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Continuous measurement of qubits 
(and possible applications)

Outline: • Quantum Bayesian theory for continuous 
measurement of a qubit

• Roles of two quadratures in circuit QED setup

• Short review of first experiments

• Correlators in simultaneous measurement of          
non-commuting observables of a qubit 

• Bacon-Shor code operating with continuous meas.

• Arrow of time in continuous measurement of a qubit
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Various approaches to non-projective (weak, continuous, 
partial, generalized, etc.) quantum measurements 

Key words: POVM, restricted path integral, quantum trajectories, quantum
filtering, quantum jumps, stochastic master equation, etc.

Names: Davies, Kraus, Holevo, Mensky, Caves, Knight, Walls,
Carmichael, Milburn, Wiseman, Aharonov, Molmer, Gisin,
Percival, Belavkin, … (very incomplete list)

solid-state qubit

detector
classical output

We consider:

What is “inside” collapse? 
What if collapse is stopped half-way?

Quantum Bayesian approach
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Quantum Bayesian formalism for qubit meas.

(A.K., 1998)

Qubit evolution due to measurement 
(informational back-action)

So simple because: 
1) no entanglement at large QPC voltage
2) QPC is ideal detector
3) no other evolution of qubit

1)  𝛼𝛼 𝑡𝑡 2 and 𝛽𝛽 𝑡𝑡 2 evolve as probabilities, 
i.e. according to the Bayes rule (same for 𝜌𝜌𝑖𝑖𝑖𝑖)

2)  phases of 𝛼𝛼 𝑡𝑡 and 𝛽𝛽 𝑡𝑡 do not change 
(no dephasing!),  ⁄𝜌𝜌𝑖𝑖𝑖𝑖 𝜌𝜌𝑖𝑖𝑖𝑖𝜌𝜌𝑖𝑖𝑖𝑖 = const

V
I(t)

|𝟏𝟏〉
|𝟎𝟎〉qubit

(double Qdot)

detector 
(quantum point contact)

𝜓𝜓 𝑡𝑡 = 𝛼𝛼 𝑡𝑡 0 + 𝛽𝛽 𝑡𝑡 1 or   𝜌𝜌𝑖𝑖𝑖𝑖(𝑡𝑡)

Bayes rule (1763, Laplace-1812):

likelihoodposterior
probability

prior
probab.

𝑃𝑃 𝐴𝐴𝑖𝑖 res =
𝑃𝑃 𝐴𝐴𝑖𝑖 𝑃𝑃(res|𝐴𝐴𝑖𝑖)

norm

𝐼𝐼0 𝐼𝐼1 measured̅𝐼𝐼m =
∫0
𝑡𝑡 𝐼𝐼 𝑡𝑡′ 𝑑𝑑𝑡𝑡𝑑

𝑡𝑡

̅𝐼𝐼m𝑃𝑃( ̅𝐼𝐼|0)
𝑃𝑃( ̅𝐼𝐼|1)

𝑃𝑃 ̅𝐼𝐼 = 𝜌𝜌00 0 𝑃𝑃 ̅𝐼𝐼 0 + 𝜌𝜌11 0 𝑃𝑃( ̅𝐼𝐼|1)
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Further steps in quantum Bayesian formalism

1. Informational (“spooky”, quantum) back-action,  × likelihood

I(t)

|1〉
|0〉 𝛼𝛼 𝑡𝑡 0 + 𝛽𝛽 𝑡𝑡 1

𝐼𝐼0 𝐼𝐼1 measured̅𝐼𝐼m =
∫0
𝑡𝑡 𝐼𝐼 𝑡𝑡′ 𝑑𝑑𝑡𝑡𝑑

𝑡𝑡

̅𝐼𝐼m𝑃𝑃( ̅𝐼𝐼|0) 𝑃𝑃( ̅𝐼𝐼|1)

𝜓𝜓 𝑡𝑡 =
𝑃𝑃 ̅𝐼𝐼m 0 𝛼𝛼 0 0 + 𝑃𝑃 ̅𝐼𝐼m 1 𝛽𝛽 0 1

norm
2. Add unitary (phase) back-action, physical mechanisms for QPC and cQED

𝜓𝜓 𝑡𝑡 =
𝑃𝑃 ̅𝐼𝐼m 0 exp 𝑖𝑖𝑖𝑖 ̅𝐼𝐼m − 𝐼𝐼0 + 𝐼𝐼1

2 𝛼𝛼 0 0 + 𝑃𝑃 ̅𝐼𝐼m 1 𝛽𝛽(0) 1

norm
3. Add detector non-ideality (equivalent to dephasing)

𝜌𝜌𝑖𝑖𝑖𝑖 𝑡𝑡 =
𝑃𝑃 ̅𝐼𝐼m 𝑖𝑖 𝜌𝜌𝑖𝑖𝑖𝑖 0

norm
,

𝜌𝜌𝑖𝑖𝑖𝑖 𝑡𝑡

𝜌𝜌01 𝑡𝑡
𝜌𝜌00 𝑡𝑡 𝜌𝜌11 𝑡𝑡

=
𝑒𝑒𝑖𝑖𝑖𝑖( ̅𝐼𝐼m−

𝐼𝐼0+𝐼𝐼1
2 )𝜌𝜌01 0

𝜌𝜌00 0 𝜌𝜌11 0
exp(−𝛾𝛾𝑡𝑡)

𝛾𝛾 = Γ −
Δ𝐼𝐼 2

4𝑆𝑆𝐼𝐼
−
𝑖𝑖2𝑆𝑆𝐼𝐼

4
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Further steps in quantum Bayesian formalism

4. Take derivative over time (if differential equation is desired)

𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑡𝑡

=
𝑑𝑑 𝑡𝑡 + ⁄𝑑𝑑𝑡𝑡 2 − 𝑑𝑑(𝑡𝑡 − 𝑑𝑑𝑡𝑡/2)

𝑑𝑑𝑡𝑡

Simple, but be careful about definition of derivative

Stratonovich form
preserves usual calculus

𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑡𝑡

=
𝑑𝑑 𝑡𝑡 + 𝑑𝑑𝑡𝑡 − 𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡
Ito form requires special calculus, 

but keeps averages

5. Add Hamiltonian evolution (if any) and additional decoherence (if any) 

Standard terms

Steps 1–5 form the quantum Bayesian approach to qubit measurement

(A.K., 1998—2001)
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Generalization: measurement of operator 𝑨𝑨
“Informational” quantum Bayesian in differential (Ito) form:

