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Outline: • What is “inside” collapse? Bayesian framework. 
- broadband meas. (double-dot qubit & QPC) 
- narrowband meas. (circuit QED setup) 

• Realized experiments (partial collapse, uncollapse, 
persistent Rabi oscillations)

• Quantum feedback of Rabi oscillations
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Quantum mechanics =
Schrödinger equation (evolution)

+
collapse postulate (measurement)

1)  Probability of measurement result   pr =

2)  Wavefunction after measurement   =

2| | |rψ ψ〈 〉
rψ

What is “inside” collapse? 
What if collapse is stopped half-way?

• State collapse follows from common sense
• Does not follow from Schrödinger Eq. (contradicts)
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Various approaches to non-projective (weak, continuous, 
partial, generalized, etc.) quantum measurements

Key words: POVM, restricted path integral, quantum trajectories, quantum
filtering, quantum jumps, stochastic master equation, etc.

Names: Davies, Kraus, Holevo, Mensky, Caves, Knight, Walls,
Carmichael, Milburn, Wiseman, Gisin, Percival, Belavkin, etc.
(very incomplete list)

solid-state qubit

detector
I(t), noise S

Our limited scope:
(simplest system, 
experimental setups)

What is the evolution due to measurement?
(What is “inside” collapse?)

• controversial for last 80 years, many wrong answers, many correct answers
• solid-state systems are more natural to answer this question
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Quantum Bayesian framework
(slight technical extension of the collapse postulate) 

1) Quantum back-action (spooky, physically unexplainable) 
simple: update the state using information from measurement
and probability concept (Bayes rule)

2) Add “classical” back-action if any (anything with a physical
mechanism) 

3) Add noise/decoherence if any
4) Add Hamiltonian (unitary) evolution if any 

(Practically equivalent to many other approaches: POVM, 
quantum trajectory, quantum filtering, etc.)
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“Typical” setup: double-quantum-dot qubit  
+ quantum point contact (QPC) detector

eH

I(t)

H = HQB + HDET + HINT

Two levels of average detector current: I1 for qubit state |1〉,  I2 for |2〉

Response: ΔI= I1–I2 Detector noise: white, spectral density SI

† † † †
, ( )DET r r r r rl l l l ll r l rH E a a E a a T a a a a= + ++∑ ∑ ∑

† † † †
1 1 2 2, ( ) ( )INT r rl ll rH T c c c c a a a a= Δ − +∑ 2IS eI=

|1Ò

|2Ò

|1Ò
|2Ò

I(t)

|2Ò
|1Ò

Gurvitz, 1997

2 Z XQBH Hε σ σ= +

For low-transparency QPC

0( ) ( ) ( )
2
II t I z t tξΔ

= + +
const +  signal  + noise
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Bayesian formalism for DQD-QPC system

(A.K., 1998)

eH

I(t)

Qubit evolution due to measurement (quantum back-action):

So simple because: 
1) no entaglement at large QPC voltage

(classical detector; Markovian)
2) QPC happens to be an ideal detector
3) no Hamiltonian evolution of the qubit

( ) (res | )
( | res)

( ) (res | )k kk

i i
i

P A P A
P A

P A P A
=

∑

Bayes rule (1763, Laplace-1812):

HQB = 0
|1Ò

|2Ò
1)  |α(t)|2 and |β(t)|2 evolve as probabilities,

i.e. according to the Bayes rule (same for ρii)
2)  phases of α(t) and β(t) do not change

(no dephasing!), ρij /(ρii ρjj)1/2 = const

( ) ( ) | 1 ( ) | 2t t tψ α β= 〉 + 〉 or ( )ij tρ

likelihoodposterior
probability

prior
probab. I1 I2

measured0
1 ( )I t dt

τ

τ ∫
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Assumptions needed for the Bayesian formalism:
• Detector voltage is much larger than the qubit energies involved 

eV >> ÑΩ, eV >> ÑΓ, Ñ/eV << (1/Ω, 1/Γ),  Ω=(4H2+ε2)1/2

(no coherence in the detector, classical output, Markovian approximation)

• Simpler if weak response, |ΔI | << I0,  (coupling C ~ Γ/Ω is arbitrary)           

Derivations:  
1) “logical”: via correspondence principle and comparison with 

decoherence approach (A.K., 1998) 
2) “microscopic”: Schr. eq. + collapse of the detector (A.K., 2000) 

qubit detector pointer
quantum 
interaction

frequent
collapse

classical
information

( )n
ij tρ ( )kn t

n – number of electrons
passed through detector

3) from “quantum trajectory” formalism developed for quantum optics
(Goan-Milburn, 2001; also: Wiseman, Sun, Oxtoby, etc.) 

