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Persistent Rabi oscillations and
quantum feedback in solid state
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Outline: e Persistent Rabi oscillations: theory
e Saclay experiment
e Quantum feedback of persistent Rabi osc.
e Persistent Rabi osc. revealed in noise
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Bayesian formalism for DQD-QPC system

— Qubit evolution due to measurement (quantum back-action):
Hog =0
1) o y(@)=a@®|)+pB®)|2) or p;)
, %) * 1) |a(t)]? and |B(t)|? evolve as probabilities,
2) 6 l.e. according to the Bayes rule (same for p;)

? 2) phases of a(t) and B(t) do not change
1(®) (no dephasing!), p;/(pjip;)'*= const

1 e7
Bayes rule (1763, Laplace-1812):  — jo 1(¢)dt
s T
osterior prior o measured
probability ~ Probab. likelihood I I

L Ires P(4,) P(res| A4;)
. | FES) =
/ D P(A4,) P(res| 4,)
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Bayesian formalism for a single qubit

0o
Hc®, e %Vg : e Time derivative of the quantum Bayes rule
\J 15 Izlll(t) e Add unitary evolution of the qubit

é .
N jp 2L = e Add decoherence y (if any)

2AI1
,011 Pzz -2H Imp, + p105) —— < [14)‘[0]

I

P12 =160, YIH (pyy = Pyy) + Pra(Pry ‘Pzz)S_[Lt)‘Io]‘Vpu

I

A.K., 1998
y =T -(AI)*/4S,, T —ensemble decoherence ( )

y =0 for QPC detector

Averaging over result I(¢) leads to conventional master equation with I’

Evolution of qubit wavefunction can be monitored if y=0 (quantum-limited)

Alexander Korotkov Universitv of California. Riverside



Can we verify the Bayesian formalism

experimentally?
Direct way:
partial control projective
prepare = measur. [~ | (rotation) > measur.

A.K.,1998

However, difficult: bandwidth, control, efficiency
(expt. realized only for supercond. phase qubits)

Tricks are needed for real experiments
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Bell-type measurement correlation
(A.K., PRB-2001)

HL(0) I50)1 R [N fixed (selected) |

-(QA/TA-IOA)/AIA= 0.6,0,-0.3 [
() || oo
Q

qubit

QPCA4 (DQD) QPCB
) off — > Ji:
0 [,)7/S,=1
T : off n ] ABATEATL : n/2\pulse
A B o 1- - - conventional | 7
-05 L L L L L L LA DL L D N L L -
Q. =I1Ldt  Q=I,dt 0 L y/nr 2 LeO) /252 3

o) o)
ﬁ___l _t I; Idea: two consecutive measurements of a qubit by two
detectors; probability distribution P(Q,, Qg, T) Shows

o I__| i I__l o effect of the first measurement on the qubit state.

Bs

Advantage: solves the bandwidth problem

detector A qubit detector B

Same idea with another averaging — weak values
(Romito, Gefen, Blanter, PRL-2008)
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Non-decaying (persistent) Rabi oscillations

excited :
— l —— - Relaxes to the ground state if left alone (low-T)
left —1 F— right ° Becomes fg_lly_mixed If _coupled to a high-T
-T- (non-equilibrium) environment
ground - Oscillates persistently between left and right
if (weakly) measured continuously
AI? 7
(A1) < Q) to verify:
45, stop & check
1.0 —
ety P11
1 0.5
|e)e ,' *|Q) Rep11
[right) Impno 03
-0.5
0 5 10 | 15 20 25 30
time

A.K., PRB-1999
Direct experiment is difficult
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Measured spectrum of qubit coherent oscillations
(04

qubit H detector

12 N | | X |

C=13

What is the spectral density S,()
of detector current?

>
1)

Assume classical output, eV » 7

10 - £=0, T=p"(AI)'/4S RO
C = (Al )2 / HS, ’ 0 Averin-A.K., 2000
u 0?2 (AI)ZF A.K.,'2000
- Sl(a)) = SO +— 55 55 Averin, 2000
- (0" —Q°)" +I""®w” Goan-Milburn, 2001
Makhlin et al., 2001

I Spectral peak can be seen, but
| peak-to-pedestal ratio <4n <4

(result can be obtained using various

0)
Alexander Korotkov
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Balatsky-Martin, 2001
Ruskov-A.K., 2002
Mozyrsky et al., 2002
Balatsky et al., 2002

