USC, LA, 01/27/12

Probing "inside" quantum collapse with solid-state qubits

Alexander Korotkov

University of California, Riverside

Outline:

- What is "inside" collapse? Bayesian framework.
 - broadband meas. (double-dot qubit & QPC)
 - narrowband meas. (circuit QED setup)
- Realized experiments (partial collapse, uncollapse, persistent Rabi oscillations)
- Quantum feedback of Rabi oscillations

Alexander Korotkov

Quantum mechanics = Schrödinger equation (evolution) + collapse postulate (measurement)

1) Probability of measurement result $p_r = |\langle \psi | \psi_r \rangle|^2$

2) Wavefunction after measurement = Ψ_r

- State collapse follows from common sense
- Does not follow from Schrödinger Eq. (contradicts)

What is "inside" collapse? What if collapse is stopped half-way?

Alexander Korotkov

What is the evolution due to measurement? (What is "inside" collapse?)

• controversial for last 80 years, many wrong answers, many correct answers

• solid-state systems are more natural to answer this question

Various approaches to non-projective (weak, continuous, partial, generalized, etc.) quantum measurements

Names: Davies, Kraus, Holevo, Mensky, Caves, Knight, Walls, Carmichael, Milburn, Wiseman, Gisin, Percival, Belavkin, etc. (very incomplete list)

Key words: POVM, restricted path integral, <u>quantum trajectories</u>, quantum filtering, quantum jumps, stochastic master equation, etc.

Quantum Bayesian framework (slight technical extension of the collapse postulate)

- Quantum back-action (spooky, physically unexplainable) simple: update the state using information from measurement and probability concept (Bayes rule)
- 2) Add "classical" back-action if any (anything with a physical mechanism)
- 3) Add noise/decoherence if any
- 4) Add Hamiltonian (unitary) evolution if any

(Practically equivalent to many other approaches: POVM, quantum trajectory, quantum filtering, etc.)

Alexander Korotkov

"Typical" setup: double-quantum-dot qubit + quantum point contact (QPC) detector

Gurvitz, 1997

 $H = H_{QB} + H_{DET} + H_{INT}$ $H_{QB} = \frac{\varepsilon}{2}\sigma_z + H\sigma_x$ $I(t) = I_0 + \frac{\Delta I}{2}z(t) + \xi(t)$ const + signal + noise

Two levels of average detector current: I_1 for qubit state $|1\rangle$, I_2 for $|2\rangle$ Response: $\Delta I = I_1 - I_2$ Detector noise: white, spectral density S_I

For low-transparency QPC

$$\begin{split} H_{DET} &= \sum_{l} E_{l} a_{l}^{\dagger} a_{l} + \sum_{r} E_{r} a_{r}^{\dagger} a_{r} + \sum_{l,r} T(a_{r}^{\dagger} a_{l} + a_{l}^{\dagger} a_{r}) \\ H_{INT} &= \sum_{l,r} \Delta T \left(c_{1}^{\dagger} c_{1} - c_{2}^{\dagger} c_{2} \right) \left(a_{r}^{\dagger} a_{l} + a_{l}^{\dagger} a_{r} \right) \\ S_{I} &= 2eI \end{split}$$

Alexander Korotkov — University of California, Riverside

Bayesian formalism for DQD-QPC system

 $H_{QB} = 0$ $|1\rangle \circ$ $H_{QB} \circ e$ $|2\rangle \circ e$ \bigcup I(t)

Qubit evolution due to measurement (quantum back-action): $\psi(t) = \alpha(t) |1\rangle + \beta(t) |2\rangle$ or $\rho_{ij}(t)$

1) $|\alpha(t)|^2$ and $|\beta(t)|^2$ evolve as probabilities, i.e. according to the **Bayes rule** (same for ρ_{ii})

2) phases of $\alpha(t)$ and $\beta(t)$ do not change (no dephasing!), $\rho_{ij}/(\rho_{ii}\rho_{jj})^{1/2} = \text{const}$

(A.K., 1998)

Bayes rule (1763, Laplace-1812):

$$\frac{1}{\tau} \int_0^{\tau} I(t) dt$$

$$I_1$$
measured

So simple because:

- 1) no entaglement at large QPC voltage (classical detector; Markovian)
- 2) QPC happens to be an ideal detector
- 3) no Hamiltonian evolution of the qubit

Alexander Korotkov

Assumptions needed for the Bayesian formalism:

- Detector voltage is much larger than the qubit energies involved eV >> ħΩ, eV >> ħΓ, ħ/eV << (1/Ω, 1/Γ), Ω=(4H²+ε²)^{1/2}
 (no coherence in the detector, classical output, Markovian approximation)
- Simpler if weak response, $|\Delta I| << I_0$, (coupling $C \sim \Gamma/\Omega$ is arbitrary)

Derivations:

- 1) "logical": via correspondence principle and comparison with decoherence approach (A.K., 1998)
- 2) "microscopic": Schr. eq. + collapse of the detector (A.K., 2000)

- 3) from "quantum trajectory" formalism developed for quantum optics (Goan-Milburn, 2001; also: Wiseman, Sun, Oxtoby, etc.)
- 4) from POVM formalism (Jordan-A.K., 2006)

5) from Keldysh formalism (Wei-Nazarov, 2007)

Now add classical back-action and decoherence

$$|1\rangle \circ$$

$$|2\rangle \circ |2\rangle$$

$$|1\rangle$$

$$I(t)$$

$$\Delta I = I_1 - I_2$$
noise S_I

$$I = I_1 \tau$$

$$I_m \equiv \frac{1}{\tau} \int_0^\tau I(t) \, dt$$

$$D = S_I / 2\tau$$

$$\begin{array}{c|c} D \\ \hline D \\ \hline I_1 \\ \hline I_2 \\ \end{array}$$

 $H_{qb} = 0$ $\begin{cases}
 quantum backaction (non-unitary, "spooky", "unphysical") \\
 \frac{\rho_{11}(\tau)}{\rho_{22}(\tau)} = \frac{\rho_{11}(0)}{\rho_{22}(0)} \frac{\exp[-(I_m - I_1)^2/2D]}{\exp[-(I_m - I_2)^2/2D]} \\
 no self-evolution of qubit assumed \\
 \rho_{12}(\tau) = \rho_{12}(0) \sqrt{\frac{\rho_{11}(\tau) \rho_{22}(\tau)}{\rho_{11}(0) \rho_{22}(0)}} \exp(iKI_m \tau) \exp(-\gamma\tau) \\
 \ decoherence$

classical backaction (unitary)

Example of classical ("physical") backaction: Each electron passed through QPC rotates qubit (sensitivity of tunneling phase for an asymmetric barrier) $arg(T^*\Delta T) \neq 0$

$$\begin{split} H_{DET} &= \sum_{l} E_{l} a_{l}^{\dagger} a_{l} + \sum_{r} E_{r} a_{r}^{\dagger} a_{r} + \sum_{l,r} T(a_{r}^{\dagger} a_{l} + a_{l}^{\dagger} a_{r}) \\ H_{INT} &= \sum_{l,r} \Delta T(c_{1}^{\dagger} c_{1} - c_{2}^{\dagger} c_{2})(a_{r}^{\dagger} a_{l} + a_{l}^{\dagger} a_{r}) \end{split}$$

Alexander Korotkov — University of California, Riverside

Another example of classical back-action

$$H_{qb} = 0$$
quantum backaction (non-unitary, "spooky", "unphysical")
$$I(t) \begin{cases} \rho_{11}(\tau) \\ \rho_{22}(\tau) \end{cases} = \frac{\rho_{11}(0)}{\rho_{22}(0)} \exp[-(I_m - I_1)^2/2D] \\ \exp[-(I_m - I_2)^2/2D] \\ \exp[-(I_m - I_2)^2/2D] \\ \exp[-(I_m \tau) \exp(-\gamma \tau) \\ exp(-\gamma \tau) \\ exp$$

