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Undoing a weak measurement of a qubit
(“uncollapse”)

It is impossible to undo “orthodox” quantum 
measurement (for an unknown initial state)

Is it possible to undo partial quantum measurement? 
(To restore a “precious” qubit accidentally measured)

Yes! (but with a finite probability)

If undoing is successful, an unknown state is fully restored

ψ0
(unknown)

ψ1
(partially
collapsed)

weak (partial)
measurement

ψ0 (still
unknown)

ψ2

successful

unsuccessful
uncollapse

(information erasure)

A.K. & Jordan, PRL-2006
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Quantum erasers in optics
Quantum eraser proposal by Scully and Drühl, PRA (1982)

Our idea of uncollapsing is quite different:
we really extract quantum information and then erase it

Interference fringes restored for two-detector
correlations (since “which-path” information
is erased)

Fringes No fringes
(“trace” left)

Fringes if l2
erases it

Φ clicks – fringes,
Φ does not click –

antifringes,
average – no fringes

open shutter:
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Evolution of a charge qubit

eH

I(t)

Jordan-A.K.-Büttiker, PRL-06
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If r = 0, then no information and no evolution!
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Uncollapse of a qubit state
Evolution due to partial (weak, continuous, etc.) measurement is
non-unitary, so impossible to undo it by Hamiltonian dynamics. 

How to undo? One more measurement!

× =

| 0〉

| 1〉

| 0〉 | 0〉

| 1〉 | 1〉

need ideal (quantum-limited) detector
(Figure partially adopted from 
Jordan-A.K.-Büttiker, PRL-06)(similar to Koashi-Ueda, PRL-1999)
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Uncollapsing for qubit-QPC system

r(t)

Uncollapsing 
measurement

t

r0

First “accidental”
measurement

Detector 
(QPC)

Qubit 
(double-dot)I(t)

Simple strategy: continue measuring until r(t) becomes zero!
Then any unknown initial state is fully restored.

(same for an entangled qubit)
It may happen though that  r = 0  never happens; 

then undoing procedure is unsuccessful.

A.K. & Jordan, 2006

00( ) [ ( ') ' ]
I

tIr t I t dt I t
S
Δ

∫= -



University of California, RiversideAlexander Korotkov

Probability of success
Trick: since non-diagonal matrix elements are not directly involved,

we can analyze classical probabilities (as if qubit is in some
certain, but unknown state); then simple diffusion with drift

Results:
Probability of successful 
uncollapsing 11 22

0

0 0

||

| | | |(0) (0)
S

r

r r
eP

e eρ ρ+

-
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where r0 is the result of the measurement to be undone,
and ρ(0) is initial state (traced over entangled qubits)

22 /( )m IT S IΔ= (“measurement time”)

Averaged probability 
of success (over result r0) 

av 1 erf[ / 2 ]mP t T= -
(does not depend on initial state; cannot!)

where

Larger |r0| fl more information fl less likely to uncollapse
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General theory of uncollapsing
Measurement operator Mr :

†

†Tr( )
r r

r r

M M
M M

ρ
ρ

ρ
→

Uncollapsing operator: 1
rC M −×

max( ) min ,i i iC p p= – eigenvalues of

Probability of success:
in in

min
( )

min
( )S

ri i

r r

Pp
PP

P
ρ ρ

≤ =

Pr(ρin) – probability of result r for initial state ρin, 
min Pr – probability of result r minimized over

all possible initial states

(to satisfy completeness, 
eigenvalues cannot be >1)

POVM formalism
(Nielsen-Chuang, p.100)

Completeness : † 1r rr M M =∑

†
r rM M

Probability : †Tr( )r r rP M Mρ=

(similar to Koashi-Ueda, 1999)

A.K. & Jordan, 2006
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General theory of uncollapsing (cont.)

Averaged (over r ) overall probability of uncollapsing:

, minS av rrP P≤ ∑
(independent of initial state as well)

Overall probability: result r and successful uncollapsing

[ ]S Sr inP P Pρ ×=

Exact upper bound: minS rP P≤

It cannot depend on initial state
(otherwise we learn something after uncollapsing)

(probability of result r minimized over initial states)

Characterization of (irrecoverable) collapse strength:

,1 1 minrS ravP P∑- = -
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Comparison of the general bound for
DQD-QPC uncollapsing success 

min
[ (0)]S

r

r

PP
P ρ

≤General bound:

⇒ for DQD+QPC 1 2

1 211 22

min( , )
(0) (0)S

p pP
p pρ ρ

≤
+

where 1/ 2 2( / ) exp[ ( ) / ]i I Iip S t I I t S dIπ= - - -

The two results coincide, so the upper bound is reached,
therefore uncollapsing strategy is optimal

11 22
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More general: uncollapsing       
for N entangled charge qubits

1) unitary transformation of N qubits
2) null-result measurement of a certain strength by a strongly

nonlinear QPC (tunneling only for state |11..1〉) 
3) repeat 2N times, sequentially transforming the basis vectors

of the diagonalized measurement operator into |11..1〉
(also reaches the upper bound for success probability)

Uncollapsing of evolving charge qubit

1) Bayesian equations to calculate measurement operator
2) unitary operation, measurement by QPC, unitary operation

† † † †
1 1 2 2 1 2 2 1

ˆ ( / 2) ( ) ( )QBH c c c c H c c c cε= − + +
eH

I(t)
(now non-zero H and ε, qubit evolves during measurement)

Jordan & A.K., Contemp. Phys., 2010 
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No experiment yet for DQD-QPC system, 
but uncollapsing has been demonstrated 

for a superconducting phase qubit
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Superconducting phase qubit at UCSB

Idc+Iz

Qubit

Flux 
bias

|0〉
|1〉

ω01

1 Φ0

VS
SQUID

Repeat 1000x
prob. 0,1

Is

Idc
time

Reset Compute    Meas. Readout
Iz

Iμw

Vs
0 1

X Y

Z

10ns 

3ns 

Courtesy of Nadav Katz (UCSB,
now at Hebrew University)

Iμw

IS
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Partial collapse of a Josephson phase qubit

Γ
|0〉
|1〉 How does a qubit state evolve

in time before tunneling event?

Main idea:

2 2

/2
| , if tunneled

| 0 | 1| 0 | 1 ( ) , if not tunneled
| | | |

i

t

t e

out

et

e

ϕα βψ α β ψ

α β Γ

Γ

〉⎧
⎪

〉 + 〉〉 + 〉 → ⎨
⎪

+⎩
-

-= =

(similar to optics, Dalibard-Castin-Molmer, PRL-1992)
continuous null-result collapse

N. Katz, M. Ansmann, R. Bialczak, E. Lucero, 
R. McDermott, M. Neeley, M. Steffen, E. Weig, 
A. Cleland, J. Martinis, A. Korotkov, Science-06

amplitude of state |0〉 grows without physical interaction

(What happens when nothing happens?)

(better theory: Pryadko & A.K., 2007)

Qubit “ages”, in contrast to a radioactive atom

finite linewidth only after tunneling
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Experimental technique for partial collapse 
Nadav Katz et al.
(John Martinis group)

Protocol:
1) State preparation

(via Rabi oscillations)
2) Partial measurement by

lowering barrier for time t
3) State tomography (micro-

wave + full measurement)
trick: subtract probability

Measurement strength 
p = 1 - exp(-Γt ) 

is actually controlled
by Γ, not by t

p=0: no measurement
p=1: orthodox collapse

15/36
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Experimental tomography data
Nadav Katz et al. (UCSB, 2005)

p=0 p=0.14p=0.06

p=0.23

p=0.70p=0.56

p=0.43p=0.32

p=0.83

θx

θy

| 0 | 1
2

inψ
〉 + 〉

=

π/2
π
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Partial collapse: experimental results

in (c) T1=110 ns, T2=80 ns (measured)

no fitting parameters in (a) and (b)P
ol

ar
 a

ng
le

A
zi

m
ut

ha
l a

ng
le

V
is

ib
ili

ty

probability p

probability p

pulse ampl.

N. Katz et al., Science-06

• In case of no tunneling 
phase qubit evolves 

• Evolution is described 
by the Bayesian theory  
without fitting parameters

• Phase qubit remains  
coherent in the process 
of continuous collapse 
(expt. ~80% raw data,
~96% corrected for T1,T2)

lines - theory
dots and squares – expt.

quantum efficiency
0 0.8η >
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Uncollapse of a phase qubit state
1)   Start with an unknown state
2)   Partial measurement of strength p
3)   π-pulse (exchange |0Ú ↔ |1Ú)
4)   One more measurement with 

the same strength p
5) π-pulse

If no tunneling for both measurements, 
then initial state is fully restored!