𝐼𝐼 𝑡𝑡 = Tr 𝐴𝐴𝜌𝜌 + ⁄𝑆𝑆 2 𝜉𝜉(𝑡𝑡) noisy detector output 

𝜉𝜉 𝑡𝑡 𝜉𝜉 𝑡𝑡′ = 𝛿𝛿(𝑡𝑡 − 𝑡𝑡′) normalized white noise 

𝑆𝑆: spectral density of the output noise 

�̇�𝜌 =
𝐴𝐴𝜌𝜌𝐴𝐴 − ⁄(𝐴𝐴2𝜌𝜌 + 𝜌𝜌𝐴𝐴2) 2

2𝜂𝜂𝑆𝑆 +
𝐴𝐴𝜌𝜌 + 𝜌𝜌𝐴𝐴 − 2𝜌𝜌Tr (𝐴𝐴𝜌𝜌)

2𝑆𝑆
𝜉𝜉(𝑡𝑡)

With additional unitary (Hamiltonian) back-action 𝐵𝐵 and additional evolution

�̇�𝜌 = ℒ 𝜌𝜌 +
𝐴𝐴𝜌𝜌 + 𝜌𝜌𝐴𝐴 − 2𝜌𝜌Tr (𝐴𝐴𝜌𝜌)

2𝑆𝑆
𝜉𝜉 𝑡𝑡 − 𝑖𝑖 𝐵𝐵,𝜌𝜌

1
2𝑆𝑆

𝜉𝜉 𝑡𝑡

ℒ[𝜌𝜌]: ensemble-averaged (Lindblad) evolution

𝜂𝜂: quantum efficiency

The same as in the Quantum Trajectory theory (Wiseman, Milburn, …)
Nowadays “quantum trajectories“ often mean Bayesian real-time monitoring

𝐼𝐼1 𝐼𝐼2 𝐼𝐼𝑘𝑘

̅𝐼𝐼m

𝐼𝐼3
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Quantum trajectory theory
H. J. Carmichael, 1993

H.-S. Goan and G. J. Milburn, 2001
H.-S. Goan, G. J. Milburn, H. M. Wiseman, 

and H. B. Sun, 2001 

optics

Essentially the same thing, but look different

H. M. Wiseman and G. J. Milburn, 1993

solid-state, 
quantum point contact

J. Gambetta, A. Blais, M. Boissonneault, A. A. Houck, 
D. I. Schuster, and S. M. Girvin,  2008   

circuit QED

Relation between Quantum Trajectory and Quantum Bayesian formalisms 

Quantum trajectory theory uses mathematical language (superoperators), 
quantum Bayesian theory uses simple physical approach (undergraduate-level)

Another meaning of “quantum trajectories“: real-time monitoring of evolution
(often done by quantum Bayesian theory)

Computationally, Bayesian theory is usually better (more than first-order)
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𝑃𝑃𝑟𝑟 = 𝑀𝑀𝑟𝑟𝜓𝜓 2

Measurement (Kraus) operator 
𝑀𝑀𝑟𝑟 (any linear operator in H.S.) :

Quantum measurement in POVM formalism

Completeness :

Probability :

or

or

(People often prefer linear evolution
and non-normalized states)

Relation between POVM and quantum Bayesian formalism

polar decomposition:

Bayesunitary

(Nielsen-Chuang, pp. 85, 100)

Davies, Kraus, Holevo, etc.
system ancilla

𝜓𝜓 →
𝑀𝑀𝑟𝑟𝜓𝜓

| 𝑀𝑀𝑟𝑟𝜓𝜓 |
𝜌𝜌 →

𝑀𝑀𝑟𝑟𝜌𝜌𝑀𝑀𝑟𝑟
†

Tr(𝑀𝑀𝑟𝑟
†𝑀𝑀𝑟𝑟𝜌𝜌)

∑𝑟𝑟𝑀𝑀𝑟𝑟
†𝑀𝑀𝑟𝑟 = 1

𝑃𝑃𝑟𝑟 = Tr(𝑀𝑀𝑟𝑟
† 𝑀𝑀𝑟𝑟𝜌𝜌)

𝑀𝑀𝑟𝑟 = 𝑈𝑈𝑟𝑟 𝑀𝑀𝑟𝑟
† 𝑀𝑀𝑟𝑟

(steps 1 and 2 above)
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𝜌𝜌01 𝜏𝜏 = 𝜌𝜌01 0
𝜌𝜌00 𝜏𝜏 𝜌𝜌11 𝜏𝜏
𝜌𝜌00 0 𝜌𝜌11 0 exp 𝑖𝑖𝑖𝑖 ̅𝐼𝐼m𝜏𝜏

Quantum Bayesian theory for circuit QED setup

A. Blais et al., PRA 2004
A. Wallraff et al., Nature 2004
J. Gambetta et al., PRA 2008

|0〉

|1〉
Two quadratures: 
1) information on qubit state

⇒ informational back-action
2) information on fluct. photon number

⇒ unitary (phase) back-action

unitaryBayes

̅𝐼𝐼m = 𝜏𝜏−1 ∫0
𝜏𝜏 𝐼𝐼 𝑡𝑡 𝑑𝑑𝑡𝑡 𝐷𝐷 = 𝑆𝑆𝐼𝐼/2𝜏𝜏

𝐼𝐼0 − 𝐼𝐼1 = Δ𝐼𝐼 cos𝜑𝜑 𝑖𝑖 = ⁄Δ𝐼𝐼 sin𝜑𝜑 𝑆𝑆𝐼𝐼

Γ =
Δ𝐼𝐼 cos𝜑𝜑 2

4𝑆𝑆𝐼𝐼
+ 𝑖𝑖2 𝑆𝑆𝐼𝐼

4
=
Δ𝐼𝐼2

4𝑆𝑆𝐼𝐼
=

8𝜒𝜒2 �𝑛𝑛
𝜅𝜅

𝐼𝐼0 𝐼𝐼1
𝑃𝑃( ̅𝐼𝐼m|0) 𝑃𝑃( ̅𝐼𝐼m|1)

𝑃𝑃 ̅𝐼𝐼m = 𝜌𝜌00 0 𝑃𝑃 ̅𝐼𝐼m 0 + 𝜌𝜌11 0 𝑃𝑃 ̅𝐼𝐼m 1

A.K., arXiv:1111.4016

ϕ

Amplified phase ϕ controls trade-off between 
informational and phase back-actions (we 
choose if photon number fluctuates or not)

qubit
(transmon)

resonator

amplifier
microwave
generator

mixer

output (two
quadratures)

ωd ωr±χ

homodyne meas.