Now add Hamiltonian evolution

- Time derivative of the quantum Bayes rule
- Add unitary evolution of the qubit

Evolution of qubit *wavefunction* can be monitored if $\gamma=0$ (quantum-limited)

noise $S_{\xi} = S_I$

Relation to "conventional" master equation

$$\dot{\rho}_{11} = -\dot{\rho}_{22} = -2H \operatorname{Im} \rho_{12} + \rho_{11}\rho_{22}\frac{2\Delta I}{S_I}[I(t) - I_0]$$

$$\dot{\rho}_{12} = i\varepsilon\rho_{12} + iH(\rho_{11} - \rho_{22}) + \rho_{12}(\rho_{11} - \rho_{22})\frac{\Delta I}{S_I}[I(t) - I_0]$$

$$+ iK[I(t) - I_0]\rho_{12} - \gamma\rho_{12}$$

 $\hbar = 1$

response ΔI noise S_I

Averaging over measurement result I(t) leads to usual master equation:

$$\dot{\rho}_{11} = -\dot{\rho}_{22} / dt = -2 H \operatorname{Im} \rho_{12}$$

$$\dot{\rho}_{12} = i \varepsilon \rho_{12} + i H (\rho_{11} - \rho_{22}) - \Gamma \rho_{12}$$

 Γ – ensemble decoherence, $\Gamma = (\Delta I)^2 / 4S_I + K^2S_I / 4 + \gamma$ spooky physical dephasing

Quantum efficiency:
$$\eta = \frac{(\Delta I)^2 / 4S_I}{\Gamma}$$
 or $\tilde{\eta} = 1 - \frac{\gamma}{\Gamma}$

Alexander Korotkov — University of California, Riverside

Two ways to think about a non-ideal detector ($\eta < 1$)

These ways are equivalent (same results for any expt.) ⇒ matter of convenience

Alexander Korotkov

Stratonovich and Ito forms for nonlinear stochastic differential equations

Definitions of the derivative:

$$\frac{df(t)}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t/2) - f(t - \Delta t/2)}{\Delta t} \quad \text{(Stratonovich)}$$
$$\frac{df(t)}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t} \quad \text{(Ito)}$$

Why matters? Usually $(f + df)^2 \approx f^2 + 2f df$, $(df)^2 << df$ But if $df = \xi dt$ (white noise ξ), then $(df)^2 = \xi^2 dt^2 \approx \frac{S_{\xi}}{2} dt$ Simple translation rule:

$$\frac{d}{dt}x_{i}(t) = G_{i}(\vec{x},t) + F_{i}(\vec{x},t)\xi(t) \qquad \text{(Stratonovich)}$$

$$\frac{d}{dt}x_{i}(t) = G_{i}(\vec{x},t) + F_{i}(\vec{x},t)\xi(t) + \frac{S_{\xi}}{4}\sum_{k}\frac{\partial F_{i}(\vec{x},t)}{dx_{k}}F_{k}(\vec{x},t) \quad \text{(Ito)}$$

Advantage of Stratonovich: usual calculus rules (intuition) Advantage of Ito: simple averaging

— Alexander Korotkov — University of California, Riverside

Methods for calculations

Monte Carlo

- "Ideologically" simplest
- In many cases most efficient
- Idea: use finite time step Δt
 - find probability distribution for $I_m(\Delta t)$
 - pick a random number for $I_m(\Delta t)$
 - do quantum Bayesian update

Analytics (or non-random numerics)

- Be very careful about Ito-Stratonovich issue
- Use Stratonovich form for derivations (derivatives, etc.)
- Convert into Ito for averaging over noise
- Very good idea to compare with Monte Carlo and/or check second order terms in *dt*

Quantum measurement in POVM formalism

Davies, Kraus, Holevo, etc. system < > ancilla projective measurement (Nielsen-Chuang, pp. 85, 100) $\psi \rightarrow \frac{M_r \psi}{\|M_r \psi\|} \text{ or } \rho \rightarrow \frac{M_r \rho M_r^{\dagger}}{\operatorname{Tr}(M_r \rho M_r^{\dagger})}$ Measurement (Kraus) operator M_r (any linear operator in H.S.): Probability: $P_r = ||M_r \psi||^2$ or $P_r = \operatorname{Tr}(M_r \rho M_r^{\dagger})$ Completeness: $\sum_{r} M_{r}^{\dagger} M_{r} = 1$ (People often prefer linear evolution and non-normalized states) decomposition $M_r = U_r \sqrt{M_r^{\dagger} M_r}$ Relation between POVM and quantum Bayesian formalism: unitary Baves (almost equivalent)