4) from POVM formalism (Jordan-A.K., 2006) 
5) from Keldysh formalism (Wei-Nazarov, 2007)

quantum



University of California, RiversideAlexander Korotkov

Now add classical back-action 
and  decoherence

|1Ò
|2Ò

I(t)

|2Ò
|1Ò 2

11 11 1
2

22 22 2

( ) (0) exp[ ( ) / 2 ]
( ) (0) exp[ ( ) / 2 ]

m

m

I I D
I I D

ρ τ ρ
ρ τ ρ

- -
=

- -

11 22
12 12

11 22

( ) ( )
( ) (0) exp( )exp( )

(0) (0) miKI
ρ τ ρ τ

ρ τ ρ τ γτ
ρ ρ

−=

0
1 ( )mI I t dt

τ
τ

≡ ∫
/ 2ID S τ=

decoherence
classical backaction (unitary)

1 2
noise I

I I I
S

Δ = -

quantum backaction (non-unitary,
“spooky”, “unphysical”)

Example of classical (“physical”) backaction:

no self-evolution 
of qubit assumed

Each electron passed through QPC rotates qubit
(sensitivity of tunneling phase for an asymmetric barrier)

† † † †
, ( )DET r r r r rl l l l ll r l rH E a a E a a T a a a a= + ++∑ ∑ ∑

† † † †
1 1 2 2, ( ) ( )INT r rl ll rH T c c c c a a a a= Δ − +∑

*arg( ) 0T TΔ ≠I1 I2

0qbH =

D D
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Another example of classical back-action

0
1 ( )I I t dt

τ
τ

≡ ∫
/ 2ID S τ=

1 2
noise I

I I I
S

Δ = -

Classical backaction: 
Correlation between voltage and current noises in SET

2e

Vg V

I(t)

V

ϕ (t)

I(t)
ΓL

ΓR

0IS ϕ ≠
2 2

(0)

(0) (0) 2( )
L R

L R

I

II

S

S S
ϕ

ϕϕ

Γ − Γ
=

Γ Γ+

(easy to understand when ΓL <<ΓR)

2
11 11 1

2
22 22 2

( ) (0) exp[ ( ) / 2 ]
( ) (0) exp[ ( ) / 2 ]

m

m

I I D
I I D

ρ τ ρ
ρ τ ρ

- -
=

- -

11 22
12 12

11 22

( ) ( )
( ) (0) exp( )exp( )

(0) (0) miKI
ρ τ ρ τ

ρ τ ρ τ γτ
ρ ρ

−=
decoherence

classical backaction (unitary)

quantum backaction (non-unitary,
“spooky”, “unphysical”)

no self-evolution 
of qubit assumed

0qbH =
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Now add Hamiltonian evolution

(A.K., 1998)

Evolution of qubit wavefunction can be monitored if γ=0 (quantum-limited)

eH

I(t) 2e

Vg V

I(t)
• Time derivative of the quantum Bayes rule
• Add unitary evolution of the qubit

11 22 12 11 22 0

12 12 11 22 12 11 22 0 12

22 Im [ ]

( ) ( ) [ ]

( )

( )

I

I

H I I
S

H Ii i I
S

I t

I t

ρ ρ ρ ρ ρ

ρ ερ ρ ρ ρ ρ ρ γ ρ

• •

•

Δ

Δ
+

= - = - + -

= + - - - -

0γ = for QPC

ΔI=I1-I2 , I0=(I1+I2)/2,   SI – detector noise

For simulations: 0 11 22( )
2
II I ρ ρ ξΔ

= + − +

noise IS Sξ =
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Relation to “conventional” master equation

response ΔI
noise SI 

Averaging over measurement result I(t) leads to usual master equation:

11 22 12 11 22 0

12 12 11 22 12 11 22 0

0 1212

22 Im [ ]

( ) ( )

[

[

]

]

( )

)

)

(

(
I

I

IH I
S

Ii i H I
S

iK II

I

I

t

t

t

ρ ρ ρ ρ ρ

ρ ερ ρ ρ ρ ρ ρ

γ ρρ

• •

•

Δ

+

Δ
+

= - = - + -

-

= + - - -

-

22( ) / 4 / 4I II S K S γΓ − Γ Δ + +=ensemble decoherence,   

11 22 12

12 12 11 22 12

2 Im

( )

dt H

i i H

ρ ρ ρ

ρ ε ρ ρ ρ ρ

• •

•
Γ

= - / = -

= + - -

1=

Quantum efficiency:
2( ) / 4 II Sη Δ

=
Γ

or 1 γη = −
Γ

spooky      physical    dephasing



University of California, RiversideAlexander Korotkov

Two ways to think about 
a non-ideal detector (η<1)

2( ) / 4I Sη Σ

Σ

Δ
=

Γ

qubit ideal
detector I(t)0S2

0

( )
4

I
SΣ

Δ
Γ =

noise

+
1S

0 1S S SΣ = +

qubit ideal
detector I(t)SΣ2

0
( )
4

I
SΣ

Δ
Γ =

dephasing
noise

1Γ
0 1ΣΓ = Γ + Γ

These ways are equivalent
(same results for any expt.)
fi matter of convenience
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Stratonovich and Ito forms for nonlinear
stochastic differential equations 

0
( ) ( / 2) ( / 2)lim t

df t f t t f t t
dt tΔ →

+ Δ − − Δ
=

Δ

0
( ) ( ) ( )lim t

df t f t t f t
dt tΔ →

+ Δ −
=

Δ

Definitions of the derivative:

(Stratonovich)

(Ito)

