SPIE, Santa Fe, June 2003

Noisy quantum measurement of solid-state qubits: Bayesian approach

Alexander Korotkov

University of California, Riverside

Outline:

Bayesian formalism

- Continuous measurement of a single qubit
- Ideal and nonideal solid-state detectors
- Bayesian formalism for entangled qubits

Experimental predictions and proposals

- Measured spectrum of Rabi oscillations
- Bell-type experiment
- Quantum feedback for a qubit
- Entanglement by measurement
- Quadratic quantum detection

Review: cond-mat/0209629, in "Quantum Noise in Mesoscopic Physics" (Kluwer, 2003)

Acknowledgement: Rusko Ruskov

Support:

Alexander Korotkov

Examples of solid-state qubits and detectors

 $\begin{array}{c} H & \bullet \\ \circ \\ \bullet \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ I(t) \end{array}$

Double-quantum-qot and quantum point contact (QPC) Cooper-pair box and single-electron transistor (SET) **Two SQUIDs**

 $H = H_{\text{QB}} + H_{\text{DET}} + H_{\text{INT}}$

 $H_{QB} = (\varepsilon/2)(c_1^+c_1^-c_2^+c_2) + H(c_1^+c_2^+c_2^+c_1) \qquad \varepsilon \text{ - asymmetry, } H - \text{tunneling}$ $\Omega = (4H^2 + \varepsilon^2)^{1/2} - \text{frequency of quantum coherent (Rabi) oscillations}$

Two levels of average detector current: I_1 for qubit state $|1\rangle$, I_2 for $|2\rangle$

Response: $\Delta I = I_1 - I_2$ Detector noise: white, spectral density S_I

Alexander Korotkov

What happens to a qubit state during measurement?

For simplicity (for a moment) $H = \varepsilon = 0$, infinite barrier (frozen qubit), evolution due to measurement only

"Orthodox" answer

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \\ \xrightarrow{} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

"Conventional" (decoherence) answer (Leggett, Zurek)

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2} & \frac{\exp(-\Gamma t)}{2} \\ \frac{\exp(-\Gamma t)}{2} & \frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

1> or 2>, depending on the result no measurement result! ensemble averaged

Orthodox and decoherence answers contradict each other!

applicable for:	Single quantum systems	Continuous measurements
Orthodox	yes	no
Conventional (ensemble)	no	yes
Bayesian	yes	yes

Bayesian formalism describes gradual collapse of single quantum systems Noisy detector output *I(t)* should be taken into account

Alexander Korotkov

Bayesian formalism for a single qubit

Similar formalisms developed earlier. Key words: Imprecise, weak, selective, or conditional measurements, POVM, Quantum trajectories, Quantum jumps, Restricted path integral, etc.

Names: E.B. Davies, K. Kraus, A.S. Holevo, C.W. Gardiner, H.J. Carmichael, C.M. Caves, M.B. Plenio, P.L. Knight, M.B. Mensky, D.F. Walls, N. Gisin, I.C. Percival, G.J. Milburn, H.M. Wiseman, R. Onofrio, S. Habib, A. Doherty, etc. (very incomplete list)

"Microscopic" derivation of the Bayesian formalism

Alexander Korotkov

"Quantum Bayes theorem" (ideal detector assumed)

Ideality of realistic solid-state detectors (ideal detector does not cause single qubit decoherence)

1. Quantum point contact

2. SET-transistor

Theoretically, **ideal quantum detector**, η=1 A.K., 1998 (Gurvitz, 1997; Aleiner et al., 1997)

> Experimentally, η > 80% (using Buks et al., 1998)

Very non-ideal in usual operation regime, η «1 Shnirman-Schőn, 1998; A.K., 2000, Devoret-Schoelkopf, 2000

However, reaches ideality, $\eta = 1$ if:

- in deep cotunneling regime (Averin, 2000, van den Brink, 2000)
- S-SET, using supercurrent (Zorin, 1996)
- S-SET, double-JQP peak (Clerk et al., 2002) ??? S-SET, usual JQP (Johansson et al.), onset of QP branch (?)
- resonant-tunneling SET, low bias (Averin, 2000)

Can reach ideality, η = 1 (Danilov-Likharev-Zorin, 1983; Averin, 2000)

4. FET ?? HEMT ?? ballistic FET/HEMT ??

Bayesian formalism for *N* **entangled qubits measured by one detector**

$$\frac{d}{dt}\rho_{ij} = \frac{-i}{\hbar}[\hat{H}_{qb},\rho]_{ij} + \rho_{ij}\frac{1}{S}\sum_{k}\rho_{kk}[(I(t) - \frac{I_{k} + I_{i}}{2})(I_{i} - I_{k}) + (I(t) - \frac{I_{k} + I_{j}}{2})(I_{j} - I_{k})] - \gamma_{ij}\rho_{ij} \quad \text{(Stratonovich form)}$$
$$\gamma_{ij} = (\eta^{-1} - 1)(I_{i} - I_{j})^{2}/4S_{I} \qquad I(t) = \sum_{i}\rho_{ii}(t)I_{i} + \xi(t)$$

Averaging over $\xi(t)$ î master equation

No measurement-induced dephasing between states $|i\hat{O}and j\hat{O}if I_i = I_j!$ A.K., PRA 65 (2002), PRB 67 (2003)

Some experimental predictions and proposals

- Direct experiments (1998)
- Measured spectral density of Rabi oscillations (1999, 2000, 2002)
- Bell-type correlation experiment (2000)
- Quantum feedback control of a qubit (2001)
- Entanglement by measurement (2002)
- Measurement by a quadratic detector (2003)

Direct Bayesian experiments (A.K., 1998)

Idea: check the evolution of (almost pure!) qubit state given by Bayesian equations

Evolution from 1/2-alive to 1/3-alive Schrödinger cat

- 1. Prepare coherent state and make *H*=0.
- 2. Measure for a finite time *t*.
- 3. Check the predicted wavefunction (using evolution with $H\neq 0$ to get the state $|1\rangle$.

