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Bayesian formalism for DQD-QPC system

eH

I(t)

Qubit evolution due to measurement (quantum back-action):
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Bayes rule (1763, Laplace-1812):
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1)  |α(t)|2 and |β(t)|2 evolve as probabilities,

i.e. according to the Bayes rule (same for ρii)
2)  phases of α(t) and β(t) do not change

(no dephasing!), ρij /(ρii ρjj)1/2 = const

( ) ( ) | 1 ( ) | 2t t tψ α β= 〉 + 〉 or ( )ij tρ

likelihoodposterior
probability

prior
probab. I1 I2

measured0
1 ( )I t dt

τ

τ ∫



University of California, RiversideAlexander Korotkov

Bayesian formalism for a single qubit

(A.K., 1998)

Averaging over result I(t) leads to conventional master equation with Γ

2( ) / 4 ,II Sγ Γ Δ Γ − ensemble decoherence= -

Evolution of qubit wavefunction can be monitored if γ=0 (quantum-limited)

eH

I(t) 2e

Vg V

I(t)
• Time derivative of the quantum Bayes rule
• Add unitary evolution of the qubit
• Add decoherence γ (if any)
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Can we verify the Bayesian formalism 
experimentally?

Direct way:

prepare partial
measur.

control
(rotation)

projective
measur.

A.K.,1998

However, difficult: bandwidth, control, efficiency 
(expt. realized only for supercond. phase qubits)

Tricks are needed for real experiments
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Bell-type measurement correlation 

on
off

τA τB
τ

on
off

QB= ∫IBdt

(A.K., PRB-2001)

Idea: two consecutive measurements of a qubit by two 
detectors; probability distribution P(QA, QB, τ) shows 
effect of the first measurement on the qubit state.

detector A    qubit    detector B

QA= ∫IAdt

Advantage: solves the bandwidth problem

Ω
VA(t) VB(t)

IA(t) IB(t)

qubit
(DQD)QPC A QPC B

Same idea with another averaging → weak values
(Romito, Gefen, Blanter, PRL-2008)
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Non-decaying (persistent) Rabi oscillations

left right

ground

excited
- Relaxes to the ground state if left alone (low-T)
- Becomes fully mixed if coupled to a high-T

(non-equilibrium) environment
- Oscillates persistently between left and right 

if (weakly) measured continuously

Direct experiment is difficult
A.K., PRB-1999
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Measured spectrum of qubit coherent oscillations

qubit detector
I(t)

α What is the spectral density SI (ω)
of detector current?

A.K., LT’99
Averin-A.K., 2000
A.K., 2000
Averin, 2000
Goan-Milburn, 2001
Makhlin et al., 2001
Balatsky-Martin, 2001
Ruskov-A.K., 2002 
Mozyrsky et al., 2002 
Balatsky et al., 2002
Bulaevskii et al., 2002
Shnirman et al., 2002
Bulaevskii-Ortiz, 2003
Shnirman et al., 2003
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00, ( ) / 4I Sε η −= Γ = Δ

Spectral peak can be seen, but
peak-to-pedestal ratio ≤ 4η ≤ 4
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Weak coupling, α = C/8 « 1

(result can be obtained using various
methods, not only Bayesian method)

Assume classical output, eV » Ω
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Derivations of the spectrum
A.K., 2001

qubit detector
I(t)

C
0( ) ( ) ( )

2
II t I z t tξΔ

= + +

(const + signal + noise)

z is Bloch
coordinate

2
( ) ( ) [ ( ) ( )]

4 2I zz z z
I IS S S S Sξξ ξ ξω ω ω ωΔ Δ

= + + +

Bayesian approach

0
cos , , sin [ cos ]

2
d I Iz t
dt S

φ φ ϕ ϕ φ φ ξΔ Δ
= = Ω + = − +

⇒ correlation between noise ξ and qubit state z at later time, 4=2+2, 
z is shifted in the same direction as ξ (reality follows observation)

