Alexander Korotkov

University of California, Riverside

Robust quantum state transfer using tunable couplers

Eyob A. Sete, Eric Mlinar, and Alexander N. Korotkov, arXiv:1411.7103

Circuit QED qubit readout error from leakage to a neighboring qubit

Mostafa Khezri, Justin Dressel, and Alexander N. Korotkov, in preparation

Alexander Korotkov ——

Robust quantum state transfer using tunable couplers

Eyob A. Sete, Eric Mlinar, and Alexander N. Korotkov, arXiv:1411.7103

Outline:

- Main idea of the protocol
- Effect of the pulse shape variations
- Effect of multiple reflections
- Effect of frequency mismatch

Alexander Korotkov

Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network

J. I. Cirac,^{1,2} P. Zoller,^{1,2} H. J. Kimble,^{1,3} and H. Mabuchi^{1,3}

¹Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, California 93106-4030 ²Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria ³Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125 (Received 12 November 1996)

We propose a scheme to utilize photons for ideal quantum transmission between atoms located at *spatially separated* nodes of a quantum network. The transmission protocol employs special laser pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into a *time-symmetric* photon wave packet that will enter a cavity at the receiving node and be absorbed by an atom there *with unit probability*. Implementation of our scheme would enable reliable transfer or sharing of entanglement among spatially distant atoms. [S0031-9007(97)02983-9]

Time-symmetric photon wave packet

FIG. 1. Schematic representation of unidirectional quantum transmission between two atoms in optical cavities connected by a quantized transmission line (see text for explanation).

PHYSICAL REVIEW A 75, 010301(R) (2007)

High-fidelity transfer of an arbitrary quantum state between harmonic oscillators

K. Jahne,^{1,2} B. Yurke,³ and U. Gavish^{1,2}

¹Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria ²Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria ³Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA

One tunable coupler (emitting)

Alexander Korotkov

Main idea: two couplers, destructive interference

Tune the emitting or receiving coupling (t,r) so that

Korotkov PRA 84, 014510 (2011)

 $\mathbf{r}_{\mathrm{r}}A + \mathbf{t}_{\mathrm{r}}B = 0$

Back-reflected field into the transmission line is cancelled (destructive interference)

Tunable coupler

Tunable couplers' transmission amplitudes

• We characterize the performance of the protocol via energy transfer efficiency

$$\eta = \frac{\left|B(t_f)\right|^2}{|G(0)|^2}$$

• It is also sufficient for quantum case:

 $|\psi_{in}\rangle = (\alpha|0\rangle + \beta|1\rangle)|0\rangle_a \implies |\psi_{fin}\rangle = \alpha|0\rangle|0\rangle_a + \beta e^{i\varphi_f} (\sqrt{\eta}|1\rangle|0\rangle_a + \sqrt{1-\eta}|0\rangle|1\rangle_a)$

$$F_{\chi} = \frac{1}{4}(1 + \eta + 2\sqrt{\eta}\cos\varphi_f)$$

Quantum process fidelity

Alexander Korotkov — University of California, Riverside –

Imperfections of pulse shapes

B. "wrong" buildup/leakage time $\tau_{e/r}$

Inefficiency:

 $-\delta\eta \approx 0.34 \left[\left(\frac{\delta\tau_{\rm e}}{\tau^{\rm d}} \right)^2 + \left(\frac{\delta\tau_{\rm r}}{\tau^{\rm d}} \right)^2 \right] + 0.12 \frac{\delta\tau_{\rm e}}{\tau^{\rm d}} \frac{\delta\tau_{\rm r}}{\tau^{\rm d}}$

Alexander Korotkov

C. mismatched mid-time t_m

D. Nonlinear shape distortion ("warping")

Due to imperfect calibration of tunable couplers

$$\mathbf{t}_{e/r}^{wp} = \mathbf{t}_{e/r}^{d} [1 + \alpha_{e/r} (\mathbf{t}_{e/r}^{d} - \mathbf{t}_{e/r,max}^{d})]$$

5% nonlinear distortaion leads to $-\delta\eta=0.001$

Change in inefficiency:

 $-\delta\eta \approx 0.22(\alpha_e^2 + \alpha_r^2) + 0.12\alpha_e\alpha_r$

Alexander Korotkov

Gaussian filtering

Experimentally, desired pulse shapes pass through Gaussian filter. How will this affect efficiency?

procedure is almost immune to this effect, even with a filtering width of 10ns (or higher).

Alexander Korotkov

Noisy transmission amplitudes

Experimentally, desired pulse shapes can acquire some unavoidable noise. Model (j = e, r):

$$\mathbf{t}_{j}(t) \rightarrow \mathbf{t}_{p,j}(t) = \mathbf{t}_{j}(t) + a \, \mathbf{t}_{j}(t) \,\xi(t), \qquad \mathbf{t}_{j}(t) \rightarrow \mathbf{t}_{f,j}(t) = \mathbf{t}_{j}(t) + a \, |\mathbf{t}_{j}|_{max} \,\xi(t)$$

 $\xi(t)$: Gaussian white noise, zero mean, unit std. dev.

