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and quantum point and single-electron
contact (QPC) transistor (SET)

H=Hqop * Hpgr * HinT

HQB = (81 2)(CI+CI-CZ+02) +H(CI+C‘2+CZ+CI) € - asymmetry, H — tunneling

Q=(4H S 82)1/ 2_ frequency of quantum coherent (Rabi) oscillations

Two levels of average detector current: I, for qubit state [1), I, for [2)

Response: Al=1 1 -1 2 Detector noise: white, spectral density S 7
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. What happens to a qubit state during measurement?

O.HO

¢ \J For simplicity (for a moment) H=g=0, infinite barrier (frozen qubit),

%ﬂ 10 evolution due to measurement only

“Orthodox” answer “Conventional” (decoherence) answer (Leggett, Zurek)
ty (10 11) (1 eptTn) (1
2 2| 700 2 2| _ |2 2 |2
111 N(oo0) 11 exp(-T) 1 0o 1
2 2 0 1) 2 2 2 2 2

|1> or |2>, depending on the result no measurement result! ensemble averaged

Orthodox and decoherence answers contradict each other!

applicable for: | Single quantum systems | Continuous measurements
Orthodox yes no
Conventional (ensemble) no yes
Bayesian yes yes

Bayesian formalism describes gradual collapse of single quantum systems
Noisy detector output /(7) should be taken into account
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Bayesian formalism for a single qubit

H n £
O<—>0 AL_%TI_O HQB =E(cfcl —C;CZ) +H(CICZ +c;c1)
®c
U 10 £ 1, [20 £ 1,
[\ 1(?) 1 AI=I -1, , Iy=(11+1,)/2, S 7 — detector noise

{ dp, ldt=—dp,,/dt =2HImp, +p,, 0 2N /S)I(t) —1,]
dpy, dt =igpy, +iH(py — Pry) T P2 (A1 —Pn) (NSt —1y]l —VA,

y=I- (AI)2 /4S8;, [ —ensemble decoherence A.K., 1998
n=1-y/T =(Al )2 /4S8 ;I —detector ideality (efficiency), 77 <100%

For simulations: I(8) =1y —» (py =P )AL 12 +4(), Sg =S,
Averaging over (f) = master equation

Ideal detector (n=1) does not decohere a single qubit (pure state remains pure),
then random evolution of the qubit wavefunction can be monitored

Similar formalisms developed earlier. Key words: Imprecise, weak, selective, or conditional
measurements, POVM, Quantum trajectories, Quantum jumps, Restricted path integral, etc.

Names: E.B. Davies, K. Kraus, A.S. Holevo, C.W. Gardiner, H.J. Carmichael, C.M. Caves,

M.B. Plenio, P.L. Knight, M.B. Mensky, D.F. Walls, N. Gisin, I.C. Percival, G.J. Milburn,
H.M. Wiseman, R. Onofrio, S. Habib, A. Doherty, etc. (very incomplete list)
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"Quantum Bayes theorem* (ideal detector assumed)

"”5 < H > o!?” Initial state: [,011(0) ,012(0))

®e H=g=0 (f bit
U #0 (rosenqubly £2(0)  0,,(0)

— > )
M -

Measurement (during time T): I= ;I 0 I(?) dt
i [actua P(I,1)=p1(0) Py(1,T)+py,(0) Py(I,7)
N | _ 5
P, D) = expl~(T =)’ 12D},

\ p=s,/21, |I,-L|<I, T>S8/1I
| N

I, 1, I

After the measurement during time T, the probabilities P(B;)P(A| B;)

. ) P(B;|A)=
can be updated using the standard Bayes formula: l Zk P(B,)P(A|B,)
Quantum Bayes _ £;1(0) exp[-(I - Il)2 /2D]
formulas: P (D)= = 2 = 2
P11(0) exp[~(T = 1,)* /2D] + py, (0) exp[«T ~1,)*/2D]
P (7) _ P12(0)