0 0
2 2sin [( / 2 ) cos ( / ) ]dz I S I S

Ensemble approach
No ξ-z correlation, but treat z as operator 

φ φ ξ= Δ + Δ

Technically: start with z=±1 (“collapse”), then usual master equation

Results of both approached are the same
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2
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Bloch equations (Gurvitz, 1997):
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One more derivation (via MacDonald’s 
formula, good for small-transpar. QPC)

Ruskov & A.K., 2002

MacDonald’s formula (textbook):

Peak-to-pedestal ratio:
4 in weak-response case,
2 in strong-response case
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Why measuring Rabi spectrum 
is an “easy” experiment

qubit detector
I(t)

C

2 2
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= +
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0( ) ( ) ( )
2
II t I z t tξΔ

= + +

(const + signal + noise)

2( ) / IC I HS= Δ

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

ω/Ω

S I(ω
)/S

0

C=13

10

3
1

0.3

Ω = 2H amplifier noise fl higher pedestal,
poor quantum efficiency,

but the peak is the same!!!

integral under the peak ‹ variance ‚z2Ú

ηÜ1
ω/Ω

SI (ω)

How to distinguish experimentally
persistent from non-persistent? Easy!

perfect Rabi oscillations: ·z2Ò=·cos2Ò=1/2
imperfect (non-persistent): ·z2ÒÜ 1/2
quantum (Bayesian) result:  ·z2Ò = 1 (!!!)

(demonstrated in Saclay expt.)

0 1 2
0

1

Ω - Rabi frequency

10/44
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How to understand ·z2Ò = 1?

0( ) ( ) ( )
2
II t I z t tξΔ

= + +

First way (mathematical)   
We actually measure operator:  z → σz

z2 → σz
2 = 1

Second way (Bayesian)   2
( ) ( ) ( )

4 2I zz z
I IS S S Sξξ ξω ω ωΔ Δ

= + +

Equal contributions (for weak 
coupling and η=1)

(What does it mean?
Difficult to say…)

quantum back-action changes z
in accordance with the noise ξ

Can we explain it in a more reasonable way (without spooks/ghosts)?

No (under assumptions of macrorealism; 
Leggett-Garg, 1985)

z(t)?+1

-1

qubit

detector
I(t)

or some other z(t)?

z
|left〉

|right〉

|g〉|e〉 • ••

“what you see is what you get”: observation becomes reality
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Leggett-Garg inequalities (1985)
Assumptions of macrorealism:
1) Q(t ) is well-defined at all times
2) noninvasive measurability of Q(t )

( ) 1, ij i jQ t K Q Q= ± = 〈 〉

12 23 13

12 23 34 14

1 0
2

K K K
K K K K

≥
≤

+ + +

+ + -
(instantaneous “strong” measurement)

Violated by QM (-0.5, 2√2)
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Leggett-Garg-type inequalities for 
continuous measurement of a qubit

Ruskov-A.K.-Mizel, PRL-2006
Jordan-A.K.-Büttiker, PRL-2006
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0
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6

ω/Ω

S I(ω
)/S

0

SI (ω)

≤
4S

0

Experimentally measurable violation

qubit detector
I(t)

Assumptions of macrorealism
(similar to Leggett-Garg’85):

0 ( )  ( / 2) ( ) ( )I t I I z t tξ+ Δ +=

| ( ) | 1,  ( ) ( ) 0z t t z tξ τ≤ 〈 + 〉 =

Then for correlation function
 ( ) ( ) ( )K I t I tτ τ〈 + 〉=

2
1 2 1 2( ) ( ) ( ) ( / 2)K K K Iτ τ τ τ+ − + ≤ Δ

and for area under narrow spectral peak

0
2 2[ ( ) ] (8 / ) ( / 2)IS f S df Iπ− ≤ Δ∫

quantum result

23 ( / 2)
2

IΔ
3
2

×

violation

2( / 2)IΔ
2

8
π

×

(Saclay experiment)

Leggett-Garg,1985
Kij = ·Qi QjÒ

if Q =±1, then
1+K12+K23+K13≥0

η is not important!
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May be a physical (realistic) back-action?