Narrowband linear measurement

Paramp traditionally discussed in terms of noise temperature

 $\begin{array}{l} \theta \geq 0 \\ \theta \geq \frac{\hbar \omega}{2} \end{array} \begin{array}{l} \mbox{for phase-sensitive (degenerate, homodyne) paramp} \\ \mbox{Haus, preserving (non-degenerate, heterodyne) paramp} \\ \mbox{Haus, Mullen, 1962} \\ \mbox{Giffard, 1976} \end{array} \end{array}$

We will discuss it in terms of qubit evolution due to measurement

Alexander Korotkov

Phase-sensitive (degenerate) paramp

quadrature $cos(\omega_d t + \varphi)$ is amplified, quadrature $sin(\omega_d t + \varphi)$ is suppressed

Assume I(t) measures $\cos(\omega_d t + \varphi)$, then Q(t) not needed

get some information ($\sim \cos^2 \varphi$) about qubit state and some information ($\sim \sin^2 \varphi$) about photon fluctuations

$$\begin{cases} \frac{\rho_{gg}(\tau)}{\rho_{ee}(\tau)} = \frac{\rho_{gg}(0)}{\rho_{ee}(0)} \frac{\exp[-(\bar{I} - I_g)^2 / 2D]}{\exp[-(\bar{I} - I_e)^2 / 2D]} & \bar{I} = \frac{1}{\tau} \int_0^{\tau} I(t) \, dt & D = S_I / 2\tau \\ I_g - I_e = \Delta I \cos \varphi & K = \frac{\Delta I}{S_I} \sin \varphi \\ \rho_{ge}(\tau) = \rho_{ge}(0) \sqrt{\frac{\rho_{gg}(\tau) \rho_{ee}(\tau)}{\rho_{gg}(0) \rho_{ee}(0)}} \exp(iK\bar{I}\tau) & \Gamma = \frac{(\Delta I \cos \varphi)^2}{4S_I} + K^2 \frac{S_I}{4} = \frac{\Delta I^2}{4S_I} = \frac{8\chi^2 \bar{n}}{\kappa} \\ \text{(rotating frame)} & \text{Same as for QPC/SET, but trade-off } (\varphi) \\ \text{between quantum & classical back-actions} \\ \text{Alexander Korotkov} & \text{University of California, Riverside} \end{cases}$$

Phase-preserving (nondegenerate) paramp $\varphi = \delta \omega t$

Now information in both I(t) and Q(t).

Choose $l(t) \leftrightarrow \cos(\omega_{d} t)$ (qubit information) $Q(t) \leftrightarrow \sin(\omega_d t)$ (photon fluct. info)

Small $\delta \omega \Rightarrow$ can follow $\varphi(t)$ Large $\delta \omega$ (>> Γ) \Rightarrow averaging over ϕ (phase-preserving)

Alexander Korotkov

 $\begin{cases} \frac{\rho_{gg}(\tau)}{\rho_{ee}(\tau)} = \frac{\rho_{gg}(0)}{\rho_{ee}(0)} \frac{\exp[-(\bar{I} - I_g)^2 / 2D]}{\exp[-(\bar{I} - I_e)^2 / 2D]} & \bar{I} \equiv \frac{1}{\tau} \int_0^{\tau} I(t) \, dt \quad \bar{Q} \equiv \frac{1}{\tau} \int_0^{\tau} Q(t) \, dt \quad D = \frac{S_I}{2\tau} \\ I_g - I_e = \frac{\Delta I}{\sqrt{2}} & K = \frac{\Delta I}{\sqrt{2}S_I} \\ \Gamma = \frac{\Delta I^2}{\sqrt{2}} + \frac{\Delta I^2}{\sqrt{2}} = \frac{8\chi^2 \bar{n}}{\bar{N}} \end{cases}$

Understanding important for quantum feedback

Equal contributions to ensemble dephasing from quantum & classical back-actions A.K., arXiv:1111.4016

Impossible in principle!