B ’ (1) =1-py(7)
[212(D) P (D1 [045(0) pyy (0] Pr2 Pt
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Nonideal detectors with input-output noise correlation

classical noise [ fully cor- g !
affectinge | related
H £0=480) | «—> [E0 || _AS; 108, o _
l ! . K= P S7 =8y +5
signal : I (t) l I I(t) 1
qubit 41» ideal d > + : > )
& |, o Ldetector [ S classical | So+S K — correlation between output
backactiop current : and backaction noises
noise | I
! €300 :
classical noise : detector : A.K., 2002
affectinge ~ """ T T T T T T T T T T7

P T T P T 2HIm P + 0Py S—,[I(t) 1ol

d o : Al : -
o P12 TP HiH (P~ Pr2) + P (A, _pzz)S_[I(’) —1,] +iK[1(?) —1,] —}A,
I
Fundamental limits for ensemble decoherence
I =y+@QD*4S,, y20 = T =(AD*/4S,
I'=y+ (AD*4S,+ K*Sy4, y20 = T 2(AD*/AS,+ K*S,/4
Translated into energy sensitivity: (€; €, A)l/ 2> n2 or (€ 1€84~ €1 A)l/ 2> n2
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Ideality of realistic solid-state detectors
(ideal detector does not cause single qubit decoherence)

1. Quantum point contact Theoretically, ideal quantum detector, n=1

U A.K., 1998 (Gurvitz, 1997; Aleiner et al., 1997)

[-\ > Experimentally, n > 80%

1(z) (using Buks et al., 1998)
2. SET-transistor Very non-ideal in usual operation regime, 1«1
Shnirman-Schon, 1998; A.K., 2000, Devoret-Schoelkopf, 2000
e However, reaches ideality, n = 1 if:

I 10 - in deep cotunneling regime (Averin, 2000, van den Brink, 2000)

- S-SET, using supercurrent (Zorin, 1996)
- S-SET, double-JQP peak (Clerk et al., 2002)

77?7 S-SET, usual JQP (Johansson et al.), onset of QP branch (?)
- resonant-tunneling SET, low bias (Averin, 2000)

3. SQUID 140) Can reach ideality, n =1 4. FET ?? HEMT ??
(Danilov-Likharev-Zorin, 1983; ballistic FET/HEMT ??
Averin, 2000)
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Bayesian formalism for /V entangled qubits

Up to 2N levels
P (), of current

detector

1)

d _ 1 1 2 2 2

— P = P L@ U; +1; =23 pydy) — U7 +1; =2 pud))]

I; +Ij
2

Ag;
hi

—i A .
+—[qu,,0] ij Tl

; py +iK 1) -

10; =V B
(Stratonovich form)
I(r) = Z Pi()I; +$(t)  Averaging over £(t) W master equation

A.K., PRA 65, 052304 (2002); PRB 67, 235408 (2003)

stratonovich: Y@ = . S+ At/2)— f(t—At/2) (easy derivatives and

dt  At-0 At physical meaning)
Ito: LU = lim St D~ f@) (easy averaging over noise)
dt  At-0 At
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Experimental predictions and proposals
based on the Bayesian formalism

Direct experiments on Bayesian evolution (1998)

Measured spectral density of Rabi oscillations (1999, 2000, 2002)
Bell-type correlation experiment (2000)

Quantum feedback control of a qubit (2001)

Entanglement by measurement (2002)

Measurement and entanglement by a quadratic detector (2004)
Simple quantum feedback via quadratures (2004)

QND squeezing of a nanoresonator (2004)
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Measured spectrum of qubit coherent oscillations
(or spin precession)

a
EHI detector [—> What is the spectral density S;(®) of detector current?