0.0 100" 0 methods, not only Bayesian method) pyjaevskii et al., 2002
6 N T T N T [N SN SN TN TN NN TN N N 1 .
5] ¢ /H=0 a=0.1 [ . Shnlrmal.l. et al:, 2(2)02
o 1 n=1 Weak coupling, & = C/8 « 1 Bulaevskii-Ortiz, 2003
L 44 5 T > 19 Shnirman et al., 2003
3 3- Z {\ _classical [ _ nS,e” ' H
A value | S1(@)=58+ 22 22
ZN l 1+ (wh" Q" /4HT) Contrary:
1= . 4nS, 1+ e2/2 Hz)—l Stace-Barrett, PRL’04
S 2 1202112
0005 10 PRE XU I+[(@-Q)I'(A-2H"/h"Q7)]




Derivations of the spectrum

A.K., 2001
bit k—=>] detector |—> Al
qubl ctector 1 I(t)=1, +—12z(t)+ £(1) Z is Bloch
3] 2 coordinate

(const + signal + noise)
AI2
S1(@) = Sz +— =Sz (@) += +Als £ (@) + Sz (@)]

Bayesian approach
=cosg, ¢ =Qt+ @, digo = —sm¢—[—cos¢ +£]

dz =sin” ¢ [(AI* /28 )cos¢+(AI/S )14

= correlation between noise & and qubit state z at later time, 4=2+2,
z is shifted in the same direction as & (reality follows observation)

Ensemble approach

No &-z correlation, but treat z as operator
Technically: start with z=%1 (“collapse”), then usual master equation

Results of both approached are the same
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One more derivation (via MacDonald’s
formula, good for small-transpar. QPC)

MacDonald’s formula (textbook):

S, (@) =20| d%zr(”) sin(wr) dr
0

I=dQ/dt, Q=en

s A 1/1,=0.1 i :
@c4_- 1.0 //\ CZI L
@3: L5 e=0
23 2.0

Alexander Korotkov

Ruskov & A.K., 2002

Bloch equations (Gurvitz, 1997):

d n n n— n
—pn =—1,p; +1,py '-2H Im p/,

dt

d n n n—1 n
Epzz =—1L,pyn+ 1,0, + ZHImplz
d 1 B .
Epn:_g(ll‘l'lz)pn"' Illzp121+

+igp), +iH (p,, — P5y)
(Q*(v)y =D _n’lp}, + 3]

Peak-to-pedestal ratio:

4 in weak-response case,
2 in strong-response case
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Why measuring Rabi spectrum
is an “easy” experiment

C
i AT
qubit detectorﬁ I(t)=1,+ : 2(0)+ E(D)

P Cl=1:; — (const + signal + noise)

107 - - - . . S, (@

. ) = 2H - amplifier noise = higher pedestal, 1@
o8 : e
%6- _ (Al /HS, | ) poor quantum efficiency, n<l
S 67 | - ut the peak is the same!ll o :
A ] \ - 0 1@/ 2

*] ; : f"ﬁ\;" integral under the peak < variance (z%)

2 -

) 03 How to distinguish experimentally

00 05 150@/' Qlfs 20 persistent from non-persistent? Easy!

Q) - Rabi frequency . _— 5 5
perfect Rabi oscillations: (z=)=(cos<)=1/2

imperfect (non-persistent): (z%) <« 1/2
QX (AT quantum (Bayesian) result: (z2)=1 (11l

(wZ—QZ)Z+F2a)2 |
demonstrated in Saclay expt.
y exp
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peak-to-pedestal ratio = 4n < 4

S;(w)=3§,+
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Aiey  How to understand (z2) =17

|e)e I *[9) .
qubit

I -
[right) I(t)=1, +£z(t)+§(t) Y 1(?)
2 detector ——>

First way (mathematical)

We actually measure operator: 7 — O, _
(What does it mean?

2 Gzz =1 Difficult to say...)
Second way (Bayesian) 3
S =8 al S Al S
1(@)=Sge +=4~ ZZi”) +5 S (@)

@ quantum back-action changes z Equal contributions (for weak
in accordance with the noise & coupling and M=1)

“what you see is what you get”: observation becomes reality
Can we explain it in a more reasonable way (without spooks/ghosts)?

+1 2(H)? _ .
> NO (under assumptions of macrorealism;
-1 Leggett-Garg, 1985)

or some other z(t)?
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Leggett-Garg inequalities (1985)

Assumptions of macrorealism: 0(1)==1, K; =(0,0;)
1) Q(t) is well-defined at all times 1+K,+K,; +K;;>0

2) noninvasive m rability of Q(t
) noninvasive measurability of Q(t) K+ Ky + Ky - Ky <2
(instantaneous “strong” measurement)
Violated by QM (-0.5, 242)

Quantum Mechanics versus Macroscopic Realism: Is the Flux There when Nobody Looks?