Technical reason: Outgoing information makes it an open system

Philosophical reason: Random measurement result, but deterministic Schrödinger equation

Einstein: God does not play dice (actually plays!) Heisenberg: unavoidable quantum-classical boundary

Alexander Korotkov

Can we verify the Bayesian formalism experimentally?

Direct way:

A.K.,1998

However, difficult: bandwidth, control, efficiency (expt. realized only for supercond. phase qubits)

Tricks are needed for real experiments

Alexander Korotkov

Experimental proposals

- Direct experimental verification (1998)
- Measured spectrum of Rabi oscillations (1999, 2000, 2002)
- Bell-type correlation experiment (2000)
- Quantum feedback of Rabi oscillations (2002, 2005)
- Entanglement by measurement (2002)
- Measurement by a quadratic detector (2003)
- Squeezing of a nanomechanical resonator (2004)
- Violation of Leggett-Garg inequality (2005, 2010)
- Partial collapse of a phase qubit (2005)
- Measurement reversal (2006, 2008, 2010)
- Decoherence suppression by uncollapsing (2010)
- Persistent Rabi oscillations probed via noise (2011)

Superconducting experiments "inside" quantum collapse

- UCSB-2006 Partial collapse
- UCSB-2008 Reversal of partial collapse (uncollapse)
- Saclay-2010 Continuous measurement of Rabi oscillations (+violation of Leggett-Garg inequality)
- Berkeley-2012 (coming soon)

Partial collapse of a Josephson phase qubit

 $\begin{array}{c} |1\rangle \\ |0\rangle \end{array} \xrightarrow{} \Gamma \end{array}$

<u>N. Katz</u>, M. Ansmann, R. Bialczak, E. Lucero, R. McDermott, M. Neeley, M. Steffen, E. Weig, A. Cleland, <u>J. Martinis</u>, A. Korotkov, Science-06

What happens if no tunneling?

Main idea:

V

$$= \alpha | 0 \rangle + \beta | 1 \rangle \rightarrow \psi(t) = \begin{cases} | \partial u \rangle, \text{ if turneted} \\ \frac{\alpha | 0 \rangle + \beta e^{-\Gamma t/2} e^{i\varphi} | 1 \rangle}{\sqrt{|\alpha|^2 + |\beta|^2 e^{-\Gamma t}}}, \text{ if not tunneled} \end{cases}$$

Non-trivial: • amplitude of state |0> grows without physical interaction

• finite linewidth only after tunneling

continuous null-result collapse

(idea similar to Dalibard-Castin-Molmer, PRL-1992)

Alexander Korotkov — University of California, Riverside

Partial collapse: experimental results

Alexander Korotkov

N. Katz et al., Science-06

- In case of no tunneling phase qubit evolves
- Evolution is described by the Bayesian theory without fitting parameters
- Phase qubit remains coherent in the process of continuous collapse (expt. ~80% raw data, ~96% corrected for T₁, T₂)

quantum efficiency $\eta_0 > 0.8$

Good confirmation of the theory

Simple strategy: continue measuring until *r*(*t*) becomes zero! Then any unknown initial state is fully restored.

(same for an entangled qubit)

It may happen though that r=0 never happens; then undoing procedure is unsuccessful.

Alexander Korotkov University of California, Riverside

Experiment on wavefunction uncollapse

<u>N. Katz</u>, M. Neeley, M. Ansmann, R. Bialzak, E. Lucero, A. O'Connell, H. Wang, A. Cleland, <u>J. Martinis</u>, and A. Korotkov, PRL-2008

Uncollapse protocol:

- partial collapse
 π-pulse
- partial collapse (same strength)

If no tunneling for both measurements, then initial state is fully restored

$$\alpha | 0 \rangle + \beta | 1 \rangle \rightarrow \frac{\alpha | 0 \rangle + e^{i\phi} \beta e^{-\Gamma t/2} | 1 \rangle}{\text{Norm}} \rightarrow [0]$$

$$\frac{e^{i\phi} \alpha e^{-\Gamma t/2} | 0 \rangle + e^{i\phi} \beta e^{-\Gamma t/2} | 1 \rangle}{\text{Norm}} = e^{i\phi} (\alpha | 0 \rangle + \beta | 1 \rangle)$$

phase is also restored ("spin echo")