Why matters? Usually

But if

( , )( ) ( , ) ( , ) ( ) ( , )
4

i
i i i k

k k

S F x td x t G x t F x t t F x t
dt dx

ξξ ∂
= + + ∑

( ) ( , ) ( , ) ( )i i i
d x t G x t F x t t
dt

ξ= +

2 2 2( )
2

S
df dt dtξξ= ≈df dtξ=

2 2 2( ) 2 , ( )f df f f df df df+ ≈ + <<

Simple translation rule:
(white noise ξ), then

(Stratonovich)

(Ito)

Advantage of Stratonovich: usual calculus rules (intuition)
Advantage of Ito: simple averaging
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Methods for calculations
Monte Carlo

• “Ideologically” simplest
• In many cases most efficient

Idea:  • use finite time step Δt
• find probability distribution for  Im(Δt)
• pick a random number for Im(Δt)
• do quantum Bayesian update

Analytics (or non-random numerics)

• Be very careful about Ito-Stratonovich issue
• Use Stratonovich form for derivations (derivatives, etc.)
• Convert into Ito for averaging over noise
• Very good idea to compare with Monte Carlo and/or 

check second order terms in dt
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Measurement (Kraus) operator 
Mr (any linear operator in H.S.) :

†

†Tr( )
r r

r r

M M
M M

ρ
ρ

ρ
→

† 1r rr M M

Quantum measurement in POVM formalism

Completeness : =∑

†Tr( )r r rP M Mρ=Probability :

|| ||
r

r

M
M

ψ
ψ

ψ
→

2|| ||r rP M ψ=

or

or

(People often prefer linear evolution
and non-normalized states)

Relation between POVM and 
quantum Bayesian formalism:

decomposition †
r r r rM U M M=

Bayesunitary
(almost equivalent)

(Nielsen-Chuang, pp. 85, 100)

Davies, Kraus, Holevo, etc.
system ancilla projective

measurement
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Narrowband linear measurement
Difference from broadband: two quadratures

System: qubit in cQED setup + parametric amplifier

qubit
(transmon)

Paramp traditionally discussed in terms of noise temperature

resonator
parampmicrowave

generator

mixer
I(t)

Q(t)

output (two
quadratures)quantum signal 

(2 quadratures)

0

2

θ
ωθ

≥

≥

for phase-sensitive (degenerate, homodyne) paramp

for phase-preserving (non-degenerate, heterodyne) paramp

We will discuss it in terms of qubit evolution due to measurement

ωd ωr

Haus, Mullen, 1962
Giffard, 1976

Yale

Ackn.: Likharev,
Devoret
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Simplest case

qubit
(transmon)

resonator
parampmicrowave

generator

mixer
I(t

)

Q(t)

output (two
quadratures)

ωd ωr

Blais et al., 2004
Gambetta et al., 2006, 2008

† †

2
qb

z r zH a a a a
ω

σ ω χ σ= ++

max( , )r
RQ

ω κ= >> Γ Ω

(dispersive)

(Markovian, “bad cavity”)

outκ κ= (everything collected; e.g. reflection)

χ κ<< (weak response)

rdω ω= (center of resonance, only
phase change if transmission) |2Ò

|1Ò

cos( )d tω

sin( )dtω

carries information 
about qubit  (σz)
(quantum back-action)

carries information about fluctuating 
photon number in the resonator
(classical back-action)

assume everything most ideal
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qubit

resonator
paramp

μwave
gen.

mixer

I(t)
Q(t)

ωd ωr

Phase-sensitive (degenerate) 
paramp quadrature cos(ωd t +ϕ) is amplified, 

quadrature sin(ωd t +ϕ) is suppressed

|2Ò

|1Ò

cos( )d tω

sin( )dtω

ϕ
amplifie

d

get some information (~cos2ϕ) about qubit state and 
some information (~sin2ϕ) about photon fluctuations

Assume I(t) measures cos(ωd t +ϕ), then Q(t) not needed 

2

2
( ) (0) exp[ ( ) / 2 ]
( ) (0) exp[ ( ) / 2 ]

gg gg g

ee ee e

I I D
I I D

ρ τ ρ
ρ τ ρ

- -
=

- -

( ) ( )
( ) (0) exp( )

(0) (0)
gg ee

ge ge
gg ee

iKI
ρ τ ρ τ

ρ τ ρ τ
ρ ρ

=

0
1 ( )I I t dt

τ
τ

≡ ∫ / 2ID S τ=

I(t)

cosg eI I I ϕ− = Δ

(rotating frame)

sin
I

IK
S

ϕΔ
=

2 2 2
2( cos ) 8

4 4 4
I

I I

I S I nK
S S

ϕ χ
κ

Δ Δ
Γ += = =

Same as for QPC/SET, but trade-off (ϕ)
between quantum & classical back-actions

unitary

A.K., arXiv:1111.4016
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qubit

resonator
paramp

μwave
gen.

mixer

I(t)
Q(t)

ωd ωr

Phase-preserving (nondegenerate) paramp tϕ δω=

Now information in both I(t) and Q(t).