A. ] Leggett
Department of Physics,'") University of lllinois at Urbana-Champaign, Urbana, Hlinois 61801, and Department of Physics,
Harvard University, Cambridge, Massachusetts 02138

and

Anupam Garg

University of Illinols ar Urbana-Champaign, Urbana, Hlinois 61801
(Received 19 November 1984)

It is shown that, in the context of an idealized “*macroscopic quantum coherence™ experiment,
the predictions of quantum mechanics are incompatible with (he conjunction of iwo general as-

sumptions which are designated “‘macroscopic realism’ and ‘‘noninvasive measurability at the -/\-

macroscopic level.” The conditions under which quantum mechanics can be tested against these L"“ . ‘LL *_4" L“H L
— - _' {':' L

Potentiol Energy Vie)

assumptions in a realistic experiment are discussed.

£ g
Trapped Flux, g
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Leggett-Garg-type inequalities for
continuous measurement of a qubit

bit Jotoct Ruskov-A.K.-Mizel, PRL-2006
qubit fe—>{ detector 0 Jordan-A K.-Biittiker, PRL-2006
Assumptions of macrorealism  Leggett-Garg,1985 S
(similar to Leggett-Garg’85): .Kij=(Qin) @c4_' e I(“))'_
I(t) = I,+(AI/2)z(¢) + &(r) t@=zxlthen 3 | ¥ |
1+K,,+K,3+K, ;=0 Al
[z(0)[<1, (5(?) z(t+7))=0 o
0 1/Q 2
Then for correlation function . .
guantum result violation
K(z) =<1 I(t+7)) 3 3
K(t)+ K(z,) - K(z, +7,) < (AT / 2)° E(AI/Z)Z x>

and for area under narrow spectral peak

2
T

J1S,()=S,1df <8/7°) (AT /2)" (AI/2)? e

N is not important! Experimentally measurable V|0Iat|on

(Saclay experiment)
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May be a physical (realistic) back-action?

bit H detector > Al
= 1) I(t)=1y+—-2() + £ ()

- [S/(@) Wi -
% A OK, cannot explain without back-action
31

t)z(t+7))#0
2| ne () 2(t+7))
0 , But may be there is a simple classical
0 Lo/ 2 back-action from the noise?

In principle, classical explanation cannot be ruled out
(e.g. computer-generated I(f); no non-locality as in optics)

Try reasonable models: linear modulation of
the qubit parameters (H and €) by noise £(t)

No, does not work!
Our (spooky) back-action is quite peculiar: (&(¢) dz(t+0)) >0
“what you see is what you get”. observation becomes reality
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Experiment on Rabi (Larmor) spectrum?
Durkan and Welland, 2001 (STM-ESR experiment similar to Manassen-1989)

APPLIED PHYSICS LETTERS YOLUME 20, NUMBER 3 21 JANUARY 2002
1
Electronic spin detection in molecules using scanning-tunneling- T
= - - =
ITIICI'OSCOpY-BSSlStEd electron-spln resonance s 08
™
C. Durkan® and M. E. Welland c 08
Nunoscule Science Luborutory, Depurtment of Engineering, University of Cumbridge, Trumpington Street, 0 [ a
Cumbridge CB2 1FZ, United Kingdom % 0.4
(Received 8 May 2001; accepted for publication 8 November 2001) ; 0.2 ,‘-.A‘MW\
By combining the spatial resolution of a scanning-tunneling microscope {(STM) with the electronic 'uT} ; b
Hd'“-.lf“Mh_,i‘"ﬂf"\-“%.*—."\_.‘Mh--—-

spin sensitivity of electron-spin resonance, we show that it is possible to detect the presence of 534 535 535 537 538
localized spins on surfaces. The principle is that a STM is operated in a magnetic field, and the
resulting component of the tunnel current at the Larmor (precession) frequency is measured. This
component is nonzero whenever there is tunreling into or out of a paramagnetic entity. We have - 5 o pse spectta of (a), (b) two different areas (a few nm apact) of

the molecule-covered sample and (¢} bare HOPG. The graphs are shifred
vertically for clarity.

Frequency {MHz)}

peak

High- RF Spectrum

i pasa filker amplifier 31‘131}’20[‘

|-<A 10K 12-3G11z

(1P TA40213)

< 3.5

noise
(Colm Durkan,

| low-pass STM .
. Al
Tl.p on sample on = Data acquisition p I’lVate comm o)
piezo magnet and control
scanner 10 nim

FIG. |. Schematic of the electronics used in STM-ESR. . . o .
FIG. 2. {Color) 8TM image of a 250 AX 150 A area of HOPG with four

_ ausorted BDBA mofeule Recently reproduced:
Questionable Messina et al., JAP-2007
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Somewhat similar experiment

“Continuous monitoring of Rabi oscillations in a Josephson flux qubit”

H = —%(Aax +e0,)-Wo,cosmypt

(@Oyr ~NA* + %5 £%0)