Experimental results on the Bloch sphere

Both spin echo (azimuth) and uncollapsing (polar angle) Difference: spin echo – undoing of an <u>unknown unitary</u> evolution, uncollapsing – undoing of a <u>known</u>, <u>but non-unitary</u> evolution

Alexander Korotkov — University of California, Riverside

Suppression of T_1 -decoherence by uncollapse

Ideal case (T_1 during storage only) for initial state $|\psi_{in}\rangle = \alpha |0\rangle + \beta |1\rangle$ $|\psi_f\rangle = |\psi_{in}\rangle$ with probability (1-*p*) e^{-t/T_1}

 $|\psi_{f}\rangle = |0\rangle$ with $(1-p)^{2}|\beta|^{2}e^{-t/T_{1}}(1-e^{-t/T_{1}})$

procedure preferentially selects events without energy decay

Uncollapse seems to be **the only** way to protect against T_1 -decoherence without encoding in a larger Hilbert space (QEC, DFS)

Alexander Korotkov

Realization with photons

Alexander Korotkov

University of California, Riverside

1.0

Uncollapsing preserves entanglement

Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, Nature Phys.-2012

- Extension of 1-qubit experiment
- Revives entanglement even from "sudden death"

Alexander Korotkov

Non-decaying (persistent) Rabi oscillations

Indirect experiment: spectrum of persistent Rabi oscillations

peak-to-pedestal ratio = $4\eta \le 4$

$$S_{I}(\omega) = S_{0} + \frac{\Omega^{2} (\Delta I)^{2} \Gamma}{(\omega^{2} - \Omega^{2})^{2} + \Gamma^{2} \omega^{2}}$$

$$I(t) = I_0 + \frac{\Delta I}{2}z(t) + \xi(t)$$

(const + signal + noise

A.K., LT'1999 A.K.-Averin, 2000

z is Bloch coordinate

amplifier noise ⇒ higher pedestal, poor quantum efficiency, but the peak is the same!!! $\begin{array}{c}
S_{I}(\omega) \\
\eta \ll 1 \\
0 \quad 1 \, \omega/\Omega^{2}
\end{array}$

integral under the peak \Leftrightarrow variance $\langle z^2 \rangle$

How to distinguish experimentally persistent from non-persistent? Easy!

perfect Rabi oscillations: $\langle z^2 \rangle = \langle \cos^2 \rangle = 1/2$ imperfect (non-persistent): $\langle z^2 \rangle \ll 1/2$ quantum (Bayesian) result: $\langle z^2 \rangle = 1$ (!!!)

(demonstrated in Saclay expt.)

Alexander Korotkov

How to understand $\langle z^2 \rangle = 1?$

$$I(t) = I_0 + \frac{\Delta I}{2}z(t) + \xi(t)$$

First way (mathematical)

We actually measure operator: $z \rightarrow \sigma_z$

$$z^2 \rightarrow \sigma_z^2 = 1$$

Second way (Bayesian)

$$S_{I}(\omega) = S_{\xi\xi} + \frac{\Delta I^{2}}{4}S_{zz}(\omega) + \frac{\Delta I}{2}S_{\xi z}(\omega)$$

T.

quantum back-action changes zin accordance with the noise ξ (what you see becomes reality)

Equal contributions (for weak coupling and $\eta=1$)

Can we explain it in a more reasonable way (without spooks/ghosts)?

or some other z(t)?

- Alexander Korotkov

No (under assumptions of macrorealism; Leggett-Garg, 1985)

Leggett-Garg-type inequalities for continuous measurement of a qubit

qubit
$$\leftarrow$$
 detector \downarrow *I*(*t*)

Ruskov-A.K.-Mizel, PRL-2006 Jordan-A.K.-Büttiker, PRL-2006

Assumptions of macrorealism Leggett-Garg, 1985 (similar to Leggett-Garg'85): $K_{ii} = \langle Q_i Q_i \rangle$ if $Q = \pm 1$, then $I(t) = I_0 + (\Delta I / 2)z(t) + \xi(t)$ $1+K_{12}+K_{23}+K_{13}\geq 0$ $|z(t)| \leq 1, \quad \langle \xi(t) \ z(t+\tau) \rangle = 0$ $K_{12}+K_{23}+K_{34}-K_{14} \leq 2$ Then for correlation function quantum result $K(\tau) = \langle I(t) I(t+\tau) \rangle$ $\frac{3}{2}\left(\Delta I/2\right)^2$ $K(\tau_1) + K(\tau_2) - K(\tau_1 + \tau_2) \le (\Delta I / 2)^2$ and for area under narrow spectral peak $\int [S_{I}(f) - S_{0}] df \leq (8/\pi^{2}) (\Delta I/2)^{2}$ $(\Delta I/2)^2$ η is not important!