𝜅𝜅 phase-sensitive

𝜌𝜌11(𝜏𝜏)
𝜌𝜌00(𝜏𝜏) =

𝜌𝜌11 0 exp[− ⁄̅𝐼𝐼m − 𝐼𝐼1 2 2𝐷𝐷]
𝜌𝜌00 0 exp[− ⁄̅𝐼𝐼m − 𝐼𝐼0 2 2𝐷𝐷]
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Causality in quantum mechanics

Ensemble-averaged evolution 
cannot be affected back in time 

(single realization can be affected)

qubit

resonator
paramp

µwave
gen.

mixerωd ωr

|0〉

|1〉
•

•

•
We can choose direction of qubit evolution 
to be either along parallel or along meridian 
or in between (delayed choice)

Expt. confirmation: K. Murch et al., Nature 2013

A.K., arXiv:1111.4016
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Beyond the “bad-cavity” limit

|. . (𝑡𝑡 − 3Δ𝑡𝑡)〉qubit

resonator
amp

µwave
gen.

mixer
ωr

|𝛼𝛼0(𝑡𝑡)〉
|. . (𝑡𝑡 − Δ𝑡𝑡)〉 |. . (𝑡𝑡 − 2Δ𝑡𝑡)〉 |. . (𝑡𝑡 − 3Δ𝑡𝑡)〉

A.K., PRA 2016

|. . (𝑡𝑡 − Δ𝑡𝑡)〉 |. . (𝑡𝑡 − 2Δ𝑡𝑡)〉
|𝛼𝛼1(𝑡𝑡)〉

“history tail”

measure

κ

𝜌𝜌11 𝑡𝑡 + Δ𝑡𝑡
𝜌𝜌00 𝑡𝑡 + Δ𝑡𝑡

=
𝜌𝜌11 𝑡𝑡
𝜌𝜌00 𝑡𝑡

exp 𝐼𝐼𝑚𝑚 cos𝜙𝜙𝑑𝑑 ⁄Δ𝐼𝐼max 𝐷𝐷
∆Imax: max response 
D: noise variance
φd: angle from optimal quadrature

�𝜌𝜌 𝑡𝑡 = ∑𝑖𝑖,𝑘𝑘=0,1 𝜌𝜌𝑖𝑖𝑘𝑘 𝑡𝑡 𝑗𝑗 𝑘𝑘 ⨂ |𝛼𝛼𝑖𝑖 𝑡𝑡 〉 〈𝛼𝛼𝑘𝑘(𝑡𝑡)|

𝜌𝜌10 𝑡𝑡 + Δ𝑡𝑡
𝜌𝜌10 𝑡𝑡

=
𝜌𝜌11 𝑡𝑡 + Δ𝑡𝑡 𝜌𝜌00 𝑡𝑡 + Δ𝑡𝑡

𝜌𝜌11 𝑡𝑡 𝜌𝜌00 𝑡𝑡
exp(−𝛾𝛾Δ𝑡𝑡)

× exp −𝑖𝑖𝛿𝛿𝜔𝜔acStarkΔ𝑡𝑡 exp −𝑖𝑖𝐼𝐼𝑚𝑚 sin𝜙𝜙𝑑𝑑 ⁄Δ𝐼𝐼max 2𝐷𝐷
𝛾𝛾 = Γ − ⁄Δ𝐼𝐼max2 8𝐷𝐷Δ𝑡𝑡
𝜂𝜂 = ⁄(Γ − 𝛾𝛾) Γ

𝛿𝛿𝜔𝜔ac Stark = 𝜅𝜅 Im 𝛼𝛼1∗𝛼𝛼0 + Re 𝜀𝜀∗ 𝛼𝛼1 − 𝛼𝛼0 = 2𝜒𝜒Re(𝛼𝛼1∗𝛼𝛼0) − 𝑑𝑑
𝑑𝑑𝑡𝑡

Im(𝛼𝛼1∗𝛼𝛼0)

Γ = ⁄𝜅𝜅 2 𝛼𝛼1 − 𝛼𝛼0 2

The same quantum Bayesian approach, now applied to entangled qubit-resonator 
system (arbitrary 𝜅𝜅, classical equations for 𝛼𝛼𝑖𝑖(𝑡𝑡)) 

Equivalent to “polaron” approach in quantum trajectories, but
undergraduate-level derivation and possibly faster computationally 
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First experiments (superconducting qubits)

Partial collapse of phase qubit: the state remains pure, 
but evolves in accordance with acquired information

1. N. Katz, M. Ansmann, R. Bialczak, E. Lucero, R. McDermott, M. Neeley, 
M. Steffen, E. Weig, A. Cleland, J. Martinis, and A. Korotkov, Science 2006

2. N. Katz, M. Neeley, M. Ansmann, R. Bialzak, E. Lucero, A. O’Connell, H. Wang, 
A. Cleland, J. Martinis, and A. Korotkov, PRL 2008

Uncollapse: qubit state is restored if classical information 
is erased (two POVMs cancel each other). Phase qubit

3. A.Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve,
and A. Korotkov, Nature Phys. 2010

Continuous monitoring of Rabi oscillations (Rabi oscillations 
do not decay in time). Transmon, circuit QED

4. R. Vijay, C. Macklin, D. Slichter, S. Weber, K. Murch, R. Naik, A. Korotkov, 
and I. Siddiqi, Nature 2012

Quantum feedback of Rabi oscillations: maintaining 
desired phase forever. Transmon, phase-sensitive amp.