OK, cannot explain without back-action

ω/Ω

S I(ω
)/S

0 SI (ω)

0 1 2
0

1

ηÜ1

0( ) ( ) ( )
2
II t I z t tξΔ

= + +qubit detector
I(t)

( ) ( ) 0t z tξ τ〈 + 〉 ≠

But may be there is a simple classical 
back-action from the noise?

In principle, classical explanation cannot be ruled out
(e.g. computer-generated I(t); no non-locality as in optics) 

Try reasonable models: linear modulation of 
the qubit parameters (H and ε) by noise ξ(t)

No, does not work!

Our (spooky) back-action is quite peculiar:   ( ) ( 0) 0t dz tξ〈 + 〉 >

“what you see is what you get”: observation becomes reality
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Experiment on Rabi (Larmor) spectrum?
Durkan and Welland, 2001  (STM-ESR experiment similar to Manassen-1989)

p e a k 3 . 5
n o i s e

≤

Recently reproduced: 
Messina et al., JAP-2007

(Colm Durkan,
private comm.)

Questionable 
15/44
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Somewhat similar experiment

E. Il’ichev et al., PRL, 2003

“Continuous monitoring of Rabi oscillations in a Josephson flux qubit”
1 ( ) cos
2 HFx z zH Wσ ε σ σ ω= Δ +- - t

2 2 ; 0)( HFω ε ε≈ Δ + ≠

low-bandwidth tank fi qubit monitoring is impossible
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Saclay experiment

• superconducting charge qubit
(transmon) in circuit QED setup

• microwave reflection from
cavity: full collection, 
only phase modulation 

• driven Rabi oscillations 

=0,1, 2, 5,10, 20n
photons

Zeno effect

A.Palacios-Laloy, F.Mallet, F.Nguyen, 
P. Bertet, D. Vion, D. Esteve, A.K., 
Nature Phys., 2010

Standard (not continuous) 
measurement here: 
ensemble-averaged Rabi 
starting from ground state
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Now continuous measurement

=0.23
0.78
1.56
3.9
7.8
15.6

n

0.23n = 1.56n =

Theory by dashed lines, very good agreement

210
4

S
S

η −Δ
=

Pre-amplifier noise 
temperature TN= 4 K

Palacios-Laloy et al., 2010 

1 0.0321 NT
ω

≈
+
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Violation of Leggett-Garg inequalities
In time domain Palacios-Laloy et al., 2010 

1 2 1 2( ) ( ) ( ) 1 2 ( ) (2 ) 1K K K K Kτ τ τ τ τ τ+ − + ≤ ⇒ − ≤

Rescaled to qubit z-coordinate ( ) ( ) ( )K z t z tτ τ≡ 〈 + 〉

( ) 2 ( ) (2 )LGf K Kτ τ τ≡ −

2(0) (0)LGf K z= = 〈 〉 2 1.01 0.15z〈 〉 = ±

(17ns) 1.44 0.12LGf = ± Ideal fLG,max=1.5
Standard deviation σ = 0.065 ⇒ violation by 5σ

No moon there
news & views



University of California, RiversideAlexander Korotkov

courtesy of 
Patrice Bertet
(unpublished)
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Violation of Leggett-Garg inequalities

In frequency domain

Also violated, but not so well as in time domain
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Next topic: Quantum feedback for
persistent Rabi oscillations

Goal: produce persistent Rabi oscillations without phase noise
by synchronizing with a classical signal

In simple monitoring the phase of persistent Rabi oscillations
fluctuates randomly: 

( ) cos[ ( )]z t t tϕ= Ω + for η=1

phase noise fl finite linewidth of the spectrum

desired ( ) cos( )t tz = Ω

0 1 2
0

2

4

6

0 1 2
0

2

4

6

ω/Ω

S I(ω
)/S

0

ω/Ω

integral 2 1 1 1
2 2

z〈 〉 += = integral 2 1
2

z〈 〉 =
0( ) ( ) ( )

