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Issues to consider:
● Quantum algorithms and error correction when

instantaneous projective measurements are not
available (measurement takes time!)

● Initialization of entangled states
● Measurement of multi-qubit operators
● RF-SET as a detector
● Theoretical modeling of an experiment
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Projective vs. continuous measurement 
of solid-state qubits

All quantum algorithms and error correction procedures assume 
“orthodox” projective measurements. They are typically not possible 
in solid-state quantum computers.
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Algorithms should be rewritten for realistic case 
of continuous quantum measurements!

Two possible approaches: 
- ensemble-averaged (loss of information, not clear if possible at all) 
- Bayesian (selective or conditional)
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Status of the Bayesian approach
Continuous measurement of a single qubit – well studied by now

(experimental predictions, quantum feedback control, etc.)

Bayesian formalism is ready to be used in design of quantum 
algorithms and error correction;  however, no attempts yet

Continuous measurement of entangled qubits – formalism developed,
few examples studied
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Initialization of entangled qubits
Using a ground state – very slow and not reliable way
⇒ measurements should be used  (ON - OFF is simple!)

Two qubits can be made and kept 100% entangled using 
continuous measurement  (Ruskov-Korotkov, PRB 2003)
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Can N-qubit entangled state be produced by continuous 
measurement?  (Answer not known yet.)
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Measurement of multi-qubit operators
Measurement of one qubit – natural
Measurement of a multi-qubit function – not trivial

Problem: measurement tends to collapse each qubit separately
Solution: not distinguishable states  (equal coupling)

1. Measurement of                      (Ruskov-Korotkov, 2002)

2. Measurement of                    (Averin-Fazio, 2002)
Quadratic detector, can be used in error correction

3. Continuous measurement by a quadratic detector; 
operator                                  
(Mao-Averin-Ruskov-Korotkov, work in progress)
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Which N-qubit operators can be measured? How?
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Quadratic Quantum Detection
Mao, Averin, Ruskov, A.K., 2003
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Quadratic detection is useful for quantum error correction (Averin-Fazio, 2002)
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Two-qubit detection
(oscillatory subspace)
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(Ω is the Rabi frequency)

Mao, Averin, Ruskov, A.K., 2003
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Two-qubit quadratic detection: scenarios and switching

Mao, Averin, Ruskov, Korotkov, 2003

Three scenarios: 1) collapse into |↑↓ -↓↑ Ú = |1ÚB , current IÆ∞, flat spectrum
2) collapse into |↑↑ - ↓↓ Ú = |2ÚB , current IÆÆ, flat spectrum
3) collapse into remaining subspace |34ÚB , current (IÆ∞+ IÆÆ)/2,

spectral peak at  2Ω,  peak/pedestal = 4η.
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RF-SET as a detector
SET as a classical detector – well studied

(Korotkov et al. 1992; Korotkov 1994; Hershfield et al. 1993; Galperin et al. 1993; etc.) 

SET as a quantum detector – under active study 
(Shnirman-Schőn 1998;  Korotkov 2000;  Devoret-Schoelkopf 2000;  Averin 2000;
van den Brink 2000;  Zorin 1996;  Clerk et al. 2002;  Johansson et al. 2003)  

RF-SET as a classical detector – studied just a little

Very good detector, sensitivity ~10-6e/√Hz

SET can be an ideal (100% efficient) quantum detector

(Korotkov-Paalanen 1998;  Blencowe-Wybourne 2000;  Zhang-Blencowe 2002;
Turin-Korotkov 2003)

RF-SET performance is comparable to SET performance
Not studied: high frequency operation, superconducting RF-SET, etc.

RF-SET as a quantum detector – not studied at all

RF SET mixer (Knobel-Yung-Cleland 2002) – not studied theoretically
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RF-SET with a large Q-factor
(Turin-Korotkov, 2003)
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Theoretical modeling of an experiment
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Experiment by Pierre Echternach, JPL Theoretical modeling at UCR

Geometrical modeling
using FASTCAP: 
prediction of parameters,
CAD-tool for layout design

Simulation of physical 
processes:  checking 
and understanding
experimental results
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Conclusions

● Measurement of solid-state qubits is typically
continuous; this requires new quantum algorithms
and error correction procedures

● Initialization of entangled qubits can be done by
measurement; only one simple example studied

● Measurement of multi-qubit operators is important,
but not trivial; study just started

● Surprisingly, the theory of RF-SET is still at initial
stage 

● Numerical modeling is important both before and
after experiment (FASTCAP + process simulation)