2

2
( ) (0) exp[ ( ) / 2 ]
( ) (0) exp[ ( ) / 2 ]

gg gg g

ee ee e

I I D
I I D

ρ τ ρ
ρ τ ρ

- -
=

- -

( ) ( )
( ) (0) exp( )

(0) (0)
gg ee

ge ge
gg ee

i QK
ρ τ ρ τ

ρ τ ρ τ
ρ ρ

=

0
1 ( )I I t dt

τ
τ

≡ ∫ 2
ISD
τ

=

2g e
II I Δ

− =

Understanding important 
for quantum feedback

2 I

IK
S

Δ
=

2 2 28
8 8I I

I I n
S S

χ
κ

Δ Δ
Γ += =

Equal contributions to ensemble dephasing
from quantum & classical back-actions

|0Ò

|1Ò

cos( )d tω

sin( )dtω

ϕ
I(t)

Q(t)

tδω

Choose 
I(t)  ↔ cos(ωdt)  (qubit information)
Q(t) ↔ sin(ωdt)   (photon fluct. info)

Small δω ⇒ can follow ϕ(t)
Large δω (>>Γ) ⇒ averaging over ϕ (phase-preserving)

0
1 ( )Q Q t dt

τ
τ

≡ ∫

A.K., arXiv:1111.4016
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Why not just use Schrödinger 
equation for the whole system?

qubit

detector
information

Technical reason: Outgoing information makes it an open system

Impossible in principle!

Philosophical reason: Random measurement result, but 
deterministic Schrödinger equation

Einstein: God does not play dice  (actually plays!)
Heisenberg: unavoidable quantum-classical boundary
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Can we verify the Bayesian formalism 
experimentally?

Direct way:

prepare partial
measur.

control
(rotation)

projective
measur.

A.K.,1998

However, difficult: bandwidth, control, efficiency 
(expt. realized only for supercond. phase qubits)

Tricks are needed for real experiments
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Experimental proposals

• Direct experimental verification (1998)
• Measured spectrum of Rabi oscillations (1999, 2000, 2002)
• Bell-type correlation experiment (2000)
• Quantum feedback of Rabi oscillations (2002, 2005) 
• Entanglement by measurement (2002)
• Measurement by a quadratic detector (2003) 
• Squeezing of a nanomechanical resonator (2004)
• Violation of Leggett-Garg inequality (2005, 2010) 
• Partial collapse of a phase qubit (2005)
• Measurement reversal (2006, 2008, 2010) 
• Decoherence suppression by uncollapsing (2010)
• Persistent Rabi oscillations probed via noise (2011) 
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Superconducting experiments 
“inside” quantum collapse

• UCSB-2006  Partial collapse

• UCSB-2008  Reversal of partial collapse (uncollapse)

• Saclay-2010  Continuous measurement of Rabi oscillations
(+violation of Leggett-Garg inequality)

• Berkeley-2012  (coming soon) 
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Partial collapse of a Josephson phase qubit

Γ
|0〉
|1〉

Main idea:

What happens if no tunneling? 

2 2

/2
| , if tunneled

| 0 | 1| 0 | 1 ( ) , if not tunneled
| | | |

i

t

t e

out

et

e

ϕα βψ α β ψ

α β Γ

Γ

〉⎧
⎪

〉 + 〉〉 + 〉 → ⎨
⎪

+⎩
-

-= =

(idea similar to Dalibard-Castin-Molmer, PRL-1992)

continuous null-result collapse

N. Katz, M. Ansmann, R. Bialczak, E. Lucero, 
R. McDermott, M. Neeley, M. Steffen, E. Weig, 
A. Cleland, J. Martinis, A. Korotkov, Science-06

Non-trivial: • amplitude of state |0〉 grows without physical interaction
• finite linewidth only after tunneling
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Partial collapse: experimental results

in (c) T1=110 ns, T2=80 ns (measured)

no fitting parameters in (a) and (b)P
ol

ar
 a

ng
le

A
zi

m
ut

ha
l a

ng
le

V
is

ib
ili

ty

probability p

probability p

pulse ampl.

N. Katz et al., Science-06

• In case of no tunneling 
phase qubit evolves 

• Evolution is described 
by the Bayesian theory  
without fitting parameters

• Phase qubit remains  
coherent in the process 
of continuous collapse 
(expt. ~80% raw data,
~96% corrected for T1,T2)

lines - theory
dots and squares – expt.

quantum efficiency
0 0.8

Good confirmation 
of the theory

η >

1 tp e Γ-= -
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Uncollapsing for qubit-QPC system (theory)

r(t)

Uncollapsing 
measurement

t

r0

First “accidental”
measurement

Detector 
(QPC)

Qubit 
(double-dot)I(t)

A.K. & Jordan, 2006

Simple strategy: continue measuring until r(t) becomes zero!
Then any unknown initial state is fully restored.

(same for an entangled qubit)
It may happen though that  r = 0  never happens; 

then undoing procedure is unsuccessful.