Noisy transmission amplitudes

- Average inefficiency over 100 trials
- Noise of up to about2% is tolerable
- Fixed noise can be problematic

Additional inefficiency is approximately

$$-\delta\eta = c_n a^2 \overline{\xi^2} \qquad \qquad c_n = 2 \qquad \mbox{Percentage noise} \\ c_n = 2 \ln \frac{1}{1 - \eta_d} \qquad \mbox{Fixed noise} \end{cases}$$

Alexander Korotkov University of California, Riverside

Effect of multiple reflections

- So far no multiple reflections considered
- When the resonators are close, multiple reflections becomes important

$$F = \mathbf{r}_{\mathrm{r}} A(t) + \mathbf{t}_{\mathrm{r}} B(t)$$

$$G(t)$$

$$B(t)$$

 $t_d = 2l_{tl}/v$ — round-trip delay $\varphi = \omega t_d$ —accumulated phase of F

Effect of multiple reflections

Alexander Korotkov

$$\eta=0.999$$
 and $|\mathbf{t}|_{ ext{max}}=0.05$

- Efficiency is robust to multiple reflections
- Inefficiency changes by up to factor of 2

- For small round-trip delay the inefficiency saturates for $\varphi = \pi, \frac{\pi}{2}$
- $\varphi = 0$ is problematic due to resonance with the resonators

So far the state transfer protocol is (surprisingly) quite robust

Alexander Korotkov

Effect of frequency mismatch

- 1. Constant frequency mismatch—due to design imperfections
- 2. Time-dependent frequency mismatch—due to variable transmission amplitudes

Constant frequency mismatch

$$1 - \eta \approx 2 \left(\frac{\delta \omega}{\kappa_{\max}}\right)^2$$

Since our protocol is based on interference, maintaining equal frequencies is main requirement

Tolerable (- $\delta\eta$ <0.01) up to $\delta\omega/2\pi = 0.4 \text{ MHz}$

Alexander Korotkov

Time-dependent frequency mismatch

Conclusions

- The state transfer protocol is (surprisingly) very robust to
 - pulse shape parameter deviations
 - pulse shape distortion
 - Gaussian filtering
 - noise of the pulse shapes
 - multiple reflections
- The protocol is very sensitive to frequency mismatch
- Active compensation is needed for the frequency change due to changing coupling. At least 90-95% compensation is needed.
- Emitting and receiving parts of the protocol has been demonstrated in separate experiments. Demonstration of a complete quantum state transfer is expected in 1-3 years.

Circuit QED qubit readout error from leakage to a neighboring qubit

Mostafa Khezri, Justin Dressel, Alexander N. Korotkov

Department of Electrical and Computer Engineering University of California, Riverside

Outline

- Setup: cQED with neighboring qubit
 - Switching in eigenbasis
 - Misidentification error

cQED setup with neighboring qubit

 Measured qubit coupled to a pumped resonator <u>and</u> a detuned neighboring qubit

- Simplified dispersive model, filter removed
- Effect of filter captured via effective κ_r and dispersive approximation

Measurement Error

Goal: distinguish $|00\rangle$ and $|10\rangle$ (|main,neighor \rangle) Excitation oscillates (or jumps) between qubits, $|10\rangle \leftrightarrow |01\rangle$ Excited main qubit state can be **misidentified** as its ground state

Question: What is this misidentification error if (a) the bare basis or (b) the eigenbasis is used for encoding?

Previous Work on Phase Qubits

In circuit QED measurement instead of tunneling rate Γ we have two parameters: measurement (dephasing) rate Γ and resonator leakage rate κ . Both of them happen to be important.

Alexander Korotkov

Modeling Resonator + Two Qubits

1. Treat resonator field classically: replace photon number operator with a stochastic classical field

$$a^{\dagger}a \rightarrow n(t) = \bar{n} + \delta n(t)$$

$$\langle \delta n(t) \delta n(t') \rangle = \bar{n}e^{-\kappa_r |t-t'|/2}$$

2. Write a fluctuating Hamiltonian: Hamiltonian for effective qubit (one excitation subspace) in the dispersive regime

$$H = H_0 + V(t) = \left(\frac{\Delta_0}{2} + \chi \bar{n}\right) \sigma_z + g(\sigma_+ + \sigma_-) + V(t)$$
$$V(t) = \chi \delta n(t) \sigma_z$$

$\Delta_0 = \omega_1 - \omega_2$	$\sigma_{z} = e\rangle\langle e - g\rangle\langle g $	
$v = \frac{g_r^2}{2}$	$\sigma_+ = e\rangle\langle g $	$ e\rangle = 10\rangle$ $ a\rangle = 01\rangle$
$\lambda = \sqrt{\Delta_1^2 + 4g_r^2 \bar{n}}$	$\sigma_{-} = g\rangle\langle e $	

