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Motivation
Self-generated squeezing 
in “Catch-Disperse-Release” 
qubit measurement

Sete, Galiautdinov, Mlinar, 

Martinis, and Korotkov, 

PRL-2013

Self-generated squeezing in usual cQED
qubit measurement at   𝑛 ≳ 𝑛crit𝜔𝑟 = 6 GHz, 𝜔𝑞 = 5 GHz

𝜂 = 250 MHz, g = 104 MHz
𝜅 = 5 MHz,  𝑛 𝑛crit = 4
Animations by Mostafa Khezri

Khezri and Korotkov, PRA-2017

 How this affects fidelity of qubit readout?

(transients are important)

 How to characterize propagating

squeezed field in transients? 

 𝑛 𝑛crit

Δ𝜔r
(MHz)

|0〉
|1〉
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Use of squeezed microwaves in 
superconducting circuits

 R. Movshovich, B. Yurke, P. Kaminsky, et al., PRL 1990 

 M. Castellanos-Beltran, … and K. Lehnert, Nature Phys. 2008 

 N. Bergeal, … R. Schoelkopf, S. Girvin, and M. Devoret, Nature 2010 

 N. Didier, A. Kamal, W. Oliver, A. Blais, and A. Clerk, PRL 2015 

 A. Eddins, … A. Clerk, and I. Siddiqi, PRL 2018 

 A. Bienfait, … D. Esteve, K. Mølmer, and P. Bertet, PRX 2017

 C. Eichler, … and A. Wallraff, PRL 2011

 E. Flurin, … M. Devoret, and B. Huard, PRL 2012

 D. Toyli, … W. Oliver, A. Blais, and I. Siddiqi, PRX 2016 

 C. Wilson, … F. Nori, and P. Delsing, Nature 2011

 P. Lähteenmäki, G. Paraoanu, J. Hassel, and P. Hakonen, PNAS 2013

 F. Mallet, … and K. Lehnert, PRL 2011

 S. Kono, … and Nakamura, PRL 2017 

 E. Wollman, … A. Clerk, and K. Schwab, Science 2015 (mechanical res.) 

 J. Clark, Lecocq, Simmonds, Aumentado, J. Teufel, Nature Phys. 2016
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Squeezing of intracavity field or mechanical 

resonator: undergraduate view

𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2𝜓

𝜕𝑥2
+

𝑚𝜔2𝑥2

2
𝜓

Solve (Gaussian initial state)

𝜓 =
𝑒−𝑖𝜙

4
2𝜋𝜎𝑔𝑟

2 𝐷

exp −
𝑥2 1 + 𝑖𝐵

4𝜎𝑔𝑟
2 𝐷

𝐷 𝑡 = 𝐷0 + Δ𝐷 cos(2𝜔𝑡 + 𝜃)

𝐵 𝑡 = Δ𝐷 sin(2𝜔𝑡 + 𝜃)

𝐷max 𝐷min = (𝐷0 + Δ𝐷)(𝐷0 − Δ𝐷) = 1

 𝜙 =  𝜔 2𝐷

Variance oscillates with 2𝜔
(as for classical fluctuations)

This is called “squeezed vacuum”

𝜓 𝑥 2

Im
𝛼

Re 𝛼
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Squeezing: undergraduate view (cont.)

𝜓 =
𝑒−𝑖𝜙

4
2𝜋𝜎𝑔𝑟

2 𝐷

exp −
𝑥 − 𝑥𝑐

2 1 + 𝑖𝐵

4𝜎𝑔𝑟
2 𝐷

exp(𝑖  𝑝𝑐𝑥 ℏ)

𝑥𝑐 𝑡 = 𝑋amp cos(𝜔𝑡 + 𝜑𝑐)

Center oscillates with 𝜔, 

variance oscillates with 2𝜔, 
oscillation phases are not related

Now “squeezed coherent state”: just add oscillation of the center

General Gaussian state: just construct density matrix 𝜌(𝑥, 𝑥′)
and Gaussian-average over the center; then 𝐷max𝐷min ≥ 1