Alexander Korotkov

t violation

 $\times \frac{3}{2}$

 $\times \frac{\pi}{8}$

tant! Experimentally measurable violation (Saclay experiment) University of California, Riverside

Saclay experiment

A.Palacios-Laloy, F.Mallet, F.Nguyen, P. Bertet, D. Vion, D. Esteve, and A. Korotkov, Nature Phys., 2010

- superconducting charge qubit (transmon) in circuit QED setup
- microwave reflection from cavity: full collection, only phase modulation
- driven Rabi oscillations (z-basis is |g>&|e>)

Standard (not continuous) measurement here: ensemble-averaged Rabi starting from ground state

Now continuous measurement

Palacios-Laloy et al., 2010

Theory by dashed lines, very good agreement

Alexander Korotkov

Violation of Leggett-Garg inequalities

Palacios-Laloy et al., 2010

In time domain

Rescaled to qubit *z*-coordinate $K(\tau) \equiv \langle z(t) z(t+\tau) \rangle$

Standard deviation $\sigma = 0.065 \Rightarrow$ violation by 5σ

Alexander Korotkov

Violation of Leggett-Garg inequalities

In frequency domain

courtesy of Patrice Bertet (unpublished)

Also violated, but not so well as in time domain

Alexander Korotkov

Natural next step: quantum feedback control of persistent Rabi oscillations

In simple monitoring the phase of persistent Rabi oscillations fluctuates randomly:

 $z(t) = \cos[\Omega t + \varphi(t)]$ for $\eta = 1$

phase noise \Rightarrow finite linewidth of the spectrum

Goal: produce persistent Rabi oscillations without phase noise by synchronizing with a classical signal $z_{\text{desired}}(t) = \cos(\Omega t)$

Alexander Korotkov

Several types of quantum feedback

Bayesian

Best but very difficult

(monitor quantum state and control deviation)

detector

control stage

(barrier height)

C<<1

C=C_{det}=1

τ_a=0

aubit

D (feedback fidelity)

environment

feedback

signal

I(t)

 $\Delta H_{\rm fb} / H = F \times \Delta \varphi$

 $C_{env} / C_{det} = 0 / 0.1 / 0.5$

5 6

F (feedback strength)

Ruskov & A.K., 2002

desired evolution

 $\rho_{ij}(t)$

D (feedback fidelity)

0.8

0.6 -

0.4

0.2

0.0

0.0

comparison circuit

Bayesian

equations

Direct

as in Wiseman-Milburn (1993)

> averaging time $\tau_{2} = (2\pi/\Omega)/10$

> > 0.6

(apply measurement signal to control with minimal processing)

 $\Delta H_{\rm fb} / H = F \sin(\Omega t)$

 $\times \left(\frac{I(t) - I_0}{\Delta I/2} - \cos \Omega t\right)$

C=1 n=1

_ 0.2 0.4

F (feedback strength)

"Simple"

Imperfect but simple

Alexander Korotkov

Several ways to organize quantum feedback First idea: Bayesian feedback

(most straightforward but most difficult experimentally)

The wavefunction is monitored via Bayesian equations, and then usual (linear) feedback of the Rabi phase

Alexander Korotkov

How to characterize feedback efficiency/fidelity?

