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Continuous measurement of qubits

in a solid-state quantum computer
Alexander Korotkov

University of California, Riverside
Issues to consider:

e Quantum algorithms and error correction when
instantaneous projective measurements are not
available (measurement takes time!)

e Initialization of entangled states

e Measurement of multi-qubit operators
e RF-SET as a detector

e Theoretical modeling of an experiment
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Projective vs. continuous measurement
of solid-state qubits

All quantum algorithms and error correction procedures assume
“orthodox” projective measurements. They are typically not possible
in solid-state quantum computers.
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Algorithms should be rewritten for realistic case
of continuous quantum measurements!
Two possible approaches:

- ensemble-averaged (loss of information, not clear if possible at all)
- Bayesian (selective or conditional)
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Status of the Bayesian approach

Continuous measurement of a single qubit — well studied by now
(experimental predictions, quantum feedback control, etc.)
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Bayesian formalism is ready to be used in design of quantum
algorithms and error correction; however, no attempts yet
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Initialization of entangled qubits

Using a ground state — very slow and not reliable way
— measurements should be used (ON - OFF is simple!)

Two qubits can be made and kept 100% entangled using
continuous measurement (Ruskov-Korotkov, PRB 2003)
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Can N-qubit entangled state be produced by continuous
measurement? (Answer not known yet.)
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Measurement of multi-qubit operators

Measurement of one qubit — natural
Measurement of a multi-qubit function — not trivial

Problem: measurement tends to collapse each qubit separately
Solution: not distinguishable states (equal coupling)

1. Measurement of (§1 + §2)2 (Ruskov-Korotkov, 2002)

2. Measurement of S, S, , (Averin-Fazio, 2002)
Quadratic detector, can be used in error correction

3. Continuous measurement by a quadratic detector;
operator §,,5,, +S;y5,y
(Mao-Averin-Ruskov-Korotkov, work in progress)

Which N-qubit operators can be measured? How?
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Quadratic Quantum Detection
Mao, Averin, Ruskov, A.K., 2003
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Quadratic detection is useful for quantum error correction (Averin-Fazio, 2002)
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Linear detector
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Nonlinear detector
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Two-qubit detection
(oscillatory subspace)
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Two-qubit quadratic detection: scenarios and switching

Three scenarios: 1) collapse into [1¢ — 11 U=]|1UB, current I, flat spectrum
(distinguishable by

2) collapse into |11 — 11 U =|2UB, current I, flat spectrum
average current)

3) collapse into remaining subspace [34UB , current Ut 1gg)/2,
spectral peak at 2Q), peak/pedestal = 4.
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RF-SET as a detector

SET as a classical detector — well studied
(Korotkov et al. 1992; Korotkov 1994; Hershfield et al. 1993; Galperin et al. 1993; etc.)

Very good detector, sensitivity ~107 e/\Hz

SET as a quantum detector — under active study
(Shnirman-Schon 1998; Korotkov 2000; Devoret-Schoelkopf 2000; Averin 2000;
van den Brink 2000; Zorin 1996; Clerk et al. 2002; Johansson et al. 2003)

SET can be an ideal (100% efficient) quantum detector

RF-SET as a classical detector — studied just a little

(Korotkov-Paalanen 1998; Blencowe-Wybourne 2000; Zhang-Blencowe 2002;
Turin-Korotkov 2003)

RF-SET performance is comparable to SET performance
Not studied: high frequency operation, superconducting RF-SET, etc.

RF-SET as a quantum detector — not studied at all

RF SET mixer (Knobel-Yung-Cleland 2002) — not studied theoretically
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RF-SET with a large Q-factor
P OV L vt (Turin-Korotkov, 2003)
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Theoretical modeling of an experiment

Experiment by Pierre Echternach, JPL Theoretical modeling at UCR

Geometrical modeling
using FASTCAP:

prediction of parameters,
CAD-tool for layout design
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Conclusions

Measurement of solid-state qubits is typically
continuous; this requires new quantum algorithms
and error correction procedures

Initialization of entangled qubits can be done by
measurement; only one simple example studied

Measurement of multi-qubit operators is important,
but not trivial; study just started

Surprisingly, the theory of RF-SET is still at initial

stage

Numerical modeling is important both before and
after experiment (FASTCAP + process simulation)
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