Re 𝛼

Im
𝛼

𝑝𝑐 𝑡 = 𝑚  𝑥𝑐 = −𝑚𝜔𝑋amp sin(𝜔𝑡 + 𝜑𝑐)
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Usual squeezing generation: parametric drive
(nonlinear resonator and coherent drive later)

𝐻 = Ω 𝑎†𝑎 +
𝑖

4
[𝜀∗ 𝑡 𝑎2 − 𝜀 𝑡 𝑎†2]

Ω = 𝜔𝑟 − 𝜔𝑑, 𝜀 𝑡 = 𝜀 𝑡 𝑒𝑖𝜃(𝑡)

Physically, resonator frequency modulation: 

𝜔𝑟 𝑡 = 𝜔𝑟 − 𝜀 sin(2𝜔𝑑𝑡 − 𝜃)

Similar to child swing:

energy decay rate  𝜅 + |𝜀|
for quadrature phase 𝜃/2, 

𝜅 − |𝜀| for phase (𝜃 + 𝜋)/2

Do not consider instability:
only “squeezed vacuum”Easy to add “signal” via coherent drive 

(parametric amplifier)

mixer

Increased decay squeezes 

intracavity quadrature 𝜃/2
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How to think about propagating squeezed field?

Just anticorrelation of the amplifier noise! 

𝐻 = Ω 𝑎†𝑎 +
𝑖

4
[𝜀∗𝑎2 − 𝜀 𝑎†2]

Ω = 0,  𝜀 = const
Simplest case:

𝑓𝜑(𝑡) is measured 𝜑-quadrature 

signal (after mixer)

𝐾𝜑𝜑 𝜏 = 〈 𝑓𝜑 𝑡 𝑓𝜑(𝑡 + 𝜏) 〉

 Always 𝛿(𝜏)/4 noise at 𝜏 ≈ 0
(vacuum noise); more for 

an imperfect amplifier

 For quadrature 𝜑 = 𝜃/2, negative 

correlator for 𝜏 ≠ 0 (squeezing)  

 For 𝜑 = (𝜃 + 𝜋)/2,  positive 

correlator (anti-squeezing)

mixer

𝐾𝜑𝜑 𝜏

𝜅𝜏

1

4
𝛿 𝜏

squeezed

(negative)

𝜑 =  𝜃 2

𝜑 =  𝜃 2 +  𝜋 2

anti-squeezed

(positive)
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Why anticorrelation? Simple semiclassical theory 

𝐻 = Ω 𝑎†𝑎 +
𝑖

4
[𝜀∗𝑎2 − 𝜀 𝑎†2]

 𝛼 = −𝑖Ω𝛼 −
𝜅

2
𝛼 −

𝜀

2
𝛼∗ + 𝜅 𝑣(𝑡)

𝑓 = −𝑣(𝑡) + 𝜅 𝛼

𝑓𝜑 = Re(e−𝑖𝜑𝑓)

𝑣(𝑡) is classical complex noise 

𝑣 𝑡 𝑣∗ 𝑡′ =  𝑛𝑏 +  1 2 𝛿(𝑡 − 𝑡′)

𝑣 𝑡 𝑣 𝑡′ = 0  𝑛𝑏 =
1

exp  𝜔𝑟 𝑇 −1

Exact model for a linear resonator
(Wigner function can be interpreted as 

probability distribution, same eqs.)

Easy to generalize to nonlinear case

Similar to input-output theory

Alternatively, real noise 𝑣𝑞𝑢(𝑡) for 

any quadrature

𝑣𝑞𝑢 𝑡 𝑣𝑞𝑢 𝑡′ =
1+2  𝑛𝑏

4
𝛿(𝑡 − 𝑡′)

energy decay
𝜅 ± |𝜀|

𝛼 →  𝑎,  𝑓 →  𝑓,   𝑣 𝑡 →  𝑣(𝑡)

 𝑣 𝑡 ,  𝑣† 𝑡′ = 𝛿(𝑡 − 𝑡′)

transmission

reflection

 𝑣† 𝑡′  𝑣 𝑡 =  𝑛𝑏 𝛿(𝑡 − 𝑡′)
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Simplest case: no detuning, steady state

