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Basics of the QPT matrix ¢
Definition Pin — Z anEmeinEir

Paulibasis [ =1, X=o0,, Y=0, Z=o0.,
two qubits: 11, IX, 1Y, 1Z, XI, XX, ... ZZ

Pauli basis is orthogonal , - N st T . N
(almost orthonormal) <Em‘En> — Tl(E:r'n,En) = Oppnd, d =2

: T ]_ T L
y-matrix for unitary U~ Xmn = U, U = Z Up by Uy = ETI’((:’ E!)

Fidelity (unitary desired, [ = Tr(y9*y)
! X
trace-preserving actual) d4 1
Relation to average state fidelity I =F = (1 - Fy) d
(IBM term.: process fid. vs gate fid.) —
F. av. Tl’(,fi’ﬁn,f?’%ib) Fav 2 FZ
2

Fidelity when compare with
a non'unitary process FX — (Tl“\/ﬁ Xcles\/?)
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Definition of error matrices

U is the desired unitary, the rest is “error”

. z : err T T
Pfin — Xmn E m U Pin U'E n°
m,mn

Dfin = Z X UE, pinETUT.
Equivalent to the y-matrix and. to each other (two languages)
T = VXV, Vipn = Te(ELLEUY) /4,
= VXV, Vi = T(ELUTE,)/d.

Same math. properties as for y-matrix (Hermitian, positive, trace-one, etc.)

I . ' err ~errT
Convenience: only one big element F et
at the top left corner, other non-zero
elements indicate imperfections 0=1,1I,
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Experimental example

Unitary imperfection:

- erry . . _err
Iln(XnU) —~ _EFX U,

err __ 2 €IT T
[ = > u"E,

Why imaginary part?
[7err :)e]}q{exp(iHerr)
~1+ Y ihE,
AN

n70
real

IX ¥

Vé’ﬁiz‘c

¢
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Meaning of some elements

Xoo - fidelity (top left)

on)=—Im(x5) - unitary imperfection (top row & left column);

may be the biggest elements in y®"
lze 1<z < J1-F,, | Zm | Sy Zmmam <(@=F,)/2

Re(xon ) =Re(x0) - non-unitary “Bayesian” evolution in the absence
of “jlumps” due to decoherence

Im(z

Other elements (with m=0, n+0) originate from “strong jumps”
due to decoherence

Diagonal elements (n=0) have two contributions: from the “jumps due to
decoherence and second-order unitary |mperfect|on, ~(Im o0 )/ F,

The same applies to ;(
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Decomposition into Kraus operators

Formal procedure: diagonalize y*"
=TDT™" D =diag(Ao,A\1,...) Ao => A >
One main eigenvalue A, (=1), other A are small
Fxg)\ﬂgl Zn)\n:l

Decomposition 24
,!me = Z )\h *h U {Jzn T' 4' Z)\k 4}(44;‘ =1

Z “‘)Em 1) = Tk Xow = ), Aaly) (@)’

Kraus operators A, form orthonormal basis

Interpretation: "apply A, with probability ,“ (there are caveats)
A =1 describes “coherent” (gradual) evolution, others are “strong jumps”

, ArUYin) with probability P = Tr(A “hfh( pinU"),

Norm
so ), is average probability, \, = P
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Intuitive (approximate) way to think
FX, ﬁl—g{; —ED

Ep =1— Ao (average) probability of “strong decoherence jump”

_ orr| 2 . . |
Ey = E [u™ |* unitary error in the case of no jump

1
no-jump scenario: VAo Ag = U (]l — — Z;.;;:.n Ak44£:44;¢)

2
/ 7 (“Bayesian update”)
Im (x5 ) Re(x}0)
YT = _ch;h + -Xdeﬁ “coherent” contribution to ye" is of the second

order (except top row and left column),
not important unless big unitary imperfection
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Example: one-qubit T, and T decoherence

X =xX""=x  (no unitary evolution)

Energy relaxation Markovian pure dephasing
(F, 0 0 (/4T) (F,0 0 O
4T, it/aT) 0 0 0 0\