()
24— C'_13' — Assume classical output, eV » 7Q
1N - R AK., LT99
_ C = (AI)2 /HS, t £=0, T['=n (Al /4S0 ivlgril;)AobK., 2000
a 2 A2 K.,
- SI (a)) = SO + 5 Q (zAg) r 5 Averin, 2000
- (@ - Q% +T%&’  Goan-Milburn, 2001
Makhlin et al., 2001

i tral peak can n
I Spec peak ¢ b‘f seen, but Balatsky-Martin, 2001
peak-to-pedestal ratio<4n <4 p 1 ov- AK., 2002

s it be obtained Usi , Mozyrsky et al., 2002
(result can be obtained using various Balatsky et al., 2002

0.0 05 0. ya'” %% methods, not only Bayesian method) guiaevskii et al., 2002

T I;;/Ilelol a0 | Shnirman et al., 2002

> i n=1 | Weak coupling,a=C/8«1 Bulaevskii-Ortiz, 2003
Z\i 4] 7 i 2 2 Shnirman et al., 2003
3 3- 2§\ - classical | & (W) =S, + nSe&“'H
A _'\ limit [ " 1+ (wh*Q* 14HT)? Contrary:

1 I 4ns, 1+ /2 HZ)—I Stace-Barrett, 2003

ol 0 53 (PRL 2004)

' 1+[(w—QDIA-2H" /" Q%)] /

IIIIIIIIIII

0.0 0.5 1.0 1.5 2.0
wW/Q o e
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Quantum feedback control of a solid-state qubit
desired evolution Ruskov & A.K., 2001

feedback \l;

control stage | signal |comparison
(barrier height) circuit

detector | J(z) | Bayesian
xE equations

Goal: maintain desired phase of coherent (Rabi) oscillations
in spite of environmental dephasing (keep qubit “fresh”)

Pij(t)

C<«1

Idea: monitor the Rabi phase @by continuous measurement and apply
feedback control of the qubit barrier height, AH . ;,/H = —FxA@p

To monitor phase @ we plug detector output /(7) into Bayesian equations

Quantum feedback in quantum optics is discussed since 1993 (Wiseman-Milburn),
recently first successful experiments in Mabuchi’s group (2002, 2004).
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Performance of quantum feedback
(no extra environment)

Qubit correlation function Fidelity (synchronization degree)
C=1,n=1, F=0,0.05, 0.5 = T : " S | B—
0.50_“"““""‘E %0'8_' i
s MILLLLLLLD L E B _
= o NARRRRAARARNANE S
Mo ,l””””” §0.4— -
=g |
-0.500' é 110 '15 Q0'00I01I02I03I04I05I06I07I08
0 rQ/2m F (féedbéck factér) -
K (7)= COSZ d eXp[mLF(e_ZFHT/h —1)} C=n(A?/S H — coupling

;' - available bandwidth

for weak coupling and good fidelit
(for w HpTne . y) F - feedback strength

Detector current correlation function D=2(TrPp ., —1

K. (r) = (AI)? cosQt (1 +¢~2FHTIRY For ideal detector and wide bandwidth,
! 4 2 fidelity can be arbitrary close to 100%
o € e ]S D = exp(-C/32F)

Ruskov & Korotkov, PRB 66, 041401(R) (2002)
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Suppression of environment-induced decoherence
by quantum feedback

—_ 100 M I T T NI | | l 1 10 PR T T T NI T

8 ] e [ = ‘ C

— L o

2 | 2 05" D ~1-——tvV_

< 0.95 n g~ o max — 2C

£ Cepy /C 05 ERTE det
E 090 env ' “det™ r % . 1.00 L% I
= B B -

8 C_Cdet_l | % 04— ® ® o ¢
§ 0854/ T=0 - ~

= C s 0.2 B
2 =

~ a) 095—————————

D 0.80 rm 17 17 17T 17T 717 17T 7177717 0.0 L 9(|)O| T |0|'O|5| T |O'|10| LI I

0 1 2 3 4 5 6 7 8 9 10
o 1 2 3 4 5 6 7 8 9 10
F (fi k fact i i
(feedback factor) Ceny/Cdet  (relative coupling

to environment)

Big experimental problem: necessity of very fast (>>Q, GHz-range)
real-time solution of the Bayesian equations; therefore wide bandwidth

—_
(=}

Some help: “direct” (“naive”) feedback

H g | H—1=F x{2[1(t) =1,/ AN —cos( C¥)}sin( C¥)

I
%
|

o
)
|

@

However, still wide bandwidth (>> Q) required

o
o
|

0.5

=0

LI L L I B B
00 01 02 03 04 05 06 0
F (feedback factor)
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Simple quantum feedback of a solid-state qubit

(A.K., cond-mat/0404696)
H=H,[1-Fx g (0]

Hqp=HOx | control s We want to maintain
. Lqubit X[o coherent (Rabi) oscillations
cu dot 1tt 1) xcos(Q21), T-average | — = $n | for arbitrary long time,
etector > .

