Simple quantum feedback
of a solid-state qubit
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We propose an experiment on quantum feedback control of a solid-
state qubit, which is almost within the reach of the present-day technology.
Similar to the earlier proposal, the feedback loop is used to maintain the
coherent oscillations in a qubit for an arbitrary long time; however, this is
done in a significantly simpler way, which requires much smaller bandwidth of
the control circuitry.

The main idea is to use the quadrature components of the noisy
detector current to monitor approximately the phase of qubit oscillations. The
price for simplicity is a less-than-ideal operation: the fidelity is limited by
about 95%. The feedback loop operation can be experimentally verified by
appearance of a positive in-phase component of the detector current relative to
an external oscillating signal used for synchronization.
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Simple quantum feedback of a solid-state qubit
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Idea: use two quadrature components of the detector current /(t)
to monitor approximately the phase of qubit oscillations
(a very natural way for usual classical feedback!)

X(0)= [ _[1(t") = I,] cos(Cu") exp[~( ~1')/ 7] dt
Y()=[._[1(t") = I,] sin(Qx") exp[~( —1')/ 7] dt

(similar formulas for a tank circuit instead of mixing with local oscillator)

@, = —arctan (Y / X)

Advantage: simplicity and relatively narrow bandwidth (1/7~T ; <Q)

Anticipated problem: without feedback the spectral peak-to-pedestal ratio <4,
therefore not much information in quadratures

(surprisingly, situation is much better than anticipated!)
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Accuracy of phase monitoring via quadratures
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(2/5)(4112-1)=2.16

dp/dt = —{I1(t) —1,]sin(Qt + @ (AN /S;) (actual phase shift, ideal detector)

T[(AD?%/S{] (averaging time)

Noise improves the monitoring accuracy!
(purely quantum effect, “reality follows observations”)

dg, /dt = —[1(¢t) —1,]sin(Qr + (qn)/(X2 + Yz)l/2 (observed phase shift)

Noise enters the actual and observed phase evolution in a similar way
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Quantum feedback performance
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e Natural, practically classical feedback setup
e Averaging T~1/[ >>1/Q (narrow bandwidth!)

* Detector efficiency (ideality) N<0.1 still OK

F =(Tr p(t) £4,5(2))
D =(X)(4/TAI)

X — in-phase quadrature

 Robust to asymmetry € and frequency shift AQ of the detector current

* Very simple verification — just positive
in-phase quadrature (X)
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Quantum feedback in optics

Recent experiment: Science 304, 270 (2004)
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First detailed theory:

H.M. Wiseman and G. J. Milburn, N E At f . o =

Phys. Rev. Lett. 70, 548 (1993)

No experimental attempts of quantum feedback in solid-state yet

(even theory is still considered controversial)
Experiments soon?
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Conclusions

Very straightforward, practically classical feedback idea
(monitoring the phase of oscillations via quadratures)
works well for the qubit coherent oscillations

Much simpler realization than for quantum feedback of
Ruskov-Korotkov, Phys. Rev. B 66, 041401(R) (2002)

Price for simplicity is a less-then-ideal operation
(fidelity is limited by ~95%)

Feedback performance is much better than expected

Relatively simple experiment (simple setup, narrow
bandwidth, inefficient detectors OK, simple verification)

Alexander Korotkov University of California, Riverside