T=10mK T=18K T=300K

qubit | spectrum
- —3  analyzer
Dg EI HP4396B

dc source

HF generator

FIG. 1. Measurement setup. The flux qubit is inductively
coupled to a tank circuit. The dc source applies a constant
flux &, = L, The HF generator drives the qubit through a
separate coil at a frequency close to the level separation A /h —
868 MHz. The output voltage at the resonant frequency of the
tank is measured as a function of HF power

low-bandwidth tank = qubit monitoring is impossible

Alexander Korotkov

E. Il'ichev et al., PRL, 2003

10 g 4

s 7 d
L = T

o

45 e
e Bt g
‘:#F'e?__‘. _]._

T
0 R

T PR |
26 6282 o, 2554 i 260 .26t
SiNHz)

(mV/Hz")
z

142
Vi

0.8

S

0.6 1

6280 6282 6.284 6286 6285 6290 6292
Frequency (MHz)

FIG. 3 (color online). The spectral amplitude of the tank
voltage for HF powers P, << P, < P, at 368 MHz, detected
using the setup of Fig. 1. The bottom curve corresponds to the
background noise without an HF signal. The inset shows
normalized voltage spectra for seven values of HF power.
with background subtracted. The shape of the resonance, being
determined by the tank circuit, is essentially the same in each
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Saclay experiment

A.Palacios-Laloy, F.Mallet, F.Nguyen,
P. Bertet, D. Vion, D. Esteve, A.K.,
Nature Phys., 2010

e superconducting charge qubit
(transmon) in circuit QED setup

[ e microwave reflection from
E  Zeno effect cavity: full collection,
i \ R TR only phase modulation

e driven Rabi oscillations

Standard (not continuous)

starting from ground state

0 200 400 00 8000 200 . 400 _
at (ns) 2 (ns) measurement here:
100 F ¢ A =8 :
i sty ensemble-averaged Rabi

]
T

N
O
L l'-l \\ .
\ ™,
HEH
¢ ph (MHz/photon)

[
T
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Now continuous measurement

oo (MVE MHz™)

5-.':\

26 |
0

5, {MHz™"

0 10 20 30
a0 A LM Z)

5, (MHE

5, (MHZ T

Palacios-Laloy et al., 2010

AS 2
=—=10
T=4s
Pre-amplifier noise
temperature T,=4K

1

————=0.03
1+2i

hw

W 20 30
A LMHE)

Theory by dashed lines, very good agreement

Alexander Korotkov
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Violation of Leggett-Garg inequalities

: : Palacios-Laloy et al., 2010
In time domain

Rescaled to qubit z-coordinate K(7)=(z(t) z(t + 1))

K(r)+K(zr,))-K(r,+7,) <1 =2K(r)-KQ27r)<1

fic=K©0)=(z") (z*)=1.01£0.15

| J[: /i;-:— f16@=2K@)-KQr)

| /r ;I\i {i" ;
0 II. i 4 .

P
et

news & views N LI
No moon there |

T
FAuLE

o
Ln
L

o
Ln

J1c(17ns)=1.441+0.12 Ideal f g 1ay=1.5
Standard deviation ¢ =0.065 = violation by 5c
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Violation of Leggett-Garg inequalities

In frequency domain courtesy of
Patrice Bertet

(unpublished)

0.4 p— L L I L L I ) ) I L L I L L I L L I L L I L ) I ) ) 1
Raw data | 5
- — — Detector BW corrected [8/n
Multiplied by f

A=5MHz 1066

o
w

o
N

S, (c,"/ MHz)

o
=

0.0

0 5 10 15 20 25 30
f (MH2)

Also violated, but not so well as in time domain
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Next topic: Quantum feedback for
persistent Rabi oscillations

In simple monitoring the phase of persistent Rabi oscillations
fluctuates randomly:

z2(t) =cos[Qt+ @(1)] for n=1
phase noise = finite linewidth of the spectrum

Goal: produce persistent Rabi oscillations without phase noise
by synchronizing with a classical signal  Z4.gireq (£) = €0S(£27)

1 1 . 2, _ 1
1 =—+—-=1 ntegral =— Al
ntess (=545 PN g 1(t) = Iy +=-2(1) + £(2)
d \ 2
S Al Al
L 4 S, =5, +—s ,+—S
3 - 2 <t
A2 /
0 0 synchronized
0 Lo/ 2 0 L a/y 2 cannot synchronize
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Several ways to organize quantum feedback
First idea: Bayesian feedback

(most straightforward but most difficult experimentally)
The wavefunction is monitored via .
Bayesian equations, and then usual How to characterize
(linear) feedback of the Rabi phase feedback efficiency/fidelity?