Y. Zhong, … H. Wang, Nature Comm. 2014  T1 increased 3x
Z. Minev, … M. Devoret, arXiv 2018   q. jump mid-flight

further develop.
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First experiments (cont.)

Direct check of quantum back-action for measurement 
of a qubit. Phase-preserving amplifier. 

5. M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, 
K. Sliwa, B. Abdo, L. Frunzio, S. Girvin, R. Schoelkopf, M. Devoret, Science 2013

6. K. Murch, S. Weber, C. Macklin, and I. Siddiqi, Nature 2013

Direct check of individual quantum trajectories 
against quantum Bayesian theory. 
Phase-sensitive amplifier. 

Many more experiments since then, including 2-qubit entanglement by 
continuous measurement (in one resonator and in remote resonators), 
qubit lifetime increase by uncollapse, phase feedback, and 
simultaneous measurement of non-commuting observables 

Practicaly all our proposals have been realized 

Still no experiments with semiconductors. Who will be the first?
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Possible applications of continuous 
quantum measurement

- Quantum feedback 

- Continuous quantum error correction

- Better readout fidelity (continuous cQED measurement)

- Understanding of actual measurement (neighbors, etc.) 

- Entanglement (even remote) by measurement

- Parameter monitoring 

- Less disturbance from strong on/off controls
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Simultaneous measurement of            
non-commuting observables of a qubit

Ruskov, A.K., Molmer, PRL 2010

state purification simple monitoring

0 1 2
0.0

0.2

0.4

0.6

0.8

1.0
η = 1

η = 0.5

η = 0.1

pu
rit

y

time (t /τmeas )
0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

η = 0.5

η = 1

m
on

ito
rin

g 
fid

eli
ty

blue: rectangular

red: exponential 

η = 0.1

averaging time (τ/τmeas)  

windowmeas1 / 1 2η γτ= +

Measurement of three complementary observables for a qubit

Evolution:

Nothing forbids simultaneous continuous measurement of non-commuting observables

Very simple quantum Bayesian description: just add terms for evolution

Until very recently it was unclear how to realize experimentally

diffusion over 
Bloch sphere

𝑑𝑑𝑟𝑟
𝑑𝑑𝑡𝑡

= −2𝛾𝛾𝑟𝑟 + 𝑎𝑎{𝑢𝑢 𝑡𝑡 1 − 𝑟𝑟2 − 𝑟𝑟 × 𝑟𝑟 × 𝑢𝑢 𝑡𝑡 }
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Simultaneous measurement of 𝝈𝝈𝒙𝒙 and 𝝈𝝈𝒛𝒛
S. Hacohen-Gourgy, L. Martin, E. Flurin, 
V. Ramasesh, B. Whaley, and I. Siddiqi, 
Nature 2016 

• Measurement in rotating frame of 
fast Rabi oscillations (40 MHz)

• Double-sideband rf wave modulation
with the same frequency

• Two resonator modes for two channels

ΩRabi = ΩSB = 2𝜋𝜋 × 40 MHz
⁄𝜅𝜅 2𝜋𝜋 = 4.3 and 7.2 MHz
Γ1−1 = Γ2−1 = 1.3 µs

Actually, any 𝜎𝜎𝑧𝑧 cos𝜑𝜑 + 𝜎𝜎𝑥𝑥 sin𝜑𝜑

quantum trajectory theory for simulations

𝚪𝚪 ≪ 𝜿𝜿 ≪ 𝛀𝛀𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑
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Simple physical picture

Physical qubit (Rabi Ω𝑅𝑅)
𝑧𝑧ph 𝑡𝑡 = 𝑟𝑟0 cos(Ω𝑅𝑅𝑡𝑡 + 𝜙𝜙0)

This modulates resonator frequency

𝜔𝜔𝑟𝑟 𝑡𝑡 = 𝜔𝜔𝑟𝑟𝑏𝑏 + 𝜒𝜒𝑟𝑟0 cos(Ω𝑅𝑅𝑡𝑡 + 𝜙𝜙0)

Drive with modulated amplitude
𝐴𝐴 𝑡𝑡 = 𝜀𝜀 sin(Ω𝑅𝑅𝑡𝑡 + 𝜑𝜑)

Then evolution of field 𝛼𝛼(𝑡𝑡) is

�̇�𝛼 = −𝑖𝑖𝜒𝜒𝑟𝑟0 cos Ω𝑅𝑅𝑡𝑡 + 𝜙𝜙0 𝛼𝛼

−𝑖𝑖𝜀𝜀 sin Ω𝑅𝑅𝑡𝑡 + 𝜑𝜑 −
𝜅𝜅
2
𝛼𝛼

Now solve this differential equation

Fast oscillations (neglect 𝜅𝜅)
Δ𝛼𝛼 𝑡𝑡 = 𝑖𝑖

𝜀𝜀
Ω𝑅𝑅

cos Ω𝑅𝑅𝑡𝑡 + 𝜑𝜑

𝜔𝜔𝑟𝑟

qubit
𝜔𝜔𝑟𝑟 ± Ω𝑅𝑅 𝛼𝛼 𝑡𝑡 𝜅𝜅

Rabi Ω𝑅𝑅
𝜅𝜅 ≪ Ω𝑅𝑅

rel. phase 𝜑𝜑

Insert, then slow evolution is

�̇�𝛼𝑠𝑠 =
𝜒𝜒𝜀𝜀

2Ω𝑅𝑅
𝑟𝑟0 cos 𝜙𝜙0 − 𝜑𝜑 −

𝜅𝜅
2
𝛼𝛼𝑠𝑠

Thus, slow evolution is determined 
by effective qubit (in rotating frame),
𝑧𝑧 = 𝑟𝑟0 cos 𝜙𝜙0 , 𝑥𝑥 = 𝑟𝑟0 sin 𝜙𝜙0 , 𝑦𝑦 = 𝑦𝑦0,

measured along axis 𝜑𝜑 (basis |1𝜑𝜑〉, |0𝜑𝜑〉) 
𝑟𝑟0cos 𝜙𝜙0 − 𝜑𝜑 = Tr[𝜎𝜎𝜑𝜑𝜌𝜌]
𝜎𝜎𝜑𝜑 = 𝜎𝜎𝑧𝑧 cos𝜑𝜑 + 𝜎𝜎𝑥𝑥 sin𝜑𝜑