Idea: use two quadrature components of the detector current /(t)
to monitor approximately the phase of qubit oscillations
(a very natural way for usual classical feedback!)

X(0)= [ _[1(t") = I,] cos(Cu") exp[~( ~1')/ 7] dt
Y()=[._[1(t") = I,] sin(Qx") exp[~( —1')/ 7] dt

(similar formulas for a tank circuit instead of mixing with local oscillator)

@, = —arctan (Y / X)

Advantage: simplicity and relatively narrow bandwidth (1/7~T ; <Q)

Anticipated problem: without feedback the spectral peak-to-pedestal ratio <4,
therefore not much information in quadratures

(surprisingly, situation is much better than anticipated!)

Alexander Korotkov University of California, Riverside




Accuracy of phase monitoring via quadratures

APrms

no feedback yet
( y ) weak coupling Ca 1
— 2.0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 1 1 1 | 1 1 1 1 1 |
> 12 X
W3 _ 2 -
s WMg=4S/an= 1 t[aD¥S,=| 2.16 i
5 : . . — —~
§ C — dimensionless coupling | & Ag=p-@.
S ] ~un~c0rrelate£1_n_(_)i.s_e o _I_ \q, 1 C=0.1 4
-E ' < R : Q 1
o 1 N\ @ _a---- . 14 . B
7 ] N\ .---"" .1, 0. (non-Gaussian 8
© 0.5 ; < - SR
_g_ Jgo! 944\ : | distributions)
- 1’ 30
0-0 Ll 1 Ll 1 T 1 T T T T T T T T T 0 p— T |
o0 1 2 _3 4 5 6 71 8 3 22 A1 7 3

0 A(pl

Best approximation
(X2+Y?)=(S)/Al)?

(2/5)(4112-1)=2.16

dp/dt = —{I1(t) —1,]sin(Qt + @ (AN /S;) (actual phase shift, ideal detector)

T[(AD?%/S{] (averaging time)

Noise improves the monitoring accuracy!
(purely quantum effect, “reality follows observations”)

dg, /dt = —1(t) —1,]sin(Qr + (q,,)/(X2 + Yz)l/2 (observed phase shift)

Noise enters the actual and observed phase evolution in a similar way
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Simple quantum feedback

(weak coupling C)

ALO....|....|...,|,,,, 1.0||||||||||||

£ Jc-oa 220U e =1 C=01 |

D .5 ~  0.8- T[AD%S{] =1}

(=R ! ] !

[

=~ 0.6- L 0.6 _

= X - X

T 04- 0.4 el -

¥ classical feedback 1 Zaaiirres % AR b

SWES L 0.2 o1 _

v fidelity for different averaging T | nonideal detectors |

R 0T 0.0 7T 17—
0.0 0.1 0.2 0.3 0.4 0.0 0.2 0.4 0.6 0.8

F/C (feedback strength) F/C

* Fidelity F up to ~95% achievable (D~90%) D=2F -1

 Natural, practically classical feedback setup F =(Tr p(t) p,,,(?))

* Averaging 1~1/['>>1/Q (narrow bandwidth!) D=(X)(4/1AI)

* Detector efficiency (ideality) N<0.1 still OK X —in-phase quadrature

 Robust to asymmetry € and frequency shift AQ of the detector current

* Very simple verification — just positive

- - 4
in-phase quadrature (X) Slmple experlment * R
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Quantum feedback in optics

Recent experiment: Science 304, 270 (2004)