desired evolution

D = average scalar product
feedback J : of desired and actual
control stage | Signal | comparison vectors on Bloch sphere
(barrier height) circuit
I(t) | Bayesian

pij(t) D=XTrp desired )—1
equations

N

——

Experimental difficulties:

e necessity of very fast real-time
_ lution of Bayesian equations
: z(t) =cos[Qt+ o(t S0
[e”‘”m“me”t} (7) | el ide bandwidth (>0, GHz-range)

of the line delivering noisy signal

Ruskov&A.K., 2002  AQ/Q =-FXx@ I(t) to the “processor”

Alexander Korotkov
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Performance of Bayesian quantum feedback
(no extra environment)

Qubit correlation function Fidelity (synchronization degree)
C=1,n=1, F=0,0.05, 0.5 e B | W—
0.50 42—t Ly E ] S
] [ 2 0.8 v =
0.25: 5 ,.g ....... ' _'_(.ﬁI'GCt" L
™ u% 0-6 7 T, /T=2/3 e A
= 0.00 - - = N
N ] [ é o4 C=1
0233 o g 02 n=1 _
] 5" d_=0
0.50 ' EO'OI'I'I'I'I'I'I'I'
" . STQ/ZRCI Co" " F (foedback factor)
cos{2t — .
K. (7)= 2 exp[—mF (e 2FHR —1)} C = (AI)? /S;H — coupling

! — available bandwidth

for weak coupling and good fidelit
( Ping J y) F — feedback strength

Detector current correlation function D=2(Trpp a1

K (r) = (AI)? cosQt (14 ¢~ 2FHTIAY For ideal detector and wide bandwidth,
! 2 fidelity can be arbitrarily close to 100%
X exp [w%(e‘” Helh —1)]+%5(7) D = exp(—C/32F)

Ruskov-A.K., PRB 66, 041401(R) (2002) /&
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Efftect of non-ideal detector
and extra environment

Effective ideality of measurement 7,

D (feedback fidelity)

Zhang-Ruskov-A.K., 2005

Simple analytics:

1 | = decoherence coupling
Mo measurement coupling
1.0 ] ] ] ] ] ] ]
0.8 =
. \ e=0
0.6 - (AI)? /4S8
- Me = T
0.4 - \ analytics
02 _ Dots: Monte Carlo
' (weak coupling, C=0.1)

0.0

2
27, 27,

Full analytics:
1

- j P2G(P?)dP
D=7

1 2
i IOPG(P )dP

G(P*)=(1-P*) ™ x
xexp[-(77,' =1)/2(1- P*)]

- Example:

J | | | |
0.0 0.2 0.4 0.6 0.8
Tle (measurement efficiency)

Alexander Korotkov

N.=0.1, then fidelity 0.4
(still quite good!)

1.0
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Effect of qubit parameter deviations (&, H)

[
O
|

S
00
|

S
o)
I

>
~
|

S
o
I

D (feedback fidelity)

S
o

0 1 2 3 | -0.1 0.0 0.1
€/H (qubit asymmetry) AH/H (H deviation)

Feedback operation is robust against small
unknown deviations of qubit parameters

Zhang-Ruskov-A.K., tm
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'—Iu
=

0.8 —

0.6

0.4 —

D (feedback fidelity)

Effect of finite bandwidth

Averaging of the detector signal over time t, (using rectangular or
exponential window) leads to information loss and therefore to the
decrease of feedback fidelity D.

1L 1 1 1| I 11 1 1 | 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1.0 L L1 | L L1 1 | L L L1 | L L1 | L1l 11 |
| C=0.3 i 0 I Exponential window I
i Rectangular window i 0 l 1 I

N I L 0.0 T T T [T T T T [T T T T [T T T T [TT T T [TTT]1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

T,/T (averaging) T,/T (averaging)

For good feedback performance the averaging time t
should be much smaller than Rabi period T=27/Q
(signal bandwidth >> Rabi frequency)

Zhang-Ruskov-A.K., 2005
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Effect of feedback loop delay

D (feedback fidelity)

0.2 0.4 0.6 0.8

Fr4/T (loop delay)

Feedback loop becomes unstable
(“oversteering”) at Ft,/T>1/4

Zhang-Ruskov-A.K., 2005

Universitv of California. Riverside
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]_D _I_:I |_l_|__|_l_I_IFI__|_I__I:I:
0.8 Ctyg/T=C1'q/T —
0.6 WPt/ T=025C=1/9 1/3 1 -
o MR/ T=1 C=1/361/121/4]_
Fll_p /T=025C=1/91/3 1 |
0.2 ---Tg 0 C=1/91/3 1 B
0.0 4 —
-02 | I I ! | ! I ! | ! ! ! | ! I I | I I I