00( ) [ ( ') ' ]
I

tIr t I t dt I t
S
Δ

∫= -
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Experiment on wavefunction uncollapse
N. Katz, M. Neeley, M. Ansmann,
R. Bialzak, E. Lucero, A. O’Connell,
H. Wang, A. Cleland, J. Martinis, 
and A. Korotkov, PRL-2008

tomography & 
final measure

state
preparation

7 ns

partial 
measure p

p

time
10 ns

partial 
measure p

p

10 ns 7 ns

π

Iμw

Idc
Uncollapse protocol:
- partial collapse
- π-pulse
- partial collapse

(same strength)If no tunneling for both measurements, 
then initial state is fully restored

/ 2

/ 2 / 2

| 0 | 1| 0 | 1
Norm

| 0 | 1 ( | 0 | 1 )
Norm

i t

i it t
i

e e

e e e e e

φ

φ φ
φ

α βα β

α β α β

−Γ

−Γ −Γ

〉 + 〉
〉 + 〉 → →

〉 + 〉
= 〉 + 〉

 

phase is also restored (“spin echo”)

Γ
|0〉
|1〉

1 tp e Γ-= -

Nature News
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Experimental results on the Bloch sphere

Both spin echo (azimuth) and uncollapsing (polar angle)
Difference: spin echo – undoing of an unknown unitary evolution,

uncollapsing – undoing of a known, but non-unitary evolution

N. Katz et al. Initial
state

Partially
collapsed

Uncollapsed

| 1〉 | 0〉
| 0 | 1

2
i〉 − 〉 | 0 | 1

2
〉+ 〉

uncollapsing 
works well
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Suppression of T1-decoherence by uncollapse

|ψf〉= |ψin〉 with probability (1-p)e-t/T1

|ψf〉= |0〉 with (1-p)2|β|2e-t/T1(1-e-t/T1) 

Protocol:

Ideal case (T1 during storage only)
for initial state |ψin〉=α |0〉 +β |1〉

procedure preferentially selects
events without energy decay

partial collapse 
towards ground 
state (strength p)

storage period t

π π

uncollapse
(measurem.
strength pu)

ρ11

(zero temperature)

Realistic case (T1 and Tϕ at all stages)

measurement strength p

Q
P

T 
fid

el
ity

, p
ro

ba
bi

lit
y

fidelity

probability

without
uncollapsing

Uncollapse seems to be the only 
way to protect against T1-decohe-
rence without encoding in a larger 
Hilbert space (QEC, DFS)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(1-pu) κ3κ4 = (1-p) κ1κ2

κ2 = 0.3

κ1 =  κ3 =  κ4 = 1, 0.999,
κ ϕ = 1, 0.95

0.99. 0.9

as in
expt.

}

1/it T
i eκ −

=
/t Te ϕ

ϕκ Σ−
=

A.K. & Keane, PRA-2010

measurement strength pQ
P

T 
fid

el
ity

 (F
av

s , 
F χ

)

Ideal

without
uncollapsing

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

pu= p

pu= 1- e-t/T1 (1-p)

e-t/T1
 = 0.3

almost full 
suppression

Trade-off: fidelity vs. probability
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Realization with photons
J.-C. Lee, Y.-C. Jeong, Y.-S. Kim, 
and Y.-H. Kim, Opt. Express-2011

• Works perfectly (optics, not solid state!)
• Amplitude damping (“energy relaxation”)

decoherence is imitated in a clever way

Q
P

T 
fid

el
ity

pr
ob

ab
ilit

y

p=0.9
γ is purity
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Uncollapsing preserves entanglememt
Y.-S. Kim, J.-C. Lee, O. Kwon, 
and Y.-H. Kim, Nature Phys.-2012

• Extension of 1-qubit experiment
• Revives entanglement even from 

“sudden death”

decoherence strength

measurement strength

D=0.6
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Non-decaying (persistent) Rabi oscillations

left right

ground

excited
- Relaxes to the ground state if left alone (low-T)
- Becomes fully mixed if coupled to a high-T

(non-equilibrium) environment
- Oscillates persistently between left and right 

if (weakly) measured continuously

Direct experiment is difficult A.K., PRB-1999

0 5 10 15 20 25 30
-0.5

0.0

0.5

1.0
ρ11

Reρ11

Imρ11

to verify:
stop & check

time

z
|left〉

|right〉

|g〉|e〉 • ••

2( )
4 I

I
S

Δ
<< Ω

(“reason”: attraction to left/right states)
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Indirect experiment: spectrum
of persistent Rabi oscillations 

qubit detector
I(t)

C
A.K., LT’1999
A.K.-Averin, 2000

2 2

0 2 2 2 2 2
( )( )

( )I
IS Sω

ω ω
Ω Δ Γ

= +
− Ω + Γ

peak-to-pedestal ratio = 4η ≤ 4

0( ) ( ) ( )
2
II t I z t tξΔ

= + +

(const + signal + noise)

2( ) / IC I HS= Δ

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

ω/Ω

S I(ω
)/S

0

C=13

10

3
1

0.3

Ω = 2H

integral under the peak ‹ variance ‚z2Ú

ηÜ1
ω/Ω

SI (ω)
amplifier noise fl higher pedestal,

poor quantum efficiency,
but the peak is the same!!!

How to distinguish experimentally
persistent from non-persistent? Easy!

perfect Rabi oscillations: ·z2Ò=·cos2Ò=1/2
imperfect (non-persistent): ·z2ÒÜ 1/2
quantum (Bayesian) result:  ·z2Ò = 1 (!!!)