𝐻 =
𝑖

4
[𝜀∗𝑎2 − 𝜀 𝑎†2]

 𝛼 = −
𝜅 + 𝜀

2
𝛼 + 𝜅 𝑣𝑞𝑢(𝑡)

𝑓𝜑 = −𝑣𝑞𝑢(𝑡) + 𝜅 𝛼

quadrature 𝜑 = 𝜃/2 (everything is real)

𝑣𝑞𝑢 𝑡 𝑣𝑞𝑢 𝑡′ =
1

4
𝛿(𝑡 − 𝑡′)

𝑓𝜑 0 𝑓𝜑 𝜏 = 𝜅 𝛼 0 𝛼 𝜏

− 𝜅 〈𝑣𝑞𝑢 0 𝛼 𝜏 〉

anticorrelation

𝛼 𝑡 = 𝜅  
−∞

𝑡

𝑣𝑞𝑢 𝑡′ 𝑒−(𝜅+ 𝜀 )(𝑡−𝑡′)/2 𝑑𝑡′

𝛼 0 𝛼(𝜏) =
𝜅

4(𝜅 + |𝜀|)
𝑒− 𝜅+|𝜀| 𝜏/2

𝑣𝑞𝑢 0 𝛼(𝜏) =
𝜅

4
𝑒− 𝜅+|𝜀| 𝜏/2

𝜏 > 0

𝑓𝜑 0 𝑓𝜑 𝜏 = −
𝜅 |𝜀|

4(𝜅 + |𝜀|)
𝑒− 𝜅+|𝜀| 𝜏/2

Anticorrelation (squeezing)

Similar for orthogonal (unsqueezed) 

quadrature, just  𝜀 → −|𝜀|

mixer
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Simplest case: no detuning, steady state (cont.)

𝐾𝜑𝜑 𝜏 = 〈 𝑓𝜑 𝑡 𝑓𝜑(𝑡 + 𝜏) 〉

𝐾𝜑𝜑 𝜏 =
𝛿(𝜏)

4
−

𝜅 𝜀

4𝜅+
𝑒−  𝜅+ 𝜏 2cos2 𝜑 −  𝜃 2 +

𝜅 𝜀

4𝜅−
𝑒−  𝜅− 𝜏 2sin2(𝜑 −  𝜃 2)

𝜅± = 𝜅 ± |𝜀|
Assume zero temperature

𝐾𝜑𝜑 𝜏

𝜅𝜏

1

4
𝛿 𝜏

squeezed

𝜑 =
𝜃

2

𝜑 =
𝜃

2
+

𝜋

2

anti-squeezed

Fourier transform of this correlator is called “squeezing spectrum” 

In transients, Fourier transform of 𝐾𝜑𝜑 𝑡1, 𝑡2 does not make much sense

Easy to include detuning (longer formulas) 
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General case (transients)

𝐾𝜑1𝜑2
𝑡1, 𝑡2 = 〈 𝑓𝜑1

𝑡1 𝑓𝜑2
(𝑡2) 〉

𝐻 = Ω(𝑡) 𝑎†𝑎 +
𝑖

4
[𝜀∗ 𝑡 𝑎2 − 𝜀 𝑡 𝑎†2]

Amplified/measured quadrature 

may change in time

This is what we need for noise 

of integrated weighted signal 

The same simple semiclassical theory

 𝛼 = −𝑖Ω𝛼 −
𝜅

2
𝛼 −

𝜀

2
𝛼∗ + 𝜅 𝑣

𝑓 = −𝑣 + 𝜅 𝛼

𝑓𝜑 = Re(e−𝑖𝜑𝑓)

Dependence on quadratures: 4 real parameters 

𝐾𝜑1𝜑2
𝑡1, 𝑡2 =  Re[𝐾𝑓𝑓 𝑡1, 𝑡2 𝑒−𝑖 𝜑1+𝜑2 + 𝐾𝑓𝑓∗ 𝑡1, 𝑡2 𝑒−𝑖 𝜑1−𝜑2 ] 2

𝐾𝑓𝑓 𝑡1, 𝑡2 = 〈𝑓 𝑡1 𝑓(𝑡2)〉

𝐾𝑓𝑓∗ 𝑡1, 𝑡2 = 〈𝑓 𝑡1 𝑓∗(𝑡2)〉

(only 3 parameters in a steady state, as for ellipse in phase space)
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Main result for squeezing in transients