/ 2

/ 2 / 2

| 0 | 1| 0 | 1
Norm

| 0 | 1 ( | 0 | 1 )
Norm

i t

i it t
i

e e

e e e e e

φ

φ φ
φ

α βα β

α β α β

−Γ

−Γ −Γ

〉 + 〉
〉 + 〉 → →

〉 + 〉
= 〉 + 〉

 

Γ
|0〉
|1〉

1 tp e Γ-= -

A.K. & Jordan, 2006

phase is also restored (spin echo)
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Experiment on wavefunction uncollapse
N. Katz, M. Neeley, M. Ansmann,
R. Bialzak, E. Lucero, A. O’Connell,
H. Wang, A. Cleland, J. Martinis, 
and A. Korotkov, PRL-2008

tomography & 
final measure

state
preparation

7 ns

partial 
measure p

p

time
10 ns

partial 
measure p

p

10 ns 7 ns

π

Iμw

Idc

State tomography with 
X, Y, and no pulses

Background PB should  
be subtracted to find
qubit density matrix

| 0 | 1
2inψ 〉+ 〉

=

Uncollapse protocol:
- partial collapse
- π-pulse
- partial collapse

(same strength)

Nature News
Nature-2008 Physics



University of California, RiversideAlexander Korotkov

Experimental results on the Bloch sphere

Both spin echo (azimuth) and uncollapsing (polar angle)
Difference: spin echo – undoing of an unknown unitary evolution,

uncollapsing – undoing of a known, but non-unitary evolution

N. Katz et al. Initial
state

Partially
collapsed

Uncollapsed

| 1〉 | 0〉
| 0 | 1

2
i〉 − 〉 | 0 | 1

2
〉+ 〉

uncollapsing 
works well!
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Quantum process tomography

Overall: uncollapsing is well-confirmed experimentally

Why getting worse at p>0.6?  
Energy relaxation  pr = t /T1= 45ns/450ns = 0.1
Selection affected when 1-p ~ pr

p = 0.5

N. Katz et al.
(Martinis group) 

uncollapsing works 
with good fidelity!
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Experiment on uncollapsing
using single photons

Kim et al., Opt. Expr.-2009

• very good fidelity of uncollapsing (>94%)
• measurement fidelity is probably not good

(normalization by coincidence counts)
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Suppression of T1-decoherence 
by uncollapsing

Ideal case (T1 during storage only, T=0)

for initial state |ψin〉=α |0〉 +β |1〉

|ψf〉= |ψin〉 with probability (1-p)e-t/T1

|ψf〉= |0〉 with (1-p)2|β|2e-t/T1(1-e-t/T1) 

procedure preferentially selects
events without energy decay

Protocol:

partial collapse 
towards ground 
state (strength p)

storage period t

π π

uncollapse
(measurem.
strength pu)

ρ11

(zero temperature)

A.K. & Keane, 
PRA-2010

measurement strength pQ
P

T 
fid

el
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 (F
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s , 
F χ

)

Ideal

without
uncollapsing

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

pu= p

pu= 1- e-t/T1 (1-p)

e-t/T1
 = 0.3

almost 
complete 

suppression

Unraveling of energy relaxation
1 1

1 1

/ / 22 *

/ 2 /* 2

| |

1 | |

(almost same as existing experiment!)

| 0 0 | (1 ) | |

t T t T

t T t T

t t

e e

e e
p p

β αβ

α β β
ψ ψ

− −

− −

⎛ ⎞
=⎜ ⎟⎜ ⎟−⎝ ⎠

= 〉〈 + − 〉〈

where
/2 1| | (1 )t T

tp eβ −
= −

/ 2 1| ( | 0 | 1 ) /
t T

e Normψ α β
−

〉 = 〉 + 〉
/ 11 (1 )

t T
ufl optimum: p e p

-
- = -Trade-off: fidelity vs. selection probability
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An issue with quantum process 
tomography (QPT)

However, QPT is developed for a linear 
quantum process, while uncollapsing
(after renormalization) is non-linear.

QPT fidelity is usually
where χ is the QPT matrix.