F — feedback strength
14 — loop delay

T=2n/QQ — Rabi period
C — detector coupling




Control of energy-asymmetric qubit (e#0)

desired 7 Now two degrees of freedom

actual for deviation: A¢ and Ar
Ag New controller:
Y AH ., =-F HA¢- F, Hsing Ar
> X g
% [&
Ar =
-
O
G
@)
_ ™)
Even an asymmetric 3
qubit can be efficiently <= 1 i
feedback-controlled = 0.97 — 77—
using only H-modulation 00 02 04 06 08 1.0

e/H (qubit asymmetry)
Zhang-Ruskov-A.K., 2005 {
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Second idea: direct feedback
(similar to Wiseman-Milburn, 1993)

Squeezing of an optical cavity field by feedback of the homodyne
detection signal (Wiseman-Milburn, 1993)  feedback ~ I(7)-1,,

: AH AQ I(t)-1
Our controller: fb _ = F x (-1, — cos(Q¢) | x sin(Q¥)
H Q Al'/2
1.0 —
>
227 _ requires optimal
% 06- . feedback strength
% averaging time
% 0.4 - ta=(@r0)0 |
~0.2- n=1 -
O
Ruskov & A.K., 2002
0.0 I I I
0.0 0.8

0.2 0.4 0.6
F (feedback strength)

Alexander Korotkov Universitv of California. Riverside



Third idea: “Simple” quantum feedback

(A.K., 2005)
H =H0 [1-Fx ¢m(t)] ‘
Hyp= Hoy control |
qubit x cos (Q7), T-average X
Ckk1 1t I(t) 8 ¢m
detector > local oscillator 5__5
: Y|
xsin(€27), T-average |—

Idea: use two quadrature components of the detector current I(t)
to monitor approximately the phase of qubit oscillations
(a very natural way for usual classical feedback!)

X0 =] " (")~ 1] cos(Q") expl—(t—t") /7] dt"
i ¢, =—arctan(Y / X)
Y(t)= I_w[l(t') — I,)] sin(Qz") exp[-(z—t")/7] dt'

(similar formulas for a tank circuit instead of mixing with local oscillator)
Advantage: simplicity and relatively narrow bandwidth (1/7 ~T'; <)

Essentially classical feedback. Does it really work?

(Anticipated problem: SNR<4 = not much info in quadratures.)
Alexander Korotkov Universitv of California. Riverside
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Accuracy of phase monitoring via quadratures

(no feedback yet)
weak coupling C<<1
92.0 I |/31I/2 PR I T I SR N TR N TR N - | L | . l \ l . l , , I
3 " =1 Urg=4s/(A)? | 1 t[AD¥/S,1=) 2.16 i
S 1.5 . . . N
. § C — dimensionless coupling _2. Ap=4-0
£ g — uncorrelated noise  _ _ < C=0.1 4 m
= el \N\N T T =
< £ - = 1
Yo ] ONN epemIo - 14 . n
Qosd NN - (non-Gaussian 8
< ) “0“44‘ 1 1 distributions)
0.0 ] L DL L DL DAL DL DL 0 - —
0 1 2_3 4 5 6 7 8 3 2 -1 0 1 2 3
t[(AD*/S;] (averaging time)

Noise improves the monitoring accuracy!
(purely quantum effect, “reality follows observations”)

do/dt =—[1(t)—-1,]sin(Qt+@¢)(AI/S;) (actual phase shift, ideal detector)

dg,, | dt =—[1(t)— I,|sin(Qz +¢,) (X*+Y*)'>  (observed phase shift)

Noise enters the actual and observed phase evolution in a similar way

Quite accurate monitoring! co0s(0.44)~0.9

Alexander Korotkov

Universitv of California. Riverside



Simple quantum feedback

~~ | I :
*? N - weak coupling C
5 D — feedback
U . .
S efficiency

0.6—
= D=2F,-1
<
2 Fy =10 (1) e ()
5 o0a- o
vV @/ fidelity for different averaging t | max
2 00—

0.0 0

A 0.2 0.3 0.4
F/C (feedback strength)

How to verify feedback operation experimentally?

Simple: just check that in-phase quadrature (X)
of the detector current is positive D=(X)(4/7AI)

(X)=0 for any non-feedback Hamiltonian control of the qubit

Alexander Korotkov Universitv of California. Riverside



Effect of nonidealities

=
=)

- nonideal detectors (finite

- > =1 _
quantum efficiency n) 2 Neff ¢ 0;1 ]
- qubit energy asymmetry e g cl@AD¥/S =1 T
- frequency mismatch AQ S 06 -
Quantum feedback ‘é T e T T =
still works quite well 2 ' v
()]

(feedback loop must be L M7 -
faster than decoherence) O ,, i
. 0.0 0.2 0.4 0.6 0.8

Main features: F/C (feedback strength)

¢ Fidelity D up to ~90% achievable (for n=1)
e Natural, practically classical feedback setup .
e Averaging t~1/I">1/CQ) (narrow bandwidth!) Slmple enough
e Detector efficiency (ideality) n~0.1 still OK cxXp eriment?!
e Robust to asymmetry € and frequency shift AC)

e Simple verification: positive in-phase quadrature (X)