D = average scalar product of desired and actual vectors on Bloch sphere

$$D=2\langle \mathrm{Tr}\rho_{\mathrm{desired}}\,\rho\rangle-1$$

Experimental difficulties:

- necessity of very fast real-time solution of Bayesian equations
- wide bandwidth (≫Ω, GHz-range) of the line delivering noisy signal *l*(*t*) to the "processor"

Performance of Bayesian feedback

For ideal detector and wide bandwidth, feedback fidelity can be close to 100% $D = \exp(-C/32F)$

> Ruskov & A.K., 2002 Alexander Korotkov –

Feedback fidelity vs. detector efficiency

Zhang, Ruskov, A.K., 2005

other detrimental effects:

- parameter deviations
- finite bandwidth
- feedback loop delay

Second idea: direct feedback (similar to Wiseman-Milburn, 1993)

Idea: apply measurement signal to control with minimal processing feedback $\sim I(t)-I_0$

Our controller:

Third idea: "Simple" quantum feedback

Goal: maintain coherent (Rabi) oscillations for arbitrarily long time

Idea: use two quadrature components of the detector current *I(t)* to monitor approximately the phase of qubit oscillations (a very natural way for usual classical feedback!)

$$X(t) = \int_{-\infty}^{t} [I(t') - I_0] \cos(\Omega t') \exp[-(t - t')/\tau] dt'$$

$$Y(t) = \int_{-\infty}^{t} [I(t') - I_0] \sin(\Omega t') \exp[-(t - t')/\tau] dt'$$

$$\phi_m = -\arctan(Y/X)$$

(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth $(1/\tau \sim \Gamma_d \ll \Omega)$

Essentially classical feedback. Does it really work?

Alexander Korotkov — University of California, Riverside -

Fidelity of simple quantum feedback

 $D_{\text{max}} \approx 90\%$ $D \equiv 2F_Q - 1$ $F_Q \equiv \langle \operatorname{Tr} \rho(t) \rho_{des}(t) \rangle$

Robust to imperfections (inefficient detector, frequency mismatch, qubit asymmetry)

How to verify feedback operation experimentally? Simple: just check that in-phase quadrature $\langle X \rangle$ of the detector current is positive $D = \langle X \rangle (4/\tau \Delta I)$ $\langle X \rangle = 0$ for *any* non-feedback Hamiltonian control of the qubit Simple enough for real experiment!

Alexander Korotkov

Quantum feedback in cQED setup

We have to undo both effects: disturbance of qubit phase ("classical") and disturbance of Rabi phase ("spooky")

 \Rightarrow have to control both qubit parameters (except for phase-sens., φ =0)

Phase-preserving case

$$\begin{cases} \frac{\rho_{gg}(\tau)}{\rho_{ee}(\tau)} = \frac{\rho_{gg}(0)}{\rho_{ee}(0)} \frac{\exp[-(\bar{I} - I_g)^2 / 2D]}{\exp[-(\bar{I} - I_e)^2 / 2D]} \\ \rho_{ge}(\tau) = \rho_{ge}(0) \sqrt{\frac{\rho_{gg}(\tau) \rho_{ee}(\tau)}{\rho_{gg}(0) \rho_{ee}(0)}} \exp(iK\bar{Q}\tau) \end{cases}$$

Use different quadratures for two feedback channels

Use direct feedback for qubit energy +some feedback for µwave amplitude

Phase-sensitive case

$$\int \frac{\rho_{gg}(\tau)}{\rho_{ee}(\tau)} = \frac{\rho_{gg}(0)}{\rho_{ee}(0)} \frac{\exp[-(\overline{I} - I_g)^2 / 2D]}{\exp[-(\overline{I} - I_e)^2 / 2D]}$$
$$\rho_{ge}(\tau) = \rho_{ge}(0) \sqrt{\frac{\rho_{gg}(\tau) \rho_{ee}(\tau)}{\rho_{gg}(0) \rho_{ee}(0)}} \exp(iK\overline{I}\tau)$$

Use the same signal for both

If $\phi=0$ (*K*=0), then only feedback for μ wave amplitude

Alexander Korotkov

Conclusions

- It is easy to see what is "inside" collapse: simple Bayesian framework works for many solid-state setups
- Measurement backaction necessarily has a "spooky" part (informational, without a physical mechanism); it may also have a "classical" part (with a physically understandable mechanism)
- Three superconducting experiments so far: partial collapse, uncollapse, monitoring of non-decaying Rabi oscillations
- Many other proposals. Hopefully other experiments are coming soon. Quantum feedback is one of most interesting.