(demonstrated in Saclay expt.)

0 1 2
0

1

Ω - Rabi frequency

z is Bloch
coordinate
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How to understand ·z2Ò = 1?

0( ) ( ) ( )
2
II t I z t tξΔ

= + +

First way (mathematical)   
We actually measure operator:  z → σz

z2 → σz
2 = 1

Second way (Bayesian)   
2

( ) ( ) ( )
4 2I zz z
I IS S S Sξξ ξω ω ωΔ Δ

= + +

Equal contributions (for weak 
coupling and η=1)

(What does it mean?
Difficult to say…)

quantum back-action changes z
in accordance with the noise ξ
(what you see becomes reality)

Can we explain it in a more reasonable way (without spooks/ghosts)?

No (under assumptions of macrorealism; 
Leggett-Garg, 1985)

z(t)?+1

-1

qubit

detector
I(t)

or some other z(t)?

z
|left〉

|right〉

|g〉|e〉 • ••
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Leggett-Garg-type inequalities for 
continuous measurement of a qubit

Ruskov-A.K.-Mizel, PRL-2006
Jordan-A.K.-Büttiker, PRL-2006

0 1 2
0

2

4

6

ω/Ω

S I(ω
)/S

0

SI (ω)

≤
4S

0

Experimentally measurable violation

qubit detector
I(t)

Assumptions of macrorealism
(similar to Leggett-Garg’85):

0 ( )  ( / 2) ( ) ( )I t I I z t tξ+ Δ +=

| ( ) | 1,  ( ) ( ) 0z t t z tξ τ≤ 〈 + 〉 =

Then for correlation function
 ( ) ( ) ( )K I t I tτ τ〈 + 〉=

2
1 2 1 2( ) ( ) ( ) ( / 2)K K K Iτ τ τ τ+ − + ≤ Δ

and for area under narrow spectral peak

0
2 2[ ( ) ] (8 / ) ( / 2)IS f S df Iπ− ≤ Δ∫

quantum result

23 ( / 2)
2

IΔ
3
2

×

violation

2( / 2)IΔ
2

8
π

×

(Saclay experiment)

Leggett-Garg,1985
Kij = ·Qi QjÒ

if Q =±1, then
1+K12+K23+K13≥0

K12+K23+K34 -K14 £2

η is not important!
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Saclay experiment

• superconducting charge qubit
(transmon) in circuit QED setup

• microwave reflection from
cavity: full collection, 
only phase modulation 

• driven Rabi oscillations
(z-basis is |g>&|e>) 

=0,1, 2, 5,10, 20n
photons

Zeno effect

A.Palacios-Laloy, F.Mallet, F.Nguyen, 
P. Bertet, D. Vion, D. Esteve, and      
A. Korotkov, Nature Phys., 2010

Standard (not continuous) 
measurement here: 
ensemble-averaged Rabi 
starting from ground state
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Now continuous measurement

=0.23
0.78
1.56
3.9
7.8
15.6

n

0.23n = 1.56n =

Theory by dashed lines, very good agreement

2~ 10
4

S
S

η −Δ
=

Pre-amplifier noise 
temperature TN= 4 K

Palacios-Laloy et al., 2010 

1 0.0321 NT
ω

≈
+
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Violation of Leggett-Garg inequalities
In time domain Palacios-Laloy et al., 2010 

1 2 1 2( ) ( ) ( ) 1 2 ( ) (2 ) 1K K K K Kτ τ τ τ τ τ+ − + ≤ ⇒ − ≤

Rescaled to qubit z-coordinate ( ) ( ) ( )K z t z tτ τ≡ 〈 + 〉

( ) 2 ( ) (2 )LGf K Kτ τ τ≡ −

2(0) (0)LGf K z= = 〈 〉 2 1.01 0.15z〈 〉 = ±

(17ns) 1.44 0.12LGf = ± Ideal fLG,max=1.5
Standard deviation σ = 0.065 ⇒ violation by 5σ
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courtesy of 
Patrice Bertet
(unpublished)

0 5 10 15 20 25 30

0.0
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0.2

0.3

0.4

0 5 10 15 20 25
0.00
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1.00

Δ = 5MHz

1
 Raw data
 Detector BW corrected
 Multiplied by  f

Δ

 

S z (σ
z2 / M

H
z)

f (MHz)

8/π2

 

Ar
ea

f (MHz)

0.66

Violation of Leggett-Garg inequalities

In frequency domain

Also violated, but not so well as in time domain
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Natural next step: quantum feedback 
control of persistent Rabi oscillations

Goal: produce persistent Rabi oscillations without phase noise
by synchronizing with a classical signal

In simple monitoring the phase of persistent Rabi oscillations
fluctuates randomly: 

( ) cos[ ( )]z t t tϕ= Ω + for η=1

phase noise fl finite linewidth of the spectrum

desired ( ) cos( )t tz = Ω

0 1 2
0

2

4

6

0 1 2
0

2

4

6

ω/Ω

S I(ω
)/S

0

ω/Ω

integral 2 1 1 1
2 2

z〈 〉 += = integral 2 1
2

z〈 〉 =
0( ) ( ) ( )

2
II t I z t tξΔ

= + +

2

0 4 2I zz z
I IS S S Sξ

Δ Δ
= + +

synchronized

cannot synchronize
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Several types of quantum feedback
Bayesian Direct “Simple”

0 1 2 3 4 5 6 7 8 9 10
0.80

0.85

0.90

0.95

1.00

Cenv /Cdet= 0 0.1   0.5

C=Cdet=1
τa=0

Ruskov & A.K., 2002

C<<1

detector
I(t)

× cos (Ω t), τ-average

re
l. 

ph
as

eX

Y

φm
qubit

control

× sin (Ω t), τ-average

local oscil.

