of strength P
3) m-pulse (exchange |0) <> |1))
4) One more measurement with

the same strength P

5) Tm-pulse

p=1-e1t

1y

If no tunneling for both measurements, 0)
then initial state is fully restored!

a|0)+ege TV 1)
Norm

ei¢ae_rt/2 10) + ei¢ﬂe_r”2 1)
Norm

a|0)+ 5|1) > —

=e'(a|0)+p|1))

phase is also restored (spin echo)
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Experiment on wavefunction uncollapse

N. Katz, M. Neeley, M. Ansmann,
oreperation comography & R. Bialzak, E. Lucero, A. O'Connell,
H. Wang, A. Cleland, J. Martinis,

T
,WNVW_, and A. Korotkov, PRL-2008
,—«/uw W

4 p p
—>
— — time Nature News
10 ns 10 ns ature-2008

Uncollapse protocol:

- partial collapse

- m-pulse

- partial collapse
(same strength)

State tomography with
X, Y, and no pulses

_10+]1)

- Pl ~

-~ ’
- e, 2

Tomographic probabilities

Vin Background Pg should
wrong uncollapsed | be subtracted to find

86 0.08 0.1 0.12 0.14 ubit density matrix
Partial meas. pulse amp. [V] G y
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Experimental results on the Bloch sphere

Initial 1) 10)—i|1) 10)+ | 1) N. Katz et al.
state 22 22 | 0)
S - i o
Partially @4 %\k 25 N
collapsed 1 ST S
5'530,5 y |
0 § 0.-—-‘
0 %5 1 X 0051
(e) 2 NN (g)/’/ﬁ‘ %ﬁ& (h) 7 @x
Uncollapsed }%, %
. SR
uncollapsing [ &Z "/
works well! 05|
O‘é' 0 ) | — 0 .
0051 0051 0051 0051

Both spin echo (azimuth) and uncollapsing (polar angle)

Difference: spin echo — undoing of an unknown unitary evolution,
uncollapsing — undoing of a known, but non-unitary evolution

Alexander Korotkov Universitv of California, Riverside



Quantum process tomography

N. Katz et al.
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Why getting worse at p>0.67
Energy relaxation p.=t/T,=45ns/450ns = (.1
Selection affected when 1-p ~ p,.

Overall: uncollapsing is well-confirmed experimentally

Alexander Korotkov Universitv of California, Riverside



Experiment on uncollapsing
using single photons
Kim et al., Opt. Expr.-2009
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e very good fidelity of uncollapsing (>94%)

e measurement fidelity is probably not good
(normalization by coincidence counts) -

Alexander Korotkov Universitv of California, Riverside
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Suppression of T,-decoherence
by uncollapsing

Protocol: T \
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procedure preferentially selects
events without energy decay

Alexander Korotkov
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Trade-off: fidelity vs. probability

Universitv of California, Riverside



Realistic case (T, and T at all stages)

[ asin
" expt.

e Easy to realize experimentally
(similar to existing experiment)

e Improved fidelity can be observed
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measurement strength p

e To-decoherence is not affected

e fidelity decreases at p—1 due to T,
between 1st m-pulse and 2nd meas.

Trade-off: fidelity vs. selection probability

Alexander Korotkov

10 with just one partial measurement

Uncollapse seems the only way
to protect against T,-decoherence
without quantum error correction

A.K. & K. Keane,
PRA-2010

Universitv of California, Riverside
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Conclusions

It is easy to see what is “inside” collapse: simple Bayesian
formalism works for many solid-state setups

Rabi oscillations are persistent if weakly measured

Collapse can sometimes be undone if we manage
to erase extracted information (uncollapsing)

Continuous/partial measurements and uncollapsing

may be useful

Three direct solid-state experiments have been realized,
many interesting experimental proposals are still waiting

Alexander Korotkov

Universitv of California, Riverside
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