2
II t I z t tξΔ

= + +

2

0 4 2I zz z
I IS S S Sξ

Δ Δ
= + +

synchronized

cannot synchronize
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Several ways to organize quantum feedback

qubit 

H 

e 

detector Bayesian 
     equations 

I(t) 

control stage 

(barrier height) 

ρij(t) 

 

comparison 
circuit 

desired evolution  

feedback 

signal 

environment 

C<<1 

ΔHFB/H = −F×ϕ

Ruskov & A.K., 2002

Hqb=
HσX

The wavefunction is monitored via 
Bayesian equations, and then usual 
(linear) feedback of the Rabi phase

First idea: Bayesian feedback
(most straightforward but most difficult experimentally)

( ) cos[ ( )]z t t tϕ= Ω +

ΔΩ/Ω = −F×ϕ

Experimental difficulties:
• necessity of very fast real-time 

solution of Bayesian equations 
• wide bandwidth (áΩ, GHz-range) 

of the line delivering noisy signal 
I(t) to the “processor”

How to characterize 
feedback efficiency/fidelity?

D = average scalar product 
of desired and actual
vectors on Bloch sphere

desired= 2 Tr 1D ρ ρ〈 〉 −



University of California, RiversideAlexander Korotkov

Performance of Bayesian quantum feedback
(no extra environment)

2

-1
a

desir

( ) / coupling
available bandwidth

F  feedback strength 
D= 2 Tr 1

IC I S H
τ

ρρ

= Δ −
−

−
〈 〉 −

C=1, η=1, F=0, 0.05, 0.5
Qubit correlation function Fidelity (synchronization degree)
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F  (feedback factor)

D
  (

sy
nc

hr
on
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ee
)

C=1
η =1
de=0

For ideal detector and wide bandwidth,
fidelity can be arbitrarily close to 100%

D = exp(−C/32F)
Ruskov-A.K., PRB 66, 041401(R) (2002)

2 /cos( ) exp ( 1)
2 16

FH
z

t CK e
F

ττ −Ω ⎡ ⎤= −⎢ ⎥⎣ ⎦
(for weak coupling and good fidelity)

Detector current correlation function
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2 /
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Effect of non-ideal detector 
and extra environment

Zhang-Ruskov-A.K., 2005
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Dots:  Monte Carlo  
(weak coupling, C=0.1)

ε = 0
analytics

2( ) / 4
e

I Sη Δ
=

Γ

Effective ideality of measurement he
1 decoherence coupling1

measurement couplingeη
=-

he (measurement efficiency)

D
 (f

ee
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k 
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)

Simple analytics:
2

1 11 1 2
2 2e e

D
η η

⎛ ⎞
⎜ ⎟
⎝ ⎠

= + - + -

Full analytics:
1 2 2
0
1 2
0

( )

( )

P G P dP
D

P G P dP

∫
∫

=

5/ 2

1

2 2

2
( ) (1 )
exp[ ( ) / 2(1 )]1e

G P P
Pη

×
× −

-

-
= -

- -

Example:
he=0.1, then fidelity 0.4

(still quite good!)
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Effect of qubit parameter deviations (ε, H)
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ΔH/H (H deviation)

Feedback operation is robust against small 
unknown deviations of qubit parameters

Zhang-Ruskov-A.K., 2005
25/44
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Effect of finite bandwidth
Averaging of the detector signal over time τa (using rectangular or 
exponential window) leads to information loss and therefore to the 
decrease of feedback fidelity D. 