J. Atalaya, S. Hacohen-Gourgy, L. Martin, 
I. Siddiqi, and A.K., arXiv:1702.08077 

𝑥𝑥ph 𝑡𝑡 = 𝑟𝑟0 sin(Ω𝑅𝑅𝑡𝑡 + 𝜙𝜙0)
𝑦𝑦ph 𝑡𝑡 = 𝑦𝑦0

Stationary state 𝛼𝛼st,1 = −𝛼𝛼st,0 =
𝜒𝜒𝜀𝜀
Ω𝑅𝑅𝜅𝜅

From this point, usual Bayesian theory
More accurately, 𝜑𝜑 → 𝜑𝜑 + 𝜅𝜅/2Ω𝑅𝑅
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Correlators in simultaneous measurement 
of non-commuting qubit observables 

J. Atalaya, S. Hacohen-Gourgy, L. Martin, 
I. Siddiqi, and A.K., arXiv:1702.08077 

𝑖𝑖𝑖𝑖𝑖𝑖 𝜏𝜏 = 〈𝐼𝐼𝑖𝑖 𝑡𝑡 + 𝜏𝜏 𝐼𝐼𝑖𝑖 𝑡𝑡 〉

𝐼𝐼𝜑𝜑 𝑡𝑡 = Tr 𝜎𝜎𝜑𝜑𝜌𝜌 𝑡𝑡 + 𝜏𝜏𝜑𝜑 𝜉𝜉𝜑𝜑 𝑡𝑡

𝐼𝐼𝑧𝑧 𝑡𝑡 = Tr 𝜎𝜎𝑧𝑧𝜌𝜌 𝑡𝑡 + 𝜏𝜏𝑧𝑧 𝜉𝜉𝑧𝑧 𝑡𝑡

𝜎𝜎𝜑𝜑 = 𝜎𝜎𝑧𝑧 cos 𝜑𝜑 + 𝜎𝜎𝑥𝑥 sin𝜑𝜑

𝜏𝜏𝑧𝑧,𝜑𝜑: “measurement time” (SNR=1)

“Collapse recipe” (no phase back-action): replace continuous meas. with projective 
meas. at time moments 𝑡𝑡 and 𝑡𝑡 + 𝜏𝜏, use ensemble-averaged evolution in between 

(proof via Bayesian equations)

𝑖𝑖𝑧𝑧𝑧𝑧 𝜏𝜏 =
1
2 1 +

Γ𝑧𝑧 + cos 2𝜑𝜑 Γ𝜑𝜑
Γ+ − Γ−

𝑒𝑒−Γ−𝜏𝜏 +
1
2 1 −

Γ𝑧𝑧 + cos 2𝜑𝜑 Γ𝜑𝜑
Γ+ − Γ−

𝑒𝑒−Γ+𝜏𝜏

𝑖𝑖𝑧𝑧𝜑𝜑 𝜏𝜏 =
Γ𝑧𝑧 + Γ𝜑𝜑 cos𝜑𝜑 + 2�Ω𝑅𝑅 sin𝜑𝜑

Γ+ − Γ−
𝑒𝑒−Γ−𝜏𝜏 − 𝑒𝑒−Γ+𝜏𝜏 +

cos𝜑𝜑
2

𝑒𝑒−Γ−𝜏𝜏 + 𝑒𝑒−Γ+𝜏𝜏

Γ± = 1
2
Γ𝑧𝑧 + Γ𝜑𝜑 ± Γ𝑧𝑧2 + Γ𝜑𝜑2 + 2Γ𝑧𝑧Γ𝜑𝜑cos(2𝜑𝜑) − 4�Ω𝑅𝑅2

1/2 + ⁄1 2𝑇𝑇1 + ⁄1 2𝑇𝑇2

self-correlator

cross-correlator no dependence on initial state
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Comparison with experiment
Cross-correlators
for 11 values of 𝜑𝜑
between 0 and 𝜋𝜋

Self-correlators 

Good agreement

Maximally non-commuting: 
𝜑𝜑 = ⁄𝜋𝜋 2

𝛿𝛿𝜑𝜑 =
𝜅𝜅𝜑𝜑 − 𝜅𝜅𝑧𝑧

2Ω𝑅𝑅

Correction to angle:

200,000 experimental traces
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Parameter estimation via correlators
Rabi frequency mismatch:  �Ω𝑅𝑅 = Ω𝑅𝑅 − Ωsideband

Fitting: �ΩR = Ω𝑅𝑅 − Ωsideband ≈ 2𝜋𝜋 × 12 kHz

Very sensitive technique 
(Ω𝑅𝑅/2𝜋𝜋 = 40 MHz)

𝑖𝑖𝑧𝑧𝜑𝜑 𝜏𝜏 − 𝑖𝑖𝜑𝜑𝑧𝑧(𝜏𝜏) =
�Ω𝑅𝑅 sin 𝜑𝜑
Γ+ − Γ−

𝑒𝑒−Γ+𝜏𝜏 − 𝑒𝑒−Γ−𝜏𝜏

J. Atalaya, S. Hacohen-Gourgy, L. Martin, 
I. Siddiqi, and A.K., arXiv:1702.08077 
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Generalization to N-time correlators
J. Atalaya, S. Hacohen-Gourgy, L. Martin, 
I. Siddiqi, and A.K., PRA-2018 

𝑖𝑖𝑙𝑙1…𝑙𝑙𝑁𝑁 𝑡𝑡1, … 𝑡𝑡𝑁𝑁 = 〈𝐼𝐼𝑙𝑙𝑁𝑁 𝑡𝑡𝑁𝑁 … 𝐼𝐼𝑙𝑙2 𝑡𝑡2 𝐼𝐼𝑙𝑙1 𝑡𝑡1 〉
Many detectors, 𝑁𝑁 time moments

Surprising factorization:

𝑁𝑁 = 3 𝑁𝑁 = 4

good agreement with experiment

𝐼𝐼𝑙𝑙3 𝑡𝑡3 𝐼𝐼𝑙𝑙2 𝑡𝑡2 𝐼𝐼𝑙𝑙1 𝑡𝑡1 = 𝐼𝐼𝑙𝑙3 𝑡𝑡3 𝐼𝐼𝑙𝑙2 𝑡𝑡2 〉 × 〈𝐼𝐼𝑙𝑙1 𝑡𝑡1 ,

𝐼𝐼𝑙𝑙4 𝑡𝑡4 𝐼𝐼𝑙𝑙3 𝑡𝑡3 𝐼𝐼𝑙𝑙2 𝑡𝑡2 𝐼𝐼 𝑡𝑡1 = 𝐼𝐼𝑙𝑙4 𝑡𝑡4 𝐼𝐼𝑙𝑙3 𝑡𝑡3 〉 × 〈𝐼𝐼𝑙𝑙2 𝑡𝑡2 𝐼𝐼𝑙𝑙1 𝑡𝑡1 , etc.