Analytics for the ideal case

where (1 )(1 )tC p e−Γ= − −

1 (1 )t
up e p−Γ= − −

2
1 1 ln(1 )
2av

CF
C C

+
= + +

Average state fidelity

1 1 4
4 4(1 ) 2(2 )

CF
C Cχ

+
= − + +

+ +

“Naïve” QPT fidelity

Tr( )desiredFχ χ χ=

The two ways practically coincide
(within line thickness)

A better way: average state fidelity

0Tr( | |) |f in in inavF U dρ ψ ψ ψ〉〈 〉=

Without selection
( 1) 1 , 2avs

av
d FF F d

dχ
+ -

= = =

Another way: “naïve” QPT fidelity
(via 4 standard initial states)

measurement strength p

F a
vs , 

F χ
Ideal

without
uncollapsing

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

pu= p

pu= 1- e-t/T1 (1-p)

e-t/T1
 = 0.3
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Realistic case (T1 and Tϕ at all stages)

measurement strength p

Q
P

T 
fid

el
ity

, p
ro

ba
bi

lit
y

fidelity

probability

without
uncollapsing

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(1-pu) κ3κ4 = (1-p) κ1κ2

κ2 = 0.3

κ1 =  κ3 =  κ4 = 1, 0.999,
κ ϕ = 1, 0.95

0.99. 0.9

as in
expt.

}

1/it T
i eκ −

=
/t Te ϕ

ϕκ Σ−
=

• Easy to realize experimentally
(similar to existing experiment)

• Improved fidelity can be observed 
with just one partial measurement

A.K. & Keane, 2010
Trade-off: fidelity vs. selection probability

• Tϕ-decoherence is not affected
• fidelity decreases at p→1 due to T1

between 1st π-pulse and 2nd meas.

Uncollapse seems the only way
to protect against T1-decoherence 
without quantum error correction 
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Some other related effects, 
proposals, and theories
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Crossover of phase qubit dynamics
in presence of weak collapse and μwaves

under-critical
(weak μwaves)

over-critical
(strong μwaves)

R. Ruskov, A. Mizel, and A.K., 2007

null-result

relaxation

Evolutions due to null-result 
measurement and relaxation 
are clearly distinguishable

Null-result measurement + Rabi oscillations 
(μwaves)

Crossover between asymptotic stability 
and non-decaying oscillations

2 Rh
Ω
Γ

=

2 2 2

2 2 2
purity
murity ( ) /(1 )

P x y z
M x y z

+ +
+ −

=
=
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Bayesian formalism for N entangled qubits 
measured by one detector

( ( ) )( )
2

]k j
j k ij ij

I I
I t I I γ ρ

+
+ − − −

qb 1

detector

qb 2 qb … qb N

I(t)

ρ (t)

A.K., PRA 65 (2002),
PRB 67 (2003)

1ˆ[ , ] ( ( ) )( )
2

[
k

k i
ij qb ij ij kk i k

I Id i H I t I I
dt S

ρ ρ ρ ρ
+−

= + − − +∑

1 2( 1)( ) / 4 ( ) ( ) ( )
i

Iij i j ii iI I S I t t I tγ η ρ ξ−= − − = +∑

Up to 2N levels 
of current

No measurement-induced dephasing between states |iÒ and |jÒ if Ii = Ij !

(Stratonovich form)

Averaging over ξ(t) î master equation
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Two-qubit entanglement by measurement

Ha Hb

DQDa QPC DQDb

I(t)

Ha Hb

Vga VgbV

qubit a qubit bSET

I(t)
qubit 1 qubit 2

detector
I(t)

entangled

ρ (t)

Collapse into |BellÚ state (spontaneous entanglement) 
with probability 1/4 starting from fully mixed state

Ruskov & A.K., 2002

Two evolution scenarios:

Symmetric setup, no qubit interaction

Peak/noise
= (32/3)η

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

entangled, 
P=1/4

oscillatory, P=3/4

Ω t

ρ B e
ll

(t)

C=1
η=1 0 1 2

0
2
4

ω /Ω

S I
( ω

)/S
0

0 1 2
0
2
4
6
8

10
12

ω /Ω

S I
( ω

)/S
0
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Quadratic quantum detection
Mao, Averin, Ruskov, A.K., PRL-2004

Ha Hb

Vga VgbV

qubit a qubit bSET

I(t)

Peak only at 2Ω, peak/noise = 4η

Nonlinear detector:

Quadratic detector:

spectral peaks at Ω, 2Ω and 0

2 2

0 2 2 2 2 2
4 ( )( )

( 4 )I
IS Sω

ω ω
Ω Δ Γ

= +
− Ω + Γ

Ibias

V(f)

ω/Ω

Three evolution scenarios: 1) collapse into |↑↓-↓↑Ú, current IÆ∞, flat spectrum
2) collapse into |↑↑ - ↓↓Ú, current IÆÆ, flat spectrum; 3) collapse into remaining 
subspace, current (IÆ∞+ IÆÆ)/2, spectral peak at  2Ω