D
 (f

ee
db

ac
k 

fid
el

ity
)

τa/T  (averaging) τa/T  (averaging)

For good feedback performance the averaging time τa
should be much smaller than Rabi period T=2π/Ω

(signal bandwidth >> Rabi frequency) 
Zhang-Ruskov-A.K., 2005
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Effect of feedback loop delay

F – feedback strength
τd – loop delay 
T=2π/Ω – Rabi period
C – detector coupling 

Feedback loop becomes unstable 
(“oversteering”) at Fτd /T >1/4

D
 (f

ee
db

ac
k 

fid
el

ity
)

Fτd/T (loop delay)

Zhang-Ruskov-A.K., 2005
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Control of energy-asymmetric qubit (ε≠0)

X

Z

α

Δφ

Δr

desired actual

Y
New controller:

sinFB rH F H F H rφ φΔ Δ Δ= - -
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ε/H (qubit asymmetry)

Even an asymmetric 
qubit can be efficiently 
feedback-controlled 
using only H-modulation

Now two degrees of freedom 
for deviation: Δφ and Δr

Zhang-Ruskov-A.K., 2005
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Second idea: direct feedback
(similar to Wiseman-Milburn, 1993)

fb 0( )
cos( ) sin( )

/ 2
H I t I

F t t
H I

Δ −ΔΩ ⎛ ⎞= = × − Ω × Ω⎜ ⎟Ω Δ⎝ ⎠

Squeezing of an optical cavity field by feedback of the homodyne
detection signal (Wiseman-Milburn, 1993) feedback ~ I(t)-I0
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F  (feedback strength)

D
  (
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ed
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y)

C=1
η =1

averaging time
τ a = (2π/Ω)/10

Ruskov & A.K., 2002

requires optimal 
feedback strength

Our controller:
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Third idea: “Simple” quantum feedback
(A.K., 2005)

Idea: use two quadrature components of the detector current I(t)
to monitor approximately the phase of qubit oscillations
(a very natural way for usual classical feedback!)

0( ) [ ( ') ] cos( ') exp[ ( ') / ] '
t

X t I t I t t t dtτ
−∞

= − Ω − −∫
0( ) [ ( ') ] sin( ') exp[ ( ') / ] '

t
Y t I t I t t t dtτ

−∞
= − Ω − −∫

arctan( / )m Y Xφ = −

(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth (1 / ~ )dτ Γ Ω

detector
I(t)

×cos(Ω t), τ-average

ph
as

e

X

Y

φm
qubit

H =H0 [1– F × φm(t)]
control

×sin(Ω t), τ-average

Hqb= HσX

C << 1
local oscillator

Essentially classical feedback. Does it really work?
(Anticipated problem: SNR<4 ⇒ not much info in quadratures.)
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Accuracy of phase monitoring via quadratures
(no feedback yet)

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

C = 0.1, 0.3, 1
3

10
30

Δ
φ r

m
s

τ [(ΔI)2/SI]

π/31/2

no noise 

C<<1

(averaging time)

(p
ha

se
 in

ac
cu

ra
cy

)

uncorrelated noise 
C<<1

-3 -2 -1 0 1 2 3
0

1

2

4
1

8

τ [(ΔI)2/SI] = 

Δφ

p (
Δφ

)

C = 0.1

2.16

Noise improves the monitoring accuracy!
(purely quantum effect, “reality follows observations”)

C – dimensionless coupling 

0/ [ ( ) ]sin( ) ( / )Id dt I t I t I Sφ φ= − − Ω + Δ
2 2 1/ 2

0/ [ ( ) ]sin( ) /( )m md dt I t I t X Yφ φ= − − Ω + +
(actual phase shift, ideal detector)

(observed phase shift)

1/Γd=4SI/(ΔI)2

(non-Gaussian
distributions)

Δφ =φ -φm

weak coupling C<< 1

1

Noise enters the actual and observed phase evolution in a similar way

Quite accurate monitoring! cos(0.44)≈0.9

η =

1η =
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Simple quantum feedback

0.0 0.1 0.2 0.3 0.4
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4
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τ[(ΔI)2/SI]=  

0.1C = 0.1
η = 1

classical feedback

(feedback strength)

(fi
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fidelity for different averaging τ

Simple: just check that in-phase quadrature 〈X〉
of the detector current is positive (4 / )

2 1

Tr ( ) ( )
Q

Q des

D F

F t tρ ρ

≡ −

≡ 〈 〉

weak coupling C

D X Iτ= 〈 〉 Δ

How to verify feedback operation experimentally?