The same collapse recipe works OK

(unital case)

non-commuting 
observables
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Correlators with phase backaction
J. Atalaya, S. Hacohen-Gourgy, I. Siddiqi, and A.K., in preparation

With phase backaction (𝜑𝜑 ≠ 0)Only informational backaction (𝜑𝜑 = 0)

𝑖𝑖𝑧𝑧𝑧𝑧 < 1

Bloch 
sphere evolution due to Rabi 

and dephasing

trajectory starts at 𝑧𝑧 = 1
for any initial state

𝑧𝑧

effective trajectory 
is always inside 
Bloch sphere 

phase-backaction kick:
�̂�𝑧 × 𝒓𝒓in tan𝜑𝜑

𝑧𝑧 trajectory starts 
outside Bloch sphere𝑖𝑖𝑧𝑧𝑧𝑧 > 1

effective trajectory can 
be outside  Bloch sphere     Bloch 

sphere

𝑖𝑖𝑧𝑧𝑧𝑧 𝜏𝜏 = 〈𝐼𝐼𝑧𝑧 𝜏𝜏 𝐼𝐼𝑧𝑧 0 〉 With phase backaction and Rabi oscillations, 
correlators may exceed 1

𝑖𝑖 𝑧𝑧
𝑧𝑧(
𝜏𝜏) 𝝋𝝋 = 𝟎𝟎

𝑑𝑑Rabi = 1 MHz, Γm = 1/1.6𝜇𝜇s
solid: expt, dashed: thy     

blue: 𝑥𝑥in = 1,  red: 𝑥𝑥in = −1
(initial state)

𝜏𝜏[𝜇𝜇s] 𝜏𝜏[𝜇𝜇s]

𝑖𝑖 𝑧𝑧
𝑧𝑧(
𝜏𝜏)

𝝋𝝋 = 𝟕𝟕𝟎𝟎

lines: theory 
symbols: expt.     

usual bound

𝐼𝐼 𝑡𝑡 = Tr[𝜎𝜎𝑧𝑧𝜌𝜌 𝑡𝑡 ] + 𝜉𝜉 𝑡𝑡
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Bacon-Shor code operating with continuous 
measurement of non-commuting operators

J. Atalaya, M. Bahrami, L. Pryadko, 
and  A.K., PRA 2017

Conventional Bacon-Shor codes 
operate by sequential measurement 
of non-commuting operators

Advantage: only two-qubit operators

Can they operate with simultaneous
continuous measurement of these   
non-commuting operators? 

Additional advantage: passive 
monitoring of errors

results ++ and - - are “good”

one cycle: 𝟐𝟐 𝚫𝚫𝒕𝒕

Conventional Bacon-Shor (subsystem) codes 

results + - and - + are “bad”

Step 1: 𝑍𝑍1𝑍𝑍4, 𝑍𝑍2𝑍𝑍5, 
𝑍𝑍3𝑍𝑍6, 𝑍𝑍4𝑍𝑍7, 
𝑍𝑍5𝑍𝑍8, 𝑍𝑍6𝑍𝑍9

Step 2: 𝑋𝑋1𝑋𝑋2, 𝑋𝑋4𝑋𝑋5,
𝑋𝑋7𝑋𝑋8, 𝑋𝑋2𝑋𝑋3, 
𝑋𝑋5𝑋𝑋6, 𝑋𝑋8𝑋𝑋9

quantum error detection q. error correction
D. Poulin, PRL 95, 230504 (2005) 
D. Bacon, PRA 73, 012340 (2006)
Aliferis, Cross, PRL 98, 220502 (2007)
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4-qubit Bacon-Shor code with continuous meas.

1 2

3 4

XX

XX
ZZ ZZ

All four operators are measured at the same time

𝐼𝐼𝑋𝑋1𝑋𝑋2 𝑡𝑡 = Tr 𝑋𝑋1𝑋𝑋2𝜌𝜌 𝑡𝑡 + 𝜉𝜉1 𝑡𝑡

𝐼𝐼𝑍𝑍1𝑍𝑍3 𝑡𝑡 = Tr 𝑍𝑍1𝑍𝑍3𝜌𝜌 𝑡𝑡 + 𝜉𝜉2 𝑡𝑡

𝐼𝐼𝑋𝑋3𝑋𝑋4 𝑡𝑡 = …

𝐼𝐼𝑍𝑍2𝑍𝑍4 𝑡𝑡 = …

Error syndromes are indicated by correlators (instead of ++/- - “good”, +-/-+ “bad”)

〈𝐼𝐼𝑋𝑋1𝑋𝑋2 𝑡𝑡 𝐼𝐼𝑋𝑋3𝑋𝑋4 𝑡𝑡 〉 and  〈𝐼𝐼𝑍𝑍1𝑍𝑍3 𝑡𝑡 𝐼𝐼𝑍𝑍2𝑍𝑍4 𝑡𝑡 〉 +1 “good”, -1 “bad” (error)