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0
ηeff =

0.5

0.2

0.1

ε/H0= 1
0.5

0

ΔΩ/CΩ=0.2

0

C = 0.1
τ [(ΔI)2/SI] = 1 

1

0.1

F/C (feedback strength)
D

(fe
ed

ba
ck

 fi
de

lit
y)

qubit 

H 

e 

detector Bayesian 
     equations 

I(t) 

control stage 

(barrier height) 

ρij(t) 

 

comparison 
circuit 

desired evolution  

feedback 

signal 

environment 

C<<1 

(apply measurement signal to
control with minimal processing)

(do as in usual classical
feedback)

A.K., 2005

Best but very difficult as in Wiseman-Milburn
(1993)(monitor quantum state

and control deviation)

Ruskov & A.K., 2002

Imperfect but simple

fb

0

/ sin( )
( )

cos
/ 2

H H F t
I t I

t
I

Δ = Ω
−⎛ ⎞× − Ω⎜ ⎟Δ⎝ ⎠

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

F (f db k t th)

C=1
η =1

averaging time
τ a = (2π/Ω)/10

F (feedback strength)

D
(fe

ed
ba

ck
 fi

de
lit

y)

F (feedback strength)

D
(fe

ed
ba

ck
 fi

de
lit

y)

fb /H H F ϕΔ = × Δ

fb
m

H
F

H
φ

Δ
= ×
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Several ways to organize quantum feedback

qubit 

H 

e 

detector Bayesian 
     equations 

I(t) 

control stage 

(barrier height) 

ρij(t) 

 

comparison 
circuit 

desired evolution  

feedback 

signal 

environment 

C<<1 

ΔHFB/H = −F×ϕ

Ruskov & A.K., 2002

Hqb=
HσX

The wavefunction is monitored via 
Bayesian equations, and then usual 
(linear) feedback of the Rabi phase

First idea: Bayesian feedback
(most straightforward but most difficult experimentally)

( ) cos[ ( )]z t t tϕ= Ω +

ΔΩ/Ω = −F×ϕ

Experimental difficulties:
• necessity of very fast real-time 

solution of Bayesian equations 
• wide bandwidth (áΩ, GHz-range) 

of the line delivering noisy signal 
I(t) to the “processor”

How to characterize 
feedback efficiency/fidelity?

D = average scalar product 
of desired and actual
vectors on Bloch sphere

desired= 2 Tr 1D ρ ρ〈 〉 −
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Performance of Bayesian feedback

2

desired

( ) / coupling
  feedback strength 

= 2 Tr 1

IC I S H
F

D ρ ρ

= Δ −
−

〈 〉 −

Feedback fidelity vs. feedback strength

For ideal detector and wide
bandwidth, feedback fidelity
can be close to 100%

D = exp(−C/32F)

Ruskov & A.K., 2002

0 1 2 3 4 5 6 7 8 9 10
0.80

0.85

0.90

0.95

1.00

F  (feedback factor)

D
  (

sy
nc

hr
on

iz
at

io
n 

de
gr

ee
)

Cenv /Cdet= 0 0.1   0.5

C=Cdet=1
τa=0

Zhang, Ruskov, A.K., 2005

Feedback fidelity vs. detector efficiency

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
simple

analytics

Dots:  Monte Carlo  
(weak coupling, C=0.1)

ε = 0
analytics

detection efficiency η

D
m

ax

max1 1.25Dη η<< ⇒ ≈

max1 (1 ) / 2Dη η≈ ⇒ ≈ +

other detrimental effects:
• parameter deviations
• finite bandwidth
• feedback loop delay   
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Second idea: direct feedback
(similar to Wiseman-Milburn, 1993)

fb 0( )
cos( ) sin( )

/ 2
H I t I

F t t
H I

Δ −ΔΩ ⎛ ⎞= = × − Ω × Ω⎜ ⎟Ω Δ⎝ ⎠

Idea: apply measurement signal to control with minimal processing
feedback ~ I(t)-I0

0.0 0.2 0.4 0.6 0.8
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0.2

0.4

0.6

0.8

1.0

F  (feedback strength)

D
  (
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ed
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y)

C=1
η =1

averaging time
τ a = (2π/Ω)/10

Ruskov & A.K., 2002

requires optimal 
feedback strength

Our controller:
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(A.K., 2005)

Idea: use two quadrature components of the detector current I(t)
to monitor approximately the phase of qubit oscillations
(a very natural way for usual classical feedback!)