Alexander Korotkov Universitv of California. Riverside



Quantum feedback in cQED setup

We have to undo both effects: disturbance of qubit phase (“classical”)
and disturbance of Rabi phase (“spooky”)
= have to control both qubit parameters

Phase-sensitive case
[ Pgg(?) _ Peg(0) expl-(1 -1,)*/2D]
Pee(®)  Pe(0) exp[-(I -1,)*/2D)
Pog(T) Poe(T)
Pg(0) P, (0)

Phase-preserving case
[ Peg(t) _ Pgg(0) expl-( ~1,)"/2D]
Pec()  Pee(0) exp[-(I -1,)*/2D]
Pog(T) Pee(T)
Pgg(0) £, (0)

exp (iKI )

Poe(7) = pge(O)\/

\.

exp (iKOr)

Poe(7) = pge(O)J

\.

Alexander Korotkov

Use the same signal for both,
direct feedback for qubit energy,
+some feedback for uwave amplitude

Use different quadratures,
for two feedback channels

Universitv of California. Riverside



Quantum feedback in optics

First experiment: Science 304, 270 (2004)

Real-Time Quantum Feedback
Control of Atomic
Spin-Squeezing
IM Geramia,® Jehn K. Stockten, Hides Mabuchi

Real-time fesdback performed during a quantum nondemaolition measurament
of atomic spin-angular momentum allowed us to influence the quantum sta-
tistics of the measurement outcome We showed that itis possible to hamess
measurement backaction as a form of actuation in quantum contral, and thus
wie describe a valuable tool for quantum information scence, Our fesdback-
mediated procedure generates spin-squeszing, forwhich the reduction in quan-
tum uncertainty and resulting atomic entanglement are not conditioned on the
Measurement outoomee,

First detailed theory:
H.M. Wiseman and G. J. Milburn,
Phys. Rev. Lett. 70, 548 (1993)

35/44 Alexander Korotkov
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Quantum feedback in optics

First experiment: Science 304, 270 (2004)

Real-Time Quantum Feedback
Control of Atomic
Spin-Squeezing
IM Geramia,® Jehn K. Stockten, Hides Mabuchi

Real-time fesdback performed during a quantum nondemaolition measurament
of atomic spin-angular momentum allowed us to influ-:nc-:thfrrt
|

Tn ur fe=dback-
h the reduction in quan-
arenot conditionsd on the

l
tistics of the measurement outcome, We showed that it & to hsng
measurement backaction as a form of actugkon ne-: ral, and®thus
|

wie describe a valuable tool for g I '
mediated procedure generates spi @ )
turm uncertainty and resulting ato angleme

Mmeasurement autoome,

PRL 94, 203002 (2005) also withdrawn

More recent experiment:

Cook, Martin, Geremia,
Nature 446, 774 (2007)

(coherent state discrimination)

Alexander Korotkov

X
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Also:

Reiner, Smith, Orozco, Wiseman,
Gambetta, PRA 70, 023819 (2004),
etc.

Universitv of California. Riverside



Stroboscopic QND squeezing of a nanoresonator

NEMS review: Blencowe, 2004 Ruskov, Schwab, A.K., 2005
Based on old (1978) Braginsky-Khalili-Thorne idea

e Difference: weak measurement, quantum feedback
resonator (t,) (2,)
m, ® X X -
xI 0 o) SQL &b w
QPC “———"11 Ap>n/2Ax 1/3
——
[ N ‘ ) :3{ Vn €2 }

Vt max
fg“ " “ “ 4 | coth(hw,/2T)

C, — coupling with detector, n — detector efficiency,

12 — T — temperature, Q — resonator Q-factor
oo ot=0.057, x 100 <
c X
5 < U')E
0 O
O
>3 S 10
T ‘N :

N w O

O

-]

o

0 14

10 100 1000 10% 107 106\/;C0Q
Beats the Standard Quantum Limit In experiment (2005) n'?C,Q~0.1

Potential application: ultrasensitive force measurements

Alexander Korotkov Universitv of California. Riverside




One more experimental proposal:

Persistent Rabi oscillations
revealed in low-frequency noise

Hopefully, simple enough for semiconductor qubits

Goal: something easy for experiment, but still
with a non-trivial measurement effect

AK., arXiv:1004.0220, PRB-2011

Alexander Korotkov Universitv of California. Riverside



Setup: one qubit & two detectors

11 4@ IB(t)I IT_\Lff T I_‘l off
A B
For single-shot measurements
@ O+—0 @ partial collapse can be revealed
Q via correlations of [T, and [I5.
qubit (A.K., 2001)