After some algebra we obtain

𝐻 = Ω(𝑡) 𝑎†𝑎 +
𝑖

4
[𝜀∗ 𝑡 𝑎2 − 𝜀 𝑡 𝑎†2]

𝑑

𝑑𝑡2

𝐾𝑓𝑓(𝑡1, 𝑡2)

𝐾𝑓𝑓∗(𝑡1, 𝑡2)
=

−𝑖Ω −  𝜅 2 −  𝜀 (𝑡2) 2

−  𝜀∗(𝑡2) 2 𝑖Ω −  𝜅 2

𝐾𝑓𝑓(𝑡1, 𝑡2)

𝐾𝑓𝑓∗(𝑡1, 𝑡2)

Initial condition: from intracavity squeezing 

𝐾𝑓𝑓(𝑡1, 𝑡1)

𝐾𝑓𝑓∗(𝑡1, 𝑡1)
= 𝜅

〈𝛼2 𝑡1 〉

𝛼 𝑡1
2 − (  1 2 +  𝑛𝑏)

Evolution of intracavity squeezing (equiv. to Khezri and Korotkov, 2017): 

𝑑

𝑑𝑡
〈𝛼2〉 = −2𝑖Ω − 𝜅 𝛼2 − 𝜀〈 𝛼 2〉

𝑑

𝑑𝑡
〈|𝛼|2〉 = −𝜅 |𝛼|2 − Re 𝜀∗ 𝛼2 + 𝜅( 𝑛𝑏 +  1 2)

Easy-to-solve (at least numerically) differential equations
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Alternative approaches

1. Input-output formalism

𝐻 = Ω(𝑡) 𝑎†𝑎 +
𝑖

4
[𝜀∗ 𝑡 𝑎2 − 𝜀 𝑡 𝑎†2]

The same result

Actually, we did not check, just proved exact equivalence 

The proof shows that intracavity state remains Gaussian    

(if vacuum in a distant past; would not work for a “cat” state)

2. Quantum Bayesian  formalism

The same result

Very different approach: no vacuum noise, small random “kicks” 

of intracavity Gaussian state due to information from continuous 

(noisy) measurement 
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Special case: steady state

𝐻 = Ω 𝑎†𝑎 +
𝑖

4
[𝜀∗ 𝑎2 − 𝜀 𝑎†2]

To remind, 

𝐾𝑓𝑓 0, 𝜏

1 + 2 𝑛𝑏
= −

𝜅𝜀

4
1 −

2𝑖Ω

𝜖

𝑒−𝜅−|𝜏|/2

𝜅−
+ 1 +

2𝑖Ω

𝜖

𝑒−𝜅+|𝜏|/2

𝜅+

𝜅± = 𝜅 ± 𝜖,       𝜖 = 𝜀 2 − 4Ω2 if  Ω <  |𝜀| 2 (overdamped case)

𝐾𝑓𝑓∗ 0, 𝜏

1 + 2 𝑛𝑏
=

𝛿(𝜏)

2
+

𝜅 𝜀 2

4𝜖

𝑒−  𝜅− 𝜏 2

𝜅−
−

𝑒−  𝜅+ 𝜏 2

𝜅+

𝜖 = 𝑖 4Ω2 − 𝜀 2 if  Ω >  |𝜀| 2 (underdamped)

𝐾𝜑1𝜑2
0, 𝜏 =

1

2
Re[𝐾𝑓𝑓 0, 𝜏 𝑒−𝑖 𝜑1+𝜑2 + 𝐾𝑓𝑓∗ 0, 𝜏 𝑒−𝑖 𝜑1−𝜑2 ]

We see that in steady state,  𝐾𝑓𝑓∗ 0, 𝜏 is always real (3 parameters instead of 4)  

Therefore, same-quadrature description (ellipse)  𝐾𝜑𝜑(0, 𝜏) is sufficient, 

in contrast to the transient regime.