D – feedback 
efficiency

Dmax ≈ 90%

〈X〉=0 for any non-feedback Hamiltonian control of the qubit
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Effect of nonidealities
- nonideal detectors (finite

quantum efficiency η)
- qubit energy asymmetry ε
- frequency mismatch ΔΩ

• Fidelity D up to ~90% achievable (for η=1)
• Natural, practically classical feedback setup
• Averaging τ~1/Γá1/Ω (narrow bandwidth!)
• Detector efficiency (ideality) η~0.1 still OK
• Robust to asymmetry ε and frequency shift ΔΩ
• Simple verification: positive in-phase quadrature 〈X〉

Simple enough
experiment?!
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1
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F/C (feedback strength)
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Quantum feedback
still works quite well

Main features:

(feedback loop must be
faster than decoherence)
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Quantum feedback in cQED setup
We have to undo both effects: disturbance of qubit phase (“classical”) 

and disturbance of Rabi phase (“spooky”)
⇒ have to control both qubit parameters

Phase-sensitive case

Use the same signal for both,
direct feedback for qubit energy,
+some feedback for μwave amplitude

2

2
( ) (0) exp[ ( ) / 2 ]
( ) (0) exp[ ( ) / 2 ]

gg gg g

ee ee e

I
I

I D
I D

ρ τ ρ
ρ τ ρ

- -
=

- -

( ) ( )
( ) (0) exp( )

(0) (0)
gg ee

ge ge
gg ee

i IK
ρ τ ρ τ

ρ τ ρ τ
ρ ρ

=

Phase-preserving case
2

2
( ) (0) exp[ ( ) / 2 ]
( ) (0) exp[ ( ) / 2 ]

gg gg g

ee ee e

I
I

I D
I D

ρ τ ρ
ρ τ ρ

- -
=

- -

( ) ( )
( ) (0) exp( )

(0) (0)
gg ee

ge ge
gg ee

i QK
ρ τ ρ τ

ρ τ ρ τ
ρ ρ

=

Use different quadratures,
for two feedback channels
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Quantum feedback in optics
First experiment: Science 304, 270 (2004)

First detailed theory:
H.M. Wiseman and G. J. Milburn, 
Phys. Rev. Lett. 70, 548 (1993)
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Quantum feedback in optics
First experiment: Science 304, 270 (2004)

paper retracted

PRL 94, 203002 (2005) also withdrawn

More recent experiment: 
Cook, Martin, Geremia,
Nature 446, 774 (2007)
(coherent state discrimination)

Also: 
Reiner, Smith, Orozco, Wiseman, 
Gambetta, PRA 70, 023819 (2004),
etc. 
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Stroboscopic QND squeezing of a nanoresonator
Ruskov, Schwab, A.K., 2005

I(t)

m, ω0

∼
V(t)

x
QPC

resonator 

Potential application: ultrasensitive force measurements
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(Δ
x 0

/Δ
x)

2

Sq
ue

ez
in

g 
S m

ax

1

10

100

T/ hω0 = 

10
100

10       100      1000      10         10          10 4            5            6   

1

η = 1
ω = 2 ω0
Amod  = 1

0

0C Qη
1.95 2.00 2.05
0
2
4
6
8

10
12

0.1

C = 1
0.5

00.05t Tδ =

1η =

0/ω ω

max
0

0

1/3
3
4 coth( / 2 )

C Q
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ω
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= ⎢ ⎥
⎢ ⎥⎣ ⎦

C0 – coupling with detector, η – detector efficiency,
T – temperature, Q – resonator Q-factor

In experiment (2005)  η1/2C0Q~0.1

Based on old (1978) Braginsky-Khalili-Thorne idea
Difference: weak measurement, quantum feedback

Beats the Standard Quantum Limit

/ 2p xΔ > Δ
1( )x t 2( )x tSQL Δt = nT

NEMS review: Blencowe, 2004
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Persistent Rabi oscillations 
revealed in low-frequency noise

One more experimental proposal:

Hopefully, simple enough for semiconductor qubits

Goal: something easy for experiment, but still
with a non-trivial measurement effect

A.K., arXiv:1004.0220, PRB-2011
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Setup: one qubit & two detectors

Ω
VA(t) VB(t)

IA(t) IB(t)

qubit
(DQD)QPC A QPC B

For single-shot measurements
partial collapse can be revealed 
via correlations of ∫IA and ∫IB.

