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We show that the nanoresonator position an be squeezed 
significantly below the ground state level by measuring the 
nanoresonator with a quantum point contact or a single-electron 
transistor and applying a periodic voltage across the detector. The 
mechanism of squeezing is basically a generalization of quantum 
nondemolition measurement of an oscillator to the case of continuous 
measurement by a weakly coupled detector. The quantum feedback 
is necessary to prevent the “heating” due to measurement back-
action. We also discuss a procedure of experimental verification of 
the squeezed state.
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QND squeezing of a nanoresonator

ω0 ∼ 1 GHz , T ∼ 50 mK, 
quantum behavior T<=ω0
or Tτobs/Q<=/2
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Model similar to Hopkins, Jacobs, Habib, Schwab, PRB 2003
(continuous monitoring and quantum feedback to cool down)

New feature: Braginsky’s stroboscopic QND measurement using
modulation of detector voltage ⇒ squeezing becomes possible 

Other most important papers:
Doherty, Jacobs, PRA 1999 (formalism for Gaussian states) 
Mozyrsky, Martin, PRL 2002 (ensemble-averaged evolution)

Potential application: ultrasensitive force measurements
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Stroboscopic QND measurements
Quantum nondemolition (QND) measurements (Braginsky-Khalili book)
(a way to suppress measurement backaction and overcome standard quantum limit)
Idea: to avoid measuring the magnitude conjugated to the magnitude of interest

Standard quantum limit
Example: measurement of x(t2)-x(t1)
First measurement: ∆p(t1)>=/2∆x(t1), then even for accurate second measurement

inaccuracy of position difference is  ∆x(t1)+ (t2-t1)=/2m∆x(t1)> (t2-t1)=/21/2m

/ 2p x∆ > ∆=

Stroboscopic QND measurements (Braginsky et al., 1978; Thorne et al., 1978)

Idea: second measurement exactly one oscillation 
period later is insensitive to ∆poscillator

(or ∆t =nT/2, T=2π/ω0)

Difference in our case: • continuous measurement
• weak coupling with detector
• quantum feedback to suppress “heating”

1( )x t 2( )x t
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Bayesian formalism for continuous
measurement of a nanoresonator
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Recipe: quantum Bayes procedure

Nanoresonator evolution (Stratonovich form), same Eqn as for qubits:
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Evolution of Gaussian states

ρ
Assume Gaussian states (following Doherty-Jacobs 

and Hopkins-Jacobs-Habib-Schwab), 
then ρ(x,x’) is described by only 5 magnitudes:

〈x〉, 〈p〉 - average position and momentum (packet center),
Dx, Dp, Dxp – variances (packet width)
Assume large Q-factor (then no temperature)

Voltage modulation  f(t)V0: 0 00 0 0( ) , ( ) ( ), | ( ) |Ixk f t k I f t I k x S f t S= = + =
Then coupling (measurement strength) is also modulated in time:

2 2
0 0 0| ( ) | , / 4 / measIC f t C C k S mω ω τ= = ==

Packet center evolves randomly and needs feedback (force F) to cool down
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Packet width evolves deterministically and is QND squeezed by periodic f(t)
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Squeezing by sine-modulation, V(t)=V0sin(ωt)
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Squeezing up to 1.73 at ω=2ω0

Dx=(∆x)2,  D〈x〉= 〈〈x〉
2〉 - 〈〈x〉〉2

∆x0= (=/2mω0)1/2 – ground state width

Squeezing obviously oscillates in time,
maximum squeezing at maximum voltage,
momentum squeezing shifted in phase by π/2. 

2
0max ( ) / xtS x D≡ ∆

Analytics (weak coupling):

0 0 0(2 ) 3 , 0.36 /S Cω η ω ω η= ∆ =

η - detector efficiency, C0 – coupling

Quantum feedback:

0 x pF m x pω γ γ= − 〈 〉 − 〈 〉

(same as in Hopkins et al.; without modulation
it cools the state down to the ground state)

Feedback is sufficiently efficient, D〈x〉ÜDx
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pulse modulation

Efficient squeezing at ω=2ω0/n
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Squeezing by stroboscopic (pulse) modulation
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(natural QND condition)

Momentum squeezing as well

using
feedback

Dx=(∆x)2

Sá1

Ruskov-Schwab-Korotkov
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Squeezing by stroboscopic modulation
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C0 – dimensionless coupling with detector
δt – pulse duration,  T0= 2π/ω0
η – quantum efficiency of detector 

(long formula for the line shape)
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Finite Q-factor limits the time we can afford to
wait before squeezing develops, τwait/T0~Q/π

Squeezing saturates as ~exp(-n/n0) after 
measurements0

2
0 03 / ( )n C tη ω δ=

Therefore, squeezing cannot exceed
4

0S C Q η�
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Observability of nanoresonator squeezing
Procedure: 1) prepare squeezed state by stroboscopic measurement,

2) switch off quantum feedback
3) measure in the stroboscopic way 1

1 N
jjNX x

N == ∑
For instantaneous measurements (δt→0) the variance of XN is

2
0

0 0 0
,

1 1 1 ( ) at
2X ND x N

m S NC t Sω ω δ
 

= + → ∆ → ∞ 
 

=
S – squeezing, 
∆x0 – ground state width

Then distinguishable from ground state (S=1) 
in one run for Sà1 (error probability ~S -1/2)

Not as easy for continuous measurements because of extra “heating”.
DX,N has a minimum at some N and then increases.
However, numerically it seems                                   (only twice worse)

Example: , 0min /( ) 0.078N X ND x∆ = for C0=0.1, η=1, δt/T0=0.02, 1/S=0.036

Squeezed state is distinguishable in one run (with small 
error probability), therefore suitable for ultrasensitive
force measurement beyond standard quantum limit

2
, 0min 2( ) /N X ND x S∆∼
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Conclusions 

• Periodic modulation of the detector voltage modulates
measurement strength and periodically squeezes the 
width of the nanoresonator state (“breathing mode”)

• Packet center oscillates and is randomly “heated” by
measurement; quantum feedback can cool it down
(keep it near zero in both position and momentum)

• Sine-modulation leads to a small squeezing (<1.73),
stroboscopic (pulse) modulation can lead to a strong
squeezing (>>1) even for a weak coupling with detector

• Still to be done: correct account of Q-factor and temperature

• Potential application: ultrasensitive force measurement 
beyond standard quantum limit