The same relation (3 vs. 4 parameters) for integrated signal or Fourier transform.
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Simple generalizations

Then correlators  𝐾𝜑1𝜑2
𝑡1, 𝑡2 are multiplied by 𝜅out/𝜅,

except singularity at 𝑡1 ≈ 𝑡2, which stays the same  

1. 𝜅out < 𝜅 (extra decay in the resonator)

mixer

𝜅out𝜅

2. Phase-preserving amplifier (instead of phase-sensitive ampl.) 

Then correlators  𝐾𝜑1𝜑2
𝑡1, 𝑡2 do not change at  𝑡1 ≠ 𝑡2,                 

while singularity 𝛿(𝑡1 − 𝑡2)/4 is doubled, → 𝛿(𝑡1 − 𝑡2)/2

(even more, 𝛿(𝑡1 − 𝑡2)/4𝜂 for inefficient amplifier)
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Example (experimental proposal)

Another form for output-signal correlator:

𝑓𝜑1
𝑡1 𝑓𝜑2

𝑡2 = 𝐴 cos 𝜑1 − 𝜙 cos(𝜑2−𝜓) + 𝐵 sin 𝜑1 − 𝜙 sin(𝜑2 − 𝜓)

𝜀 = 0.25 𝜅
Ω = 0

In the steady state 𝜙 = 𝜓, only 3 real parameters (instead of 4)

OK to use phase-preserving amplifier

no detuning,

Ω = 0

steady: 𝜙 = 𝜓 =  𝜃/2

transient: 𝜙 ≠ 𝜓
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Generalization: nonlinear resonator, 
parametric and coherent drives

𝐻 =  𝑛 𝐸 𝑛 𝑛 𝑛 +
𝑖

4
𝜀∗ 𝑡 𝑎2 − 𝜀 𝑡 𝑎†2 + 𝜀𝑐

∗ 𝑡 𝑎 + 𝜀𝑐 𝑡 𝑎†

𝐸 𝑛 =  𝑘=0
𝑛−1 [𝜔𝑟 𝑛 − 𝜔rf]

Idea: separate “center” and fluctuations, linearize fluctuations near the center 

𝛼 𝑡 = 𝛼𝑐 𝑡 + 𝛿𝛼(𝑡) 𝑓 𝑡 = 𝑓𝑐 𝑡 + 𝛿𝑓(𝑡)

 𝛼𝑐 = −𝑖 𝜔𝑟 𝛼𝑐
2 − 𝜔rf 𝛼𝑐 −

𝜅

2
𝛼𝑐 −

𝜀

2
𝛼𝑐

∗ − 𝑖𝜀𝑐

For fluctuations, the same equations as in the linear case with substitutions: 

Ω → 𝜔𝑟 𝛼𝑐
2 − 𝜔rf +

𝑑𝜔𝑟 𝑛

𝑑𝑛
 
𝑛= 𝛼𝑐

2
𝛼𝑐

2

𝜀 → 𝜀 + 2𝑖
𝑑𝜔𝑟 𝑛

𝑑𝑛
 
𝑛= 𝛼𝑐

2
𝛼𝑐

2

Now the semiclassical theory is not exact, needs Gaussian approximation (linearization)

(not clear how to write quantum theory with arbitrary nonlinearity)

This is what is needed 

for cQED qubit readout  

and parametric amplifier
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Conclusions

 Proper way to characterize a propagating squeezed 

microwave is via two-time correlators of measured 

quadrature signals with changing quadrature phases

 Simple semiclassical formalism to calculate 

correlators in transients (exact for linear resonator, 

Gaussian approximation for a nonlinear resonator) 

 Important for qubit measurement, simple way to 

analyze parametric amplifiers

 4 parameters in transients, instead of 3 parameters 

(traditional ellipse) in the steady state 

 Simple to check experimentally 

Atalaya, Khezri, and Korotkov, arXiv:1804.08789