Goal: maintain coherent 
(Rabi) oscillations for
arbitrarily long time

0( ) [ ( ') ] cos( ') exp[ ( ') / ] '
t

X t I t I t t t dtτ
−∞

= − Ω − −∫
0( ) [ ( ') ] sin( ') exp[ ( ') / ] '

t
Y t I t I t t t dtτ

−∞
= − Ω − −∫

arctan( / )m Y Xφ = −

(similar formulas for a tank circuit instead of mixing with local oscillator)

Advantage: simplicity and relatively narrow bandwidth (1 / ~ )dτ Γ << Ω

detector
I(t)

×cos(Ω t), τ-average

ph
as

e

X

Y

φm
qubit

H =H0 [1– F × φm(t)]
control

×sin(Ω t), τ-average

Hqb= HσX

C << 1
local oscillator

Essentially classical feedback. Does it really work?

Third idea: “Simple” quantum feedback
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Fidelity of simple quantum feedback

Simple: just check that in-phase quadrature 〈X〉
of the detector current is positive (4 / )

2 1

Tr ( ) ( )
Q

Q des

D F

F t tρ ρ

≡ −

≡ 〈 〉

D X Iτ= 〈 〉 Δ

How to verify feedback operation experimentally?

〈X〉=0 for any non-feedback Hamiltonian control of the qubit

Dmax ≈ 90%
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τ [(ΔI)2/SI] = 1 
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F/C (feedback strength)
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)

Simple enough for real experiment!

Robust to imperfections
(inefficient detector, frequency
mismatch, qubit asymmetry) 
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Quantum feedback in cQED setup
We have to undo both effects: disturbance of qubit phase (“classical”) 

and disturbance of Rabi phase (“spooky”)
⇒ have to control both qubit parameters (except for phase-sens., ϕ=0)

Phase-sensitive case

Use the same signal for both
2

2
( ) (0) exp[ ( ) / 2 ]
( ) (0) exp[ ( ) / 2 ]

gg gg g

ee ee e

I
I

I D
I D

ρ τ ρ
ρ τ ρ

- -
=

- -

( ) ( )
( ) (0) exp( )

(0) (0)
gg ee

ge ge
gg ee

i IK
ρ τ ρ τ

ρ τ ρ τ
ρ ρ

=

Phase-preserving case
2

2
( ) (0) exp[ ( ) / 2 ]
( ) (0) exp[ ( ) / 2 ]

gg gg g

ee ee e

I
I

I D
I D

ρ τ ρ
ρ τ ρ

- -
=

- -

( ) ( )
( ) (0) exp( )

(0) (0)
gg ee

ge ge
gg ee

i QK
ρ τ ρ τ

ρ τ ρ τ
ρ ρ

=

Use different quadratures
for two feedback channels

Use direct feedback for qubit energy
+some feedback for μwave amplitude

If ϕ=0 (K=0), then only feedback 
for μwave amplitude
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Conclusions

● It is easy to see what is “inside” collapse: simple Bayesian 
framework works for many solid-state setups

● Measurement backaction necessarily has a “spooky” part 
(informational, without a physical mechanism); it may also have 
a “classical” part (with a physically understandable mechanism)

● Three superconducting experiments so far: partial collapse, 
uncollapse, monitoring of non-decaying Rabi oscillations

● Many other proposals. Hopefully other experiments are coming soon.
Quantum feedback is one of most interesting. 


	Probing “inside” quantum collapse with solid-state qubits
	Quantum mechanics =
	Bayesian formalism for DQD-QPC system
	Assumptions needed for the Bayesian formalism:
	Now add classical back-action and  decoherence
	Another example of classical back-action
	Now add Hamiltonian evolution
	Relation to “conventional” master equation
	Two ways to think about �a non-ideal detector (<1) 
	Stratonovich and Ito forms for nonlinear�stochastic differential equations 
	Methods for calculations
	Narrowband linear measurement
	Simplest case
	Why not just use Schrödinger equation for the whole system?
	Can we verify the Bayesian formalism experimentally?
	Experimental proposals
	Superconducting experiments “inside” quantum collapse
	Partial collapse: experimental results
	Uncollapsing for qubit-QPC system (theory)
	Suppression of T1-decoherence by uncollapse 
	Realization with photons
	Uncollapsing preserves entanglememt
	Non-decaying (persistent) Rabi oscillations
	Indirect experiment: spectrum � of persistent Rabi oscillations 
	How to understand z2 = 1? 
	Leggett-Garg-type inequalities for �continuous measurement of a qubit
	Saclay experiment
	Now continuous measurement
	Violation of Leggett-Garg inequalities
	Violation of Leggett-Garg inequalities
	Natural next step: quantum feedback control of persistent Rabi oscillations
	Several ways to organize quantum feedback
	Performance of Bayesian feedback
	Second idea: direct feedback�(similar to Wiseman-Milburn, 1993)
	Third idea: “Simple” quantum feedback
	Fidelity of simple quantum feedback
	Quantum feedback in cQED setup
	Persistent Rabi oscillations �revealed in low-frequency noise
	Suppression of T1-decoherence �by uncollapsing (theory)
	Realistic case (T1 and T at all stages)
	Where POVM measurement comes from 