Fluctuations of 𝐶𝐶𝑋𝑋(𝑡𝑡) and 𝐶𝐶𝑍𝑍(𝑡𝑡) beyond threshold produce false alarms

𝐶𝐶𝑋𝑋 𝑡𝑡 = �
−∞

𝑡𝑡
𝑑𝑑𝑡𝑡′

1
𝑇𝑇𝑐𝑐
𝑒𝑒− 𝑡𝑡−𝑡𝑡′ /𝑇𝑇𝑐𝑐 �

−∞

𝑡𝑡′
𝑑𝑑𝑡𝑡′′

1
2𝜏𝜏𝑐𝑐

𝑒𝑒− 𝑡𝑡′−𝑡𝑡′′ /𝜏𝜏𝑐𝑐 [𝐼𝐼𝑋𝑋1𝑋𝑋2 𝑡𝑡′ 𝐼𝐼𝑋𝑋3𝑋𝑋4 𝑡𝑡′′ + sym]

Need to monitor correlators in real time, so time-averaging to reduce noise

𝐶𝐶𝑍𝑍 𝑡𝑡 = �
−∞

𝑡𝑡
𝑑𝑑𝑡𝑡′

1
𝑇𝑇𝑐𝑐
𝑒𝑒− 𝑡𝑡−𝑡𝑡′ /𝑇𝑇𝑐𝑐 �

−∞

𝑡𝑡′
𝑑𝑑𝑡𝑡′′

1
2𝜏𝜏𝑐𝑐

𝑒𝑒− 𝑡𝑡′−𝑡𝑡′′ /𝜏𝜏𝑐𝑐 [𝐼𝐼𝑍𝑍1𝑍𝑍3 𝑡𝑡′ 𝐼𝐼𝑍𝑍2𝑍𝑍4 𝑡𝑡′′ + sym]

Error criterion: either 𝐶𝐶𝑋𝑋 𝑡𝑡 or  𝐶𝐶𝑍𝑍 𝑡𝑡 become negative

So far we do not know how to realize,    
but X&Z and 2-qubit ZZ already realized  
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Use quantum Bayesian formalism
�̇�𝜌 = ∑𝑘𝑘

1
2
Γ𝑘𝑘 𝐺𝐺𝑘𝑘𝜌𝜌𝐺𝐺𝑘𝑘 − 𝜌𝜌 + 1

2 𝜏𝜏𝑘𝑘
𝐺𝐺𝑘𝑘𝜌𝜌 + 𝜌𝜌𝐺𝐺𝑘𝑘 − 2𝜌𝜌Tr 𝐺𝐺𝑘𝑘𝜌𝜌 𝜉𝜉𝑘𝑘 + ∑𝑖𝑖,𝐸𝐸 Γ𝑖𝑖

(𝐸𝐸)ℒ 𝐸𝐸𝑖𝑖 𝜌𝜌
measurement qubit errors (flips)(Ito form)

𝐺𝐺𝑘𝑘: measured operators (𝑘𝑘 = 1−4),  𝜏𝜏𝑘𝑘: “measurement” time, Γ𝑘𝑘: ensemble dephasing 
𝜂𝜂𝑘𝑘 = 1/2Γ𝑘𝑘𝜏𝜏𝑘𝑘: quantum efficiency, Γ𝑖𝑖

(𝐸𝐸): rate of error 𝐸𝐸 in 𝑖𝑖th qubit

Without qubit errors, logical qubit does not evolve, while gauge qubit evolves 
diffusively, exactly as in 1-qubit measurement of 𝜎𝜎𝑍𝑍 and 𝜎𝜎𝑋𝑋 ⇒ same correlators

𝛾𝛾𝑋𝑋 = 2𝑇𝑇𝑅𝑅[(Γ1𝑋𝑋+Γ2𝑋𝑋)(Γ3𝑋𝑋+Γ4𝑋𝑋) + Γ1𝑌𝑌Γ3𝑌𝑌 + Γ2𝑌𝑌Γ4𝑌𝑌]
Logical error rates

𝛾𝛾𝑍𝑍 = 2𝑇𝑇𝑅𝑅[(Γ1𝑍𝑍+Γ3𝑍𝑍)(Γ2𝑍𝑍+Γ4𝑍𝑍) + Γ1𝑌𝑌Γ2𝑌𝑌 + Γ3𝑌𝑌Γ4𝑌𝑌]

𝛾𝛾𝑌𝑌 = 2𝑇𝑇𝑅𝑅[Γ1𝑌𝑌Γ4𝑌𝑌 + Γ2𝑌𝑌Γ3𝑌𝑌]

Crudely, response time 𝑇𝑇𝑅𝑅
replaces cycle time Δ𝑡𝑡

𝑇𝑇𝑅𝑅 = 𝑇𝑇𝑐𝑐 ln 2 (integration time 𝑇𝑇𝑐𝑐)

False alarm rate
𝛾𝛾false alarm =

𝐶𝐶 ln2
𝜋𝜋 ⁄𝑇𝑇𝑅𝑅 𝜏𝜏𝑚𝑚

exp −
𝐶𝐶2𝑇𝑇𝑅𝑅
𝜏𝜏𝑚𝑚

𝐶𝐶 = 0.61 for 𝜂𝜂 = 1
𝐶𝐶 = 0.54 for 𝜂𝜂 = 0.5
𝜂𝜂 is quantum efficiency

Trade-off: longer response time 𝑇𝑇𝑅𝑅 decreases false alarm rate (exponentially),
but increases logical error rate (linearly)
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Good agreement between (semi)analytical theory and numerical results

False alarm rate vs. response time

𝜏𝜏𝑚𝑚 is collapse 
(“measurement”) 

time

pure dephasing

Logical error rate vs. response time

pure dephasing

Process matrix 
𝜒𝜒 vs. time

energy relax.  
in qubits 1, 3

However, corrections (~30%) due to non-Gaussian noise of correlators

Error rate vs. 
response time

energy relax.  
in qubits 1, 2

Monte Carlo simulation results
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depolarization

blue solid: 𝜂𝜂 = 1
dashed: 𝜂𝜂 = 0.5

four-qubit 
Bacon-Shor 
code

Comparison with conventional projective case

Red line: ratio of logical error rates (contin./proj.), Blue: ratio of termination rates

Comparable operation for continuous and projective cases if 𝜏𝜏𝑚𝑚 ∼ ⁄Δ𝑡𝑡 20

Δ𝑡𝑡 is cycle time for projective operation, 𝜏𝜏𝑚𝑚 is collapse (“measur.”) time 
for continuous measurement, 𝑇𝑇𝑐𝑐𝑒𝑒 is integration time for correlators

Hidden assumption in projective case: 5𝜏𝜏𝑚𝑚 ≪ Δ𝑡𝑡, so crudely the same requirement.