Feedback | i
Controller

Real-Time Quantum Feedback e >

Control of Atomic
Spin-Squeezing o

Computer
DAQ

IM Geramia,® Jehn K. Stockten, Hidee Mabuchi

AF,
AFy State

Real-time fesdback performed during a quantum nondemolition measurament

QND Probe
Laser

af atomic spin-angular momentum allowed us to influence the quantum sta- —_—
tistics of the measurement outcome. We showed that it is possible to harmess B k|
measurement backaction as a form of actuation in quantum contral, and thus o e ‘ o

we describe a valuable tool for quantum information scence, Our feedback- B p cownwaenml§
mediated procedure generates spin-squeszing, forwhich the reduction in quan- W_:,,‘:;Lm\_;l':

Ply,)

P{yayy)

"
¥

tum uncertainty and resulting atomic entanglement are not conditioned on the

Mmeasurement autoome,

Plyzl

First detailed theory:

H.M. Wiseman and G. J. Milburn, N E At f . o =

Phys. Rev. Lett. 70, 548 (1993)

No experimental attempts of quantum feedback in solid-state yet

(even theory is still considered controversial)
Experiments soon?
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Summary on simple quantum feedback
of a solid-state qubit

* Very straightforward, practically classical feedback idea
(monitoring the phase of oscillations via quadratures)
works well for the qubit coherent oscillations

* Price for simplicity is a less-then-ideal operation
(fidelity is limited by ~95%)

* Feedback operation is much better than expected

* Relatively simple experiment (simple setup, narrow
bandwidth, inefficient detectors OK, simple verification)

Alexander Korotkov University of California, Riverside



Quadratic Quantum Measurements
Mao, Averin, Ruskov, Korotkov; Phys. Rev. Lett. 93, 056803 (2004)

qubit 1 detector qubit 2 Vea _T_ Elj _T_ng V() v, I_ quadratic
0> 11> ” 1> 10> )_-[ O
QOFHQO wd's” 1,0
Aq 7. i
qub1ta SET qubltb bias R | | |
Setup similar to Ruskov-Korotkov, PRB 67, 241305(R) (2003), 4,
but a nonlinear (instead of a linear) detector is considered
Linear detector Noninear detector Quadratic detector
! I(11)
I(11)
: I(tV)=I(L) ; I(tL)=I(11) I(tL)=I(11)
I(11) ' I(11) ‘ I(LL)=1(11)

Quadratic detection is useful for quantum error correction (Averin-Fazio, 2002)
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Bayesian formalism for a nonlinear detector

H=H,p +Hppp + Z [t({azj})f'l'ﬁ({azj}kﬁ]

j=1,2
tH(x)=t, + 510'; + 0, af + /]a'zla-zz o i = 0 = quadratic detector

Assumed: 1) weak tunneling in the detector, 2) large detector voltage
(fast detector dynamics, and 3) weak response.
The model describes an ideal detector (no extra noises).

Recipe: Coupled detector-qubits evolution and frequent collapses
of the number n of electrons passed through the detector

Two-qubit evolution (Ito form):

d 1
— P = ~ilHggys Pl +U(O) =Dy + 1, = AD) = i@1) Pt ~ Via Pt
0

Vie =2+ Tt =14 D+ 0 11y Pl, @y =arg(t,t)
(D=3 . Pl I =(Ta =TIt [P, Sy =2(T +T )4, [

(The formula happens to be the same as for linear detector)

Alexander Korotkov University of California, Riverside



Linear detector

|

12 -

10 —- analy-
87 tical
6 — nume
4- .

rical
2 _
0 | | -
0 I /o 2 3

Nonlinear detector

Si(w)/S,,

S N B~ O
|

N

1

=)

WwQ 2 3

Quadratic detector

S(w)/S,,

6 I |

[\ N
L4 1

I

o

— .
0 1 /o 2 3

1=11,2=11,3=11,4=]|

Alexander Korotkov

Two-qubit detection
(oscillatory subspace)

~ 8§  Q}ADT
SO = -

F=n""(AN*/4Sy, Al =1, - I,; =13 -1,

Spectral peak at Q, peak/noise = (32/3)n
(Q is the Rabi frequency) (Ruskov-A.K., 2002)