QPCA4A4 (DQD) QPCB

Single-shot measurements are not yet available
= use train (comb) of meas. pulses in QND regime

One-detector stroboscopic QND measurement

+  At=2m/CQ2 (one pulse per Rabi period) Stroboscopic QND:
V() [ :'| ﬂ ﬂ ﬂ ﬂ ﬂ time Braginsky, Vorontsov,

7 Khalili, 1978
z(,; AVVVVVAV VYV Jordan. Butiiker, 2005
1. /VVVVVVVVVV/V/ Jordan, Korotkov, 2006

Stroboscopic QND measurement synchronizes (!) phase
of persistent Rabi oscillations (attracts to either 0 or )

Alexander Korotkov Universitv of California. Riverside




Idea of experiment

L@  Ip®
1 I Perfect QND = correlation/anticorr.

@ 00 @ between currents in two detectors
Q Imperfect QND = random switching
qubit between two Rabi phases (0 and =)
QPCA4 (DQD) QPCB = low-frequency telegraph noise
same combs on V, and Vg n-shifted combs on V, and Vg

ol 00 0 Yolp o on o0 0

| | | | | A 1 1 1 1

o LAYV VA o OV
VIV VVVVVV.Y & NANAANANAN
| I

O 10N Nr VO ]

anticorrelation between 7, and I, correlation (still QND!)

correlation/anticorrelation between low-frequency (telegraph)
noises indicates presence of persistent Rabi oscillations

40/44 Alexander Korotkov Universitv of California. Riverside



5, 1= Noise dependence on phase shift

Sa5(0)/S,

vaol [l [l [l « between measurement combs
0] 1N N (Indicates self-synchronized
T — persistent Rabi oscillations)
Q (phase shifi
.(.P/..(lp.i.ls.e.sll.t.(p)..l....|.... Analytics:
10| Ot/ T=dty/T=0.05 _ 5t, (o, 2 ( AIA)2 /2T
 Sa@ =54 +( TJ 1+(@/2T )
> harmonic \ ) — B
shot noise  telegraph noise

o

ot Sty Al Al /2T
T?>  1+(w/2Ty)
(fully correlated/anticorrelated noise)

S p(@) =1

[EEY
o

ol

_ ¢2MAMB +(AQT)2 +
S 2T(M ,+ M)
s SM  +5tyM L1
6T/ r* 4T,
1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 (SWitChing rate)

_ 2
050  -0.25 o.oo(p/zno.zs 0.50 075 M, p= 5tA,B(AIA,B) /4S , p

Alexander Korotkov Universitv of California. Riverside
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L  Ip® .
Lo 1] Estimates
O+—0
@ Q2 @ Assume:
qubit
QPCA (DQD) QPCB QPC current =100 nA
response Al/l=0.1
V (t {
A()I ﬂ [ ﬂ [ n [ ” duty cycle &t/T=0.1 (symmetric)
VB(t)T nnon: Rabi frequency ~ 2 GHz
Then: “attraction” (collapse) time 2 ns (few Rabi periods)

1 1 @’
¢ = + +
4T2 120ns 15ns
need 7, >3ns

(many Rabi periods)

switching rate I

S T
telegraph . 2 . - :
S = min(60, 05 ns) (relatively large noise signal)

shot

seems to be doable

A.K., arXiv:1004.0220 4

Alexander Korotkov Universitv of California. Riverside




V40 “ H

Useful modification

V(| T N N ‘

10« viol [ 1 [
0 U 1

(=)

)

Q

QPC A4

noise correlation

— Ol 1 ]
T 0

(zero average, easier for rf) (harmonic rf

Any alternative explanation? is also OK)
1) no oscillations — then no corr./anticorr.

0+0 Q@ different dependence on ¢ (cos ¢ instead of ¢=2);

Lo Lo
) 1( Q) 2) unsynchronized Rabi oscillations — then

LS qubie” | also [S e (f) df at least twice smaller

QPC B 3) resonant frequency - driven Rabi?
Then oscillations between |g) and |e) (both
® do not give a signal) with different frequency.
Driven Rabi decreases corr./anticorr. (not an
alternative explanation, but should be avoided)

Good news: both phases insensitive to driven Rabl
Alexander Korotkov University of California. Riverside
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Conclusions

e Rabi oscillations are persistent (non-decaying)
if weakly measured continuously

e Spectral density of non-decaying Rabi oscillations
has been measured in a superconducting qubit,
also Leggett-Garg inequalities violated

e Persistent Rabi oscillations may be synchronized
via quantum feedback; several types of feedback
are possible (e.g., Bayesian, direct, simple)

e Hopefully, more experiments on persistent Rabi oscillations
will be realized (e.g., quantum feedback in superconducting
qubits and simple experiments in semiconductor qubits)

Alexander Korotkov Universitv of California. Riverside
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