Advantage of continuous measurement: a time-dependent protocol 
is not needed, only passive monitoring of error syndrome

So far we considered only QED code (2x2), similar results 
are expected for QEC codes (3x3 and higher) J. Atalaya et al., PRA-2017
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Arrow of time for continuous measurement
J. Dressel. A. Chantasri, A. Jordan,  
and  A. Korotkov,  PRL 2017

Is continuous quantum measurement time-reversible?
If yes, can we distinguish forward and backward evolutions?

Classical mechanics
Dynamics is time-reversible. However, for more than a few degrees of 
freedom, one time direction is much more probable than the other. 

Posing of quantum problem: a game
We are given a “movie”, showing quantum evolution |𝜓𝜓 𝑡𝑡 〉 of a qubit due 
to continuous measurement and Hamiltonian, together with “soundtrack”, 
representing noisy measurement record. We need to tell if the movie is 
played forward of backward.  

Unitary evolution is time-reversible.
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Reversing qubit evolution

Quantum Bayesian equations (Stratonovich form, quantum-limited detector)

�̇�𝑥 = −Ω𝑧𝑧 − ⁄𝑥𝑥𝑧𝑧𝑟𝑟 𝜏𝜏,   �̇�𝑦 = −𝑦𝑦𝑧𝑧 ⁄𝑟𝑟 𝜏𝜏,  �̇�𝑧 = Ω𝑥𝑥 + (1 − 𝑧𝑧2) ⁄𝑟𝑟 𝜏𝜏

Hamiltonian:  𝐻𝐻 = ℏΩ𝜎𝜎𝑦𝑦/2

Measurement output:  𝑟𝑟 𝑡𝑡 = 𝑧𝑧 𝑡𝑡 + 𝜏𝜏 𝜉𝜉(𝑡𝑡),  
“measurement” (collapse) time 𝜏𝜏, white noise 𝜉𝜉 𝑡𝑡 𝜉𝜉 0 = 𝛿𝛿 𝑡𝑡

Time-reversal symmetry:
(so, need to flip Rabi direction and measurement record)

𝑡𝑡 → −𝑡𝑡,  Ω → −Ω,  𝑟𝑟 → −𝑟𝑟

This quantum movie, played backwards, 
is fully legitimate (soundtrack is flipped)

Is there a way to distinguish 
forward from backward?
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Emergence of an arrow of time
Use classical Bayes rule to distinguish forward from backward movie 

𝑅𝑅 =
𝑃𝑃Forward[𝑟𝑟(𝑡𝑡)]
𝑃𝑃Backward[𝑟𝑟(𝑡𝑡)]

Since the measurement record (“soundtrack” ) is flipped, the particular noise 
realization becomes less probable (usually)

𝑟𝑟 𝑡𝑡 = 𝑧𝑧 𝑡𝑡 + 𝜏𝜏 𝜉𝜉(𝑡𝑡)

−𝑟𝑟 𝑡𝑡 = 𝑧𝑧 𝑡𝑡 + 𝜏𝜏 𝜉𝜉𝐵𝐵(𝑡𝑡)
𝜉𝜉𝐵𝐵 𝑡𝑡 = −𝜉𝜉 𝑡𝑡 −

2𝑧𝑧(𝑡𝑡)
𝜏𝜏⇒

𝜉𝜉𝐵𝐵(𝑡𝑡) is less probable than 𝜉𝜉 𝑡𝑡

ln𝑅𝑅 =
2
𝜏𝜏
�
0

𝑇𝑇
𝑟𝑟 𝑡𝑡 𝑧𝑧 𝑡𝑡 𝑑𝑑𝑡𝑡 Relative log-likelihood, distinguishing 

time running forward or backward  

For a long movie time 𝑇𝑇, almost certainly ln𝑅𝑅 > 0, so we will know 
the direction of time. For a short 𝑇𝑇, we will often make a mistake in  
guessing the time direction. 



University of California, RiversideAlexander Korotkov

Numerical results
𝑅𝑅 =

𝑃𝑃𝐹𝐹[𝑟𝑟(𝑡𝑡)]
𝑃𝑃𝐵𝐵[𝑟𝑟(𝑡𝑡)]

ln𝑅𝑅 =
2
𝜏𝜏
�
0

𝑇𝑇
𝑟𝑟 𝑡𝑡 𝑧𝑧 𝑡𝑡 𝑑𝑑𝑡𝑡

⁄2𝜋𝜋 Ω = 0.5𝜏𝜏
𝑥𝑥 𝑡𝑡 = 0 = 1

Asymptotic behavior (long T)

Probability of guessing the 
direction of time incorrectly: 

𝑃𝑃err ≈
2
3

𝜏𝜏
𝜋𝜋𝑇𝑇 exp −

9 𝑇𝑇
16 𝜏𝜏

Probability distribution for ln𝑅𝑅

(decreases exponentially 
with the ratio ⁄𝑇𝑇 𝜏𝜏)

Statistical arrow of time emerges at 
timescale of “measurement time” 𝜏𝜏

𝑅𝑅 ≈
3𝑇𝑇
2𝜏𝜏

±
2𝑇𝑇
𝜏𝜏

Similar to classical entropy increase, but 
opposite direction: from more to less random

J. Dressel. A. Chantasri, A. Jordan,  
and  A. Korotkov,  PRL 2017
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Conclusions
• Quantum Bayesian approach is based on common sense 

and simple (undergraduate-level) physics; it is similar to 
Quantum Trajectory theory, though looks different

• Measurement back-action necessarily has “spooky” part 
(informational, without physical mechanism); it may also 
have unitary part (with physical mechanism)

• Many experiments demonstrated evolution “inside” collapse                                      
(most of our proposals already realized)

• Possibly useful (especially quantum feedback)

• Simultaneous measurement of non-commuting observables 
has become possible experimentally

• Bacon-Shor code can operate with continuous measurement 
of non-commuting gauge operators

• Continuous measurement of a qubit is time-reversible (with 
flipped record), but the arrow of time emerges statistically 
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Thank you!
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