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We show that the nanoresonator position an be squeezed
significantly below the ground state level by measuring the
nanoresonator with a quantum point contact or a single-electron
transistor and applying a periodic voltage across the detector. The
mechanism of squeezing is basically a generalization of quantum
nondemolition measurement of an oscillator to the case of continuous
measurement by a weakly coupled detector. The quantum feedback
is necessary to prevent the “heating” due to measurement back-
action. We also discuss a procedure of experimental verification of
the squeezed state.
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Model similar to Hopkins, Jacobs, Habib, Schwab, PRB 2003
(continuous monitoring and quantum feedback to cool down)

New feature: Braginsky’s stroboscopic QND measurement using
modulation of detector voltage = squeezing becomes possible
Potential application: ultrasensitive force measurements

Other most important papers:
Doherty, Jacobs, PRA 1999 (formalism for Gaussian states)
Mozyrsky, Martin, PRL 2002 (ensemble-averaged evolution)
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Stroboscopic QND measurements

Quantum nondemolition (QND) measurements (Braginsky-Khalili book)
(a way to suppress measurement backaction and overcome standard quantum limit)

Idea: to avoid measuring the magnitude conjugated to the magnitude of interest
x(tl) x(tz)
® ®

Standard quantum limit
Example: measurement of x(t,)-x(t4) Ap > h/20x

First measurement: Ap(t4)>7n/2Ax(t4), then even for accurate second measurement
inaccuracy of position difference is Ax(t4) +(t>-t1) 7/2mAx(t4) > (t2-t1)h/21/2m

Stroboscopic QND measurements (Braginsky et al., 1978; Thorne et al., 1978)

Idea: second measurement exactly one oscillation
period later is insensitive to Ap

(or At=nT/2, T=21V W)

oscillator

N/

Difference in our case: e continuous measurement
* weak coupling with detector
 quantum feedback to suppress “heating”
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Bayesian formalism for continuous
measurement of a nanoresonator
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Nanoresonator evolution (Stratonovich form), same Eqn as for qubits:
dpo(x,x X, X 1
2D - 1y, 4 2D {I(t)(lx *Lo ~UD) (141 —2<12>)}

dt S,
()= 1,p(x,x), 1()=1I,+&@1), Sg =S,

Ito form (same as in many papers on conditional measurement of oscillators):

dp(x,x) ? _N\2 ! i ;o I
I [Ho,p] 48,7 (x —x)" p(x,x) +S0 (x +x =2(x)) p(x,x)(2)
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Evolution of Gaussian states

Assume Gaussian states (following Doherty-Jacobs
and Hopkins-Jacobs-Habib-Schwab),
P then p(x,x’) is described by only 5 magnitudes:
(X), (p) - average position and momentum (packet center),
D,, Dp, Dxp — variances (packet width)

Assume large Q-factor (then no temperature)
Voltage modulation f(t)V;: k=f(Oky, I, =f(O)Ty tkyx), S; 9 f(O]S,
Then coupling (measurement strength) is also modulated in time:
C=f(t)|Cpy € =hK"| S may =4/ & Ty
Packet center evolves randomly and needs feedback (force F) to cool down
d(x)/dt =(p)/m+(2ky/Sy)sgnlf(#)] D, ¢ (¢)
d(p)/dt = —mafy(x)+(2ky !/ Sy)sgnl f ()] Dy, &(t) + F ()
Packet width evolves deterministically and is QND squeezed by periodic f{(f)
d(Dy)/dt=(2/m)D,, —(2ky | Sy) | f(t)| D}
d(D,)/dt = -2may Dy, +(kgh® 1 28,7) | f(2)|-(2ky 1 8))| £(£)| D,
d(D,,)/dt =(1/m)D, ~may D, —(2ky 18,)| f(£)| DD,
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Squeezing by sine-modulation, V()=}V, sin(0x)

Ruskov-Schwab-Korotkov

— i Squeezing obviously oscillates in time,
=, maximum squeezing at maximum voltage,
AU D D ‘ D ‘ momentum squeezing shifted in phase by 2.
. = +
/x\g 2 \\i Dy XK x) S = max, (Ax,)?/ D,
Q\:z 2 | — homodulation | Apalytics (weak coupling):
N SQaw,) =37, Dw=0.36c4C, /1
1
0.5 wW=2a n - detector efficiency, C, — coupling
23 g2zt T BT (h/2ma) 2 - ground state width
- D =(Bx), Dy=((x))-((x))?
%) ] I
D 1.6 ) Quantum feedback:
i F = ~magyy,(x) = ¥p(p)
%’_ 0] (same as in Hopkins et al.; without modulation
n it cools the state down to the ground state)

Feedback is sufficiently efficient, D<X>U D,

W/ ag'o 0 Squeezing up to 1.73 at W=2w,
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Squeezing by stroboscopic (pulse) modulation
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pulse modulation W=2a}/n
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Squeezing by stroboscopic modulation
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Analytics (weak coupling, short pulses)

Maximum squeezing Linewidth
2.3 4C,(01)’ off
SQay /my=T A= “(2 ) 4
@), Ot mn”.\/3n

C, — dimensionless coupling with detector
ot — pulse duration, Ty=2T17wy,
n — quantum efficiency of detector

(long formula for the line shape)

Finite Q-factor limits the time we can afford to
wait before squeezing develops, T, 4it/ To~Q/T

Squeezing saturates as ~exp(-n/ng) after
ny =37/ Cy(w, )" measurements

Therefore, squeezing cannot exceed
S =Cy0 4
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Observability of nanoresonator squeezing

Procedure: 1) prepare squeezed state by stroboscopic measurement,
2) switch off quantum feedback

. . 1
3) measure in the stroboscopic way X, = Nz;vzl X;

For instantaneous measurements (df - 0) the variance of X, is

DX N = L l + 1
’ 2mawy |\ S NCya) X
Then distinguishable from ground state (S=1)
in one run for Sa 1 (error probability ~S'1/2)

1
J - E(AXO)Z at N - o S-—squeezing,
Axy — ground state width

Not as easy for continuous measurements because of extra “heating”.
D, n has a minimum at some N and then increases.

However, numerically it seems miny Dy 5 ~ Z(Ax(,)2 /§ (only twice worse)

Example: miny Dy y /(Ax,) =0.078 for Cy=0.1, n=1, 5/T=0.02, 1/5=0.036

Squeezed state is distinguishable in one run (with small
error probability), therefore suitable for ultrasensitive
force measurement beyond standard quantum limit
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Conclusions

Periodic modulation of the detector voltage modulates
measurement strength and periodically squeezes the
width of the nanoresonator state (“breathing mode”)

Packet center oscillates and is randomly “heated” by
measurement; quantum feedback can cool it down
(keep it near zero in both position and momentum)

Sine-modulation leads to a small squeezing (<1.73),
stroboscopic (pulse) modulation can lead to a strong
squeezing (>>1) even for a weak coupling with detector

Still to be done: correct account of Q-factor and temperature

Potential application: ultrasensitive force measurement
beyond standard quantum limit
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