Extra spectral peaks at 2Q and 0

(analytical formula for weak coupling case)

4Q* (AT
(o -40%)* + M f
(Al =13 —1yy, 1) =1y, 1) =13)

S;(w)=§, +

Peak only at 2Q), peak/noise = 4n
Mao, Averin, Ruskov, A.K., 2004 2=
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Two-qubit quadratic detection: scenarios and switching

Three scenarios: 1) collapse into |11 — 11U =108, current Ir, flat spectrum

(distinguishable by 5) collapse into |11 - 110 =208, current Igg, flat spectrum

average current : .. ,
8 ) 3) collapse into remaining subspace |34U8 | current

(Iew* lge)/2, spectral peak at 2Q, peak/pedestal = 4n.

/|;23 Switching between states due to imperfections
18 || 348 1) Slightly different Rabi frequencies, AQ=Q,-Q,
L0- B —  Tipo2p=Tap_1p=(BQ)* /27, T =771 (A1) /45,
0.8—- 20 I S.(@)=S +(AI)2r 1
— 1 — 20 2 2
S 06 - (AQ)" 1+ X 1(8Q)? |
Q
47 - 2) Slightly nonquadratic detector, I,#1,
02 - r23_>34B=[(II_I4)/AI]2r/2
0.0 L
. . 2 4Q%(ADT
6E+4 ot 8E+4 — +
i | - SO e A
3) Slightly asymmetric qubits, €¢#0

(A6 1
27T (I, - 1,)* 1+[4e(AT)? /3T (1, - I,)*]?

Mao, Averin, Ruskov, Korotkov, 2004

Alexander Korotkov University of California, Riverside
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Effect of qubit-qubit interaction

- V/A=0.0

— ' ‘ V 1,2
J

V - interaction between two qubits

| First spectral peak splits (first order in v),

second peak shifts (second order in v)
;.= [A+(v/2)]12 - v/2
Wy = [A2+V/2)]V2 + V)2
W, =2[A%+(v/2)] 2=, + 0y,

Summary on quadratic quantum measurements

* Bayesian formalism is the same as for linear detectors

e Detector nonlinearity leads to the second peak in the spectrum (at 2Q),
in purely quadratic case there is no peak at Q
(very similar to classical nonlinear and quadratic detectors)

e Qubits become entangled (with some probability) due to measurement,
detection of entanglement is easier than for a linear detector (current
instead of spectrum), imperfections lead to switching to/from entanglemenfz=

Alexander Korotkov
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QND squeezing of a nanoresonator

yryyy. Ruskov, Schwab, Korotkov, cond-mat/0406416

T — A2 A2
resonator H,=p"/2m +ma)3x /2
X " O ADET = ZIZEI“;“I +Zr:E,,a;fa,, +;(Ma;ar +H.c.)
v HA = AM < T +H. .
QPC — I(®) INT Z( xXaya, c.)

lr

01 GHz , T0O50 mK,

N
L/V\/\/\ V) “ “ “ ” ‘ :Ij_t_g/l' ;)gantum behavior 7<hw,
O or Tt /O <h/2

obs

Quite similar to Hopkins, Jacobs, Habib, Schwab, PRB 2003
(continuous monitoring and quantum feedback to cool down)

New feature: Braginsky’s stroboscopic QND measurement using
modulation of detector voltage = squeezing becomes possible
Potential application: ultrasensitive force measurements

Other most important papers:
Doherty, Jacobs, PRA 1999 (formalism for Gaussian states)
Mozyrsky, Martin, PRL 2002 (ensemble-averaged evolution)
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Stroboscopic QND measurements

Quantum nondemolition (QND) measurements (Braginsky-Khalili book)
(a way to suppress measurement backaction and overcome standard quantum limit)

Idea: to avoid measuring the magnitude conjugated to the magnitude of interest
x(tl) x(tz)
® ®

Standard quantum limit
Example: measurement of x(t,)-x(t4) Ap > h/20x

First measurement: Ap(t4)>7n/2Ax(t4), then even for accurate second measurement
inaccuracy of position difference is Ax(t4) +(t>-t1) 7/2mAx(t4) > (t2-t1)h/21/2m