(A.K., 2001)

Single-shot measurements are not yet available
fl use train (comb) of meas. pulses in QND regime

on
off

τA τB
τ

on
off

Stroboscopic QND:
Braginsky, Vorontsov, 

Khalili, 1978
Jordan, Buttiker, 2005
Jordan, Korotkov, 2006

One-detector stroboscopic QND measurement

V(t) time
Δ t = 2π/Ω (one pulse per Rabi period)

1

-1
z(t)

Stroboscopic QND measurement synchronizes (!) phase 
of persistent Rabi oscillations (attracts to either 0 or π)
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Idea of experiment

Ω
VA(t) VB(t)

IA(t) IB(t)

qubit
(DQD)QPC A QPC B

VA(t) t

1

-1
z(t)

VB(t) t

anticorrelation between IA and IB

same combs on VA and VB π-shifted combs on VA and VB

VA(t) t

1

-1
z(t)

VB(t) t

correlation (still QND!)

Imperfect QND fl random switching 
between two Rabi phases (0 and π) 
fl low-frequency telegraph noise

correlation/anticorrelation between low-frequency (telegraph) 
noises indicates presence of persistent Rabi oscillations

Perfect QND fl correlation/anticorr. 
between currents in two detectors
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ϕ/Ω (phase shift ϕ)

(switching rate)

Noise dependence on phase shift 
between measurement combs

(indicates self-synchronized 
persistent Rabi oscillations)

Analytics:
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Estimates
Ω

VA(t) VB(t)

IA(t) IB(t)

qubit
(DQD)QPC A QPC B

Assume:

QPC current I = 100 nA
response  ΔI/I = 0.1 
duty cycle  δt/T=0.1 (symmetric)
Rabi frequency  ~ 2 GHz

Then: “attraction” (collapse) time  2 ns   (few Rabi periods)
2

2

1 1
4 120ns 15nsS T

ϕ
Γ + +switching rate (many Rabi periods)

2telegraph

shot
min(60, )

0.5ns

S T
S (relatively large noise signal)

need 2 3nsT >

seems to be doable

VA(t) t

VB(t) t

A.K., arXiv:1004.0220
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Ω
VA VB

IA(t) IB(t)

qubit
QPC A QPC B

Any alternative explanation?

Useful modification
VA(t) t

VB(t) t

VA(t) t

VB(t)
t

(zero average, easier for rf)

1) no oscillations – then no corr./anticorr.
2) unsynchronized Rabi oscillations – then 

different dependence on ϕ (cos ϕ instead of ϕ-2);
also ∫Stelegr(f) df at least twice smaller

3) resonant frequency - driven Rabi?
Then  oscillations between |gÚ and |eÚ (both 
do not give a signal) with different frequency.
Driven Rabi decreases corr./anticorr. (not an
alternative explanation, but should be avoided)
Good news: both phases insensitive to driven Rabi

ϕ

no
is

e 
co

rr
el

at
io

n

(harmonic rf
is also OK)
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Conclusions

● Rabi oscillations are persistent (non-decaying) 
if weakly measured continuously 

● Spectral density of non-decaying Rabi oscillations 
has been measured in a superconducting qubit,

also Leggett-Garg inequalities violated 

● Persistent Rabi oscillations may be synchronized 
via quantum feedback; several types of feedback
are possible (e.g., Bayesian, direct, simple) 

● Hopefully, more experiments on persistent Rabi oscillations
will be realized (e.g., quantum feedback in superconducting
qubits and simple experiments in semiconductor qubits)
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