Alexander Korotkov

Hamiltonian of the effective qubit

$$H_{0} = \begin{pmatrix} \Delta/2 & g \\ g & -\Delta/2 \end{pmatrix}$$

$$\Delta = \Delta_{0} + 2\chi \bar{n}$$
Eigenbasis
Eigenenergy
$$H = \begin{pmatrix} \Omega/2 & \delta g \\ \delta g & -\Omega/2 \end{pmatrix}$$

$$H = \begin{pmatrix} \Omega/2 & \delta g \\ \delta g & -\Omega/2 \end{pmatrix}$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} - \frac{\delta g}{\Omega - \Omega/2})$$

$$H = (\frac{\Omega/2}{\delta g} -$$

Switching rate in eigenbasis

- 1. Initially start at $|+\rangle$
- 2. Find population of the wrong state $|-\rangle$ after some time τ

$$\operatorname{Err}(\tau) = \left| \int_0^\tau \delta g(t) e^{i\Omega t} \mathrm{d}t \right|^2$$

- 3. Define switching rate as $\Gamma_{sw} = \lim_{\tau \to \infty} Err(\tau)/\tau$
- 4. Use spectral density of fluctuation δg to derive switching rate

$$\Gamma_{sw} = \Gamma \frac{2g^2}{\Omega^2} \frac{\kappa_r^2}{\kappa_r^2 + 4\Omega^2}$$
Dephasing rate: $\Gamma = \frac{8\chi^2 \bar{n}}{\kappa_r} = 1/2\tau_d$
Alexander Korotkov — University of California, Riverside

Simulation of the switching

- Switching produces ensemble dephasing in the effective qubit with rate $2\Gamma_{\!sw}$
- Dephasing can be simulated using master (Lindblad) equation of the total system (qubits, resonator, pump, and their interactions)

Analytics vs. numerics

Misidentification error due to switching

Minimum misidentification error

Minimum misidentification error when starting in the eigenbasis

$$P_{\text{eigen}} \simeq \left(\frac{g_q}{\Omega}\right)^2 \frac{\kappa_r^2}{\kappa_r^2 + 4\Omega^2} \ln\left[\left(\frac{\Omega}{g_q}\right)^2 \frac{\kappa_r^2 + 4\Omega^2}{3\kappa_r^2}\right]$$

Minimum misidentification error when starting in the bare basis

$$P_{\text{bare}} \simeq P_{\text{eigen}} + \left(\frac{g}{\Omega}\right)^2$$

 $\Omega = \sqrt{\Delta^2 + 4g^2}$ Always assume $g \ll \Delta, \Gamma_{meas} \ll \Delta$

Alexander Korotkov

Quantum Bayesian (trajectory) simulations for $\kappa \gg \Delta \gg \Gamma$

- For a wide linewidth resonator, P_{misID} can be simulated using quantum Bayesian update of states
- Simulation result shows excellent agreement with telegraph model

Alexander Korotkov University of California, Riverside

What is effective measurement basis?			
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $			
Regime	Measured Basis	Error comparison	
$(\Gamma, \kappa_r) \ll \Delta$	Eigenbasis	$P_{\rm eigen} \ll P_{\rm bare} \sim \left(\frac{g}{\Delta}\right)^2$	
$(\Gamma, \kappa_r) \gg \Delta$	Bare basis (textbook)	$P_{\text{bare}} \ll P_{\text{eigen}} \sim \left(\frac{g}{\Delta}\right)^2$	
$\Gamma \ll \Delta \ll \kappa_r$	Neither bare basis nor eigenbasis	$P_{\rm eigen} \sim P_{\rm bare} \sim \left(\frac{g}{\Delta}\right)^2$	
$\kappa_r \ll \Delta \ll \Gamma$	Not experimental	N/A	
Alexander Korotkov — University of California, Riverside —			

Conclusions

- Coupling between neighboring detuned qubits causes jumps (switching) of the excitation in the eigenbasis due to measurement, this leads to measurement error
- Fortunately, the switching rate is small if $\kappa <<\Delta$; then the measurement error can be much less than the "tail" $(g/\Delta)^2$
- Experimentally, using eigenbasis for encoding is much better than using bare basis; error difference is $(g/\Delta)^2$

Conclusions

- Coupling between neighboring detuned qubits causes jumps (switching) of the excitation in the eigenbasis due to measurement, this leads to measurement error
- Fortunately, the switching rate is small if $\kappa <<\Delta$; then the measurement error can be much less than the "tail" $(g/\Delta)^2$
- Experimentally, using eigenbasis for encoding is much better than using bare basis; error difference is $(g/\Delta)^2$

Thank you