Stroboscopic QND measurements (Braginsky et al., 1978; Thorne et al., 1978)

Idea: second measurement exactly one oscillation
period later is insensitive to Ap

(or At=nT/2, T=21V W)

oscillator

N/

Difference in our case: e continuous measurement
* weak coupling with detector
 quantum feedback to suppress “heating”

Alexander Korotkov University of California, Riverside



Bayesian formalism for continuous
measurement of a nanoresonator

A

(111 )1/ Hozﬁz/2m+mwzfc2/2
DET = ZElalal +ZEr“r“r +Z(M"l“r tH.c.)

HINT Z(Aanla,, +H. c)

lr
Current Ix=27T(M+AMx) ,q,q.ezV/h =1, tkx

Detector noise Sy =38, =2el

Recipe: frequent collapses of the number of QPC electrons

Nanoresonator evolution (Stratonovich form), same Eqn as for qubits:
dpo(x,x X, X 1
2D - 1y, 4 2D {I(t)(lx *Lo ~UD) (141 —2<12>)}

dt So
(=2 Ip(x,x), 1) =1, +&(1), Sg =S,
Ito form (same as in many papers on conditional measurement of oscillators):

dp(x,x) ? _N\2 ! i ;o I
I [Ho,p] 4S0/7(x X) ,O(x,x)+S0 (x +x =2(x)) p(x,x)(2)

After that we practlcally follow Doherty-Jacobs (1999) and Hopkins et al. (2003)

Alexander Korotkov University of California, Riverside




Evolution of Gaussian states

Assume Gaussian states (following Doherty-Jacobs
and Hopkins-Jacobs-Habib-Schwab),
P then p(x,x’) is described by only 5 magnitudes:
(X), {p) - average position and momentum (packet center),
D,, Dp, Dxp — variances (packet width)

Assume large Q-factor (then no temperature)
Voltage modulation f(t)V;: k=f(Oky, I, =f(O)Ty tkyx), S; 9 f(O]S,
Then coupling (measurement strength) is also modulated in time:
C=f(t)|Cpy € =hK"| S may =4/ & Ty
Packet center evolves randomly and needs feedback (force F) to cool down
d(x)/dt =(p)/m+(2ky/Sy)sgnlf(#)] D, ¢ (¢)
d(p)/dt = —mafy(x)+(2ky !/ Sy)sgnl f ()] Dy, &(t) + F ()
Packet width evolves deterministically and is QND squeezed by periodic f{(f)
d(Dy)/dt=(2/m)D,, —(2ky | Sy) | f(t)| D}
d(D,)/dt = -2may Dy, +(kgh® 1 28,7) | f(2)|-(2ky 1 8))| £(£)| D,
d(D,,)/dt =(1/m)D, ~may D, —(2ky 18,)| f(£)| DD,
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Squeezing by sine-modulation, V()=}V, sin(0x)

Ruskov-Schwab-Korotkov

— i Squeezing obviously oscillates in time,
=, maximum squeezing at maximum voltage,
AU D D ‘ D ‘ momentum squeezing shifted in phase by 2.
. = +
/x\g 2 \\i Dy XK x) S = max, (Ax,)?/ D,
Q\:z 2 | — bomodilation | Apalytics (weak coupling):
N SQaw,) =37, Dw=0.36c4C, /1
1
0.5 wW=2a n - detector efficiency, C, — coupling
23 g2zt T AT (h/2may) 2 - ground state width
- D =(Bx), Dy=((x)%)-((x))?
%) ] I
D 1.6 ) _ Quantum feedback:
3 F = —mayy, (x) = ¥p(P)
%’_ 0] (same as in Hopkins et al.; without modulation
n it cools the state down to the ground state)

Feedback is sufficiently efficient, D<X>U D,

W/ ag'o 0 Squeezing up to 1.73 at W=2w,
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Squeezing by stroboscopic (pulse) modulation