Entangled states distinguished by average detector current

0 1 2 3
0
2
4
6

S I
(ω

)/S
0

0 1 2 3
0
2
4
6

ω/Ω

S I
(ω

)/S
0

quadraticI, V

q0,φ
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Qubit monitoring via  
3 complementary observables

22 { ( ) (1 ) [ [ ( )]]}dr r a u t r r r u t
dt

γ= − + − − × ×

a – coupling, γ - extra dephasing

state purification simple monitoring

Isotropic evolution, 
3 times faster purification, 
good fidelity of simple 
monitoring (up to 0.94) Ruskov, Korotkov, Molmer, PRL-2010
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blue: rectangular

red: exponential 

η = 0.1

averaging time (τ/τmeas)  

windowmeas1 / 1 2η γτ= +

evolution
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Binary-output qubit detector 
(non-destructive, single-shot)

general POVM (superoperator) for each result:

16 +16 – 4 = 28 real parameters to describe (too many!)

28 = 2 (meas. axis) + 2 (fidelity) + 2×3 (unitary) + 2×9 (decoherence)

General characterization

Simplifications:

1) Textbook projective only 2 parameters (meas. axis)

2) Perfect fidelity F0=F1=1; then only meas. axis is interesting

3) QND |0Ú→|0Ú, |1Ú→|1Ú; then 6 parameters  

(6 more parameters affect only reinitialization)

F0 – prob. to get 0 if |0>
F1 – prob. to get 1 if |1>
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QND binary-output detector

00 01 0 00 0 1 01

10 11 0 1 11

0 01 (1 )
. . (1 )

D iF F F e e
P c c F

φρ ρ ρ ρ
ρ ρ ρ

⎛ ⎞⎛ ⎞ −→ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

-

00 01 0 00 0 1 01

10 11 1 1 11

1 11 (1 ) (1 )
. .

D iF F F e e
P c c F

φρ ρ ρ ρ
ρ ρ ρ

⎛ ⎞⎛ ⎞ − −→ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

-

result 0:

result 1:

6 parameters:  fidelity (F0, F1), decoherence (D0, D1), and phases (φ0, φ1)

(simple 
Bayes)

0 0 00 1 11 1 0 00 1 11(1 ) , (1 )P F F P F Fρ ρ ρ ρ= + − = − +

Corresponding quantum limits

result 0:
after
01

0 1
01 0

| | 1 (1 )
| |

F F
P

ρ
ρ

≤ − result 1:
after
01

1 0
01 1

| | 1 (1 )
| |

F F
P

ρ
ρ

≤ −
after
01

0 1 0 1
01

| | (1 ) (1 )
| |

F F F Fρ
ρ

≤ − + −

natural to introduce quantum efficiencies by comparing with quantum limits

ensemble decoherence:

(easy to realize η0=1, but difficult η0=η1=1) 

A.K., 2008
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Natural definitions of quantum efficiency
(actual decoherence vs. informational bound)

Ensemble decoherence
(averaged over result,
similar to the definition
for linear detectors)

min / avD Dη =

0 1

0 1

0

1

0

0

1

1

1
ln (1 )

1
ln (1 )

D
D F F

D
D F F

η

η

− =
− −

− =
− −

(useful for “asymmetric” and “half-destructive”
detectors, as for phase qubits)

Also for each result
of measurement
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Niels Bohr:
“If you are not confused by
quantum physics then you 
haven’t really understood it”

Richard Feynman:
“I think I can safely say that nobody
understands quantum mechanics”

Quantum measurement is the most confusing
and also fascinating part of QM

Two main puzzles:
• Non-locality of collapse

Now well-studied (understood?), in many QM textbooks,
being used (quant. cryptography, CHSH as calibration, etc. )

• What is “inside” collapse
We know basic answer (many equivalent approaches),
still to be included into QM textbooks,
may lead to important practical applications (q. feedback, etc.)
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Conclusions (to 3 lectures)
● It is easy to see what is “inside” collapse: simple Bayesian

formalism works for many solid-state setups

● Rabi oscillations are persistent if weakly measured

● Quantum feedback can synchronize persistent Rabi oscillations

● Collapse can sometimes be undone if we manage 
to erase extracted information

● Continuous/partial measurements, quantum feedback,
and uncollapsing may have useful applications 

● Three direct solid-state experiments have been realized, 
many interesting experimental proposals are still waiting
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Thank you!
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