0 0 0

\ / ~ 12 ) Ciump’ \ /)
A= JtI4T (X +iY) | Incl. prob.) A= ‘/t/2T¢ Z

ATA=(t/2T)(1-Z A'A=(t/2T,)1 (state-indep., no Bayes)
Non-Markovian pure dephasing
1 — (¢ S ( ) i 1 1 .
Xz7 = ! ‘-;OH */ same as in Ramsey Pp = 513 e 2T (cos @) cos bR

Very slow fluctuations (Gaussian Ramsey): Xzz = 1‘-2/2T§
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Composition of error processes
' v

crr err err err

= L"Fl x. 1 L"Fl x . [ = L"Fl le x 1 {I-'rl ) x . -

Small elements in x*" =

= —uu " first order is sufficient
. . T I
If no U, then very simple: just add errors X7 A P” + Xe” 'X\
A little more accurate: X?T;?;{, ~ Fo Xilfn,n, + F X‘Z’fim deal
Even more accurate err

for diagonal elementS: )inn ~ FQ XTI;LTL —|_ Fl )(gl:fmz —|_ 2 hn()iil%]n) IIn()ﬁSl(r}n)

With U two steps: “jump over unitary”, then add
)j‘é}_ — I»*’[-*"(UO ”U (Lo} Same for jumping Krauses:

T - B - _I,il e — L—'Ti‘il k[;1
W (U),mn = Tl”(E;n UE, U’ ) / d

Alexander Korotkov Universitv of California. Riverside



Unitary corrections

Im(xgn ) shows unitary imperfections

Can correct (at least some elements) by applying U o',
then increase fidelity (only in the second order)

[]corr corr
o Zﬂ, E ~ Jl
err _ . F-I‘I COrr
)1?1'[]' 7 nU + F 'L{
choose Im(u;”™) ~ —Im(x5)/F\

Zﬂ,?ﬂ:}(lm Xno)"/ Fx

U

fidelity improvement AL
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v¢'" from Lindblad-form decoherence

. L 1 1

p=—[H.pl+ Y T,(B;pB] - EB Bijp—pB,] 'B))
ContribUtion X?}E{f*z(t‘&f) o X}nn — B . b b* o C?R(STTLU + (:::1,6??10
during At T At oo e 2 ‘

b, = Tr(BE!)/d,
= Tr(B'BE))/d =) bb,Tr(EE,E})/d.

Jump over the unitary, then add e

ta ' . .
cor X / DV () BW(¢) dt. Equivalently, jump Kraus B over U
0 Yo L+ jFB(t) dt

IITT?L?I( ) Tl Em[ E'”I ( H/d é(f) = (T'(IL)B(T(IL)

—Z
U(t) = exp|— / H(t) dt], ¥ oc T, “pattern” depends on U(t)
Infidelity accumulates | te ter te te
| e 2 _szc.(ﬂ-)Jrs.(b)Jrc.(a)Jrc.(b)
P~ 1— / S Jo 2 o7 @  or®  oql® o
] n=0 ;
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SPAM i1dentification and subtraction
I H o HeHe - = o HF

Representation by error channels is an assumption

A way to check: FX ~ F;XF’/Fi (compare with randomized benchmarking)

SPAM contributions depend on U
.Xerr,ex P ~ .Xerr + I][T( U) ()( prep XI)IIT(1{) + (_){meas L )KI)

Simple if SPAM is dominated by one component, then compare with no gate
mainly meas. error, then no gate mainly prep. error, then

err ~_ . err,exp ( err, ] . ,I) SEerr . err.exp ( err, /| . ,I)

X X X X X X
In general, need to know yPreP and y™Meas separately.

Idea: use high-fidelity single-qubit gates to separate the contributions.

X and Y gates flip the sign of some off-diagonal elements, VX and VY
exchange some diagonal elements. Lengthy procedure, but possible.

Need it only for significant elements of y°™!.
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Conclusions

e Error matrices y" and y®" are more convenient to use than 1y,
easy conversion between them

e More intuitive understanding of some elements, natural
separation into “coherent” and “jump” contributions

e Since all elements are small (except one), the first-order

calculations may be sufficient for composition of gates
and accumulation of Lindblad-form decoherence

e Unitary imperfections are easily seen, simple analysis of
unitary corrections

e SPAM is a serious problem, but there is (hopefully) a way

to identify and subtract it. If SPAM is dominated by one
type of error, then rather simple, otherwise quite lengthy.

Alexander Korotkov Universitv of California. Riverside