1

pulse modulation W=2a}/n

1-” ” ” ” ” o8 Trlp* (x,x")]
= LD
S—
08 T T T T 1 0.4 State
7 X 0.2 purification
8 2 n n A r\ ” ﬂ ” ﬂ n {\ 25 50 75 100 125 150 175 200
Q , Qyt!27T
a3 Momentum squeezing as well
2 D .<<D Dy Dy Dy,
! (x) X ®
} 141 142 143 144 145 I
D using 6
() Wt/ 27 feedback .
12 - 1223 1 C=05 2 - ; |
1 25 [ |
@ 10 5t/Ty=0.05| n=1[ 2 M W |
o~ - oNVYVUVUVUVUVUVVVVVVYV
S B 87 § \ L
N ;c 6 - B 141 142 143 144 145
0 I B 7
g_ ) 4+ - Sa 1 wyt/ 21
MY L At Efficient squeezing at W=2w,/n
00.0' 05 10 15 20 25 (natural QND condition)
DX=(Ax)2 w/ & Ruskov-Schwab-Korotkov |
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Squeezing by stroboscopic modulation

e JLLLILOII]L

Squeezing

(Axq/Ax)?

Squeezing S

Alexander Korotkov

Analytics (weak coupling, short pulses)

Maximum squeezing Linewidth
2.3 4C,(01)’ off
SQay /my=T A= “(2 ) 4
@), Ot mn”.\/3n

C, — dimensionless coupling with detector
ot — pulse duration, Ty=2T17wy,
n — quantum efficiency of detector

(long formula for the line shape)

Finite Q-factor limits the time we can afford to
wait before squeezing develops, T, 4it/ To~Q/Tt

Squeezing saturates as ~exp(-n/ng) after
ny =37/ Cy(w, )" measurements

Therefore, squeezing cannot exceed
S =Cy0 4
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Observability of nanoresonator squeezing

Ruskov-Schwab-Korotkov
Procedure: 1) prepare squeezed state by stroboscopic measurement,
2) switch off quantum feedback 1
. . N
3) measure in the stroboscopic way X, = EZFI X;
For instantaneous measurements (df - 0) the variance of X, is

7 [ 1 1 j 1 2 -
D = | —+ - —(Ax,)" atN - o S — squeezing
X,N 0 ,
2may \ S NCyay S Ax, — ground state width
Then distinguishable from ground state (S=1)

in one run for Sa 1 (error probability ~S'1/2)

Not as easy for continuous measurements because of extra “heating”.
D, n has a minimum at some N and then increases.

However, numerically it seems miny Dy 5 ~ Z(Ax(,)2 /§ (only twice worse)

Example: miny Dy y /(Ax,) =0.078 for Cy=0.1, n=1, 5/T=0.02, 1/5=0.036

Squeezed state is distinguishable in one run (with small
error probability), therefore suitable for ultrasensitive
force measurement beyond standard quantum limit
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Summary on QND squeezing
of a nanoresonator

Periodic modulation of the detector voltage modulates
measurement strength and periodically squeezes the
width of the nanoresonator state (“breathing mode”)

Packet center oscillates and is randomly “heated” by
measurement; quantum feedback can cool it down
(keep it near zero in both position and momentum)

Sine-modulation leads to a small squeezing (<1.73),
stroboscopic (pulse) modulation can lead to a strong
squeezing (>>1) even for a weak coupling with detector

Still to be done: correct account of Q-factor and temperature

Potential application: force measurement beyond standard
quantum limit
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Conclusions

e Bayesian formalism for solid-state quantum measurements
is being used to produce various experimental predictions
(though still not well-accepted in solid-state community)

e Simple, practically classical feedback using quadratures of
the detector current should work well for qubit oscillations;
relatively simple experiment

e Measurements by nonlinear (quadratic) detectors are described
by the Bayesian formalism (same formulas as for linear detector),
nonlinearity leads to the spectral peak at double frequency
and makes easier qubit entanglement by measurement

e Measurement of a nanoresonator with strength modulated in time
(modulating detector voltage) can produce a squeezed state;
squeezed state is measurable and potentially useful

e No solid-state experiments yet; hopefully, reasonably soon
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