- 1. Start with completely mixed state.
- 2. Measure and monitor the Rabi phase.
- 3. Stop evolution (make *H*=0) at state |1>.
- 4. Measure.

Difficulty: need to record noisy detector current I(t), typical required bandwidth ~ 1-10 GHz.

Alexander Korotkov

Measured spectrum of Rabi oscillations (or spin precession)

What is the spectral density $S_I(\omega)$ of detector current?

Assume classical output, eV » $\hbar\Omega$

 $\varepsilon = 0, \quad \Gamma = \eta^{-1} (\Delta I)^2 / 4S_0$ $S_I(\omega) = S_0 + \frac{\Omega^2 (\Delta I)^2 \Gamma}{(\omega^2 - \Omega^2)^2 + \Gamma^2 \omega^2}$ Spectral peak can be seen, but

peak-to-pedestal ratio $\leq 4\eta \leq 4$

(result can be obtained using various methods, not only Bayesian method)

Weak coupling,
$$\alpha = C/8 \ll 1$$

$$S_{I}(\omega) = S_{0} + \frac{\eta S_{0}\varepsilon^{2} / H^{2}}{1 + (\omega\hbar^{2}\Omega^{2} / 4H^{2}\Gamma)^{2}} + \frac{4\eta S_{0}(1 + \varepsilon^{2} / 2H^{2})^{-1}}{1 + [(\omega - \Omega)\Gamma(1 - 2H^{2} / \hbar^{2}\Omega^{2})]^{2}}$$

A.K., LT'99 Averin-A.K., 2000 A.K., 2000 Averin, 2000 Goan-Milburn, 2001 Makhlin et al., 2001 Balatsky-Martin, 2001 Ruskov-A.K., 2002 Mozyrsky et al., 2002 Balatsky et al, 2002 Bulaevskii et al., 2002 Bulaevskii et al., 2002

Possible experimental confirmation?

(STM-ESR experiment similar to Manassen-1989)

APPLIED PHYSICS LETTERS

VOLUME 80, NUMBER 3

21 JANUARY 2002

Electronic spin detection in molecules using scanning-tunnelingmicroscopy-assisted electron-spin resonance

C. Durkan^{a)} and M. E. Welland

Nanoscule Science Luboratory, Department of Engineering, University of Cambridge, Trampington Street, Cambridge CB2 1PZ, United Kingdom

(Received 8 May 2001; accepted for publication 8 November 2001)

By combining the spatial resolution of a scanning-tunneling microscope (STM) with the electronic spin sensitivity of electron-spin resonance, we show that it is possible to detect the presence of localized spins on surfaces. The principle is that a STM is operated in a magnetic field, and the resulting component of the tunnel current at the Larmor (precession) frequency is measured. This component is nonzero whenever there is tunneling into or out of a paramagnetic entity. We have

FIG. 3. STM-ESR spectra of (a), (b) two different areas (a few nm apart) of the molecule-covered sample and (c) bare HOPG. The graphs are shifted vertically for clarity.

FIG. 1. Schematic of the electronics used in STM-ESR.

 $\frac{p e a k}{n o i s e} \le 3.5$ (Colm Durkan, private comm.)

10 nm

FIG. 2. (Color) STM image of a 250 Å \times L50 Å area of HOPG with four adsorbed BDPA molecules.

Bell-type correlation experiment

A.K., 2000

Idea: two consecutive finite-time (imprecise) measurements of a qubit by two detectors; probability distribution $P(Q_A, Q_B, \tau)$ shows the effect of the first measurement on the qubit state.

Proves that the qubit remains in a pure state during the measurement (for $\eta = 1$).

Advantage: no need to record noisy detector output with GHz bandwidth; instead, we use two detectors and fast ON/OFF switching.

Quantum feedback control of a solid-state qubit

Goal: maintain desired phase of Rabi oscillations in spite of environmental dephasing (keep qubit "fresh")

Idea: monitor the Rabi phase ϕ by continuous measurement and apply feedback control of the qubit barrier height, $\Delta H_{FB}/H = -F \times \Delta \phi$

To monitor phase ϕ we plug detector output I(t) into Bayesian equations

Quantum feedback in quantum optics is discussed since 1993 (Wiseman-Milburn), recently first successful experiment in Mabuchi's group (Armen et al., 2002).

Alexander Korotkov

Performance of quantum feedback

(no extra environment)

(for weak coupling and good fidelity)

Detector current correlation function

$$K_{I}(\tau) = \frac{\left(\Delta I\right)^{2}}{4} \frac{\cos \Omega t}{2} \left(1 + e^{-2FH\tau/\hbar}\right)$$
$$\times \exp\left[\frac{C}{16F}\left(e^{-2FH\tau/\hbar} - 1\right)\right] + \frac{S_{I}}{2}\delta(\tau)$$

Alexander Korotkov

For ideal detector and wide bandwidth, fidelity can be arbitrary close to 100% $D = \exp(-C/32F)$

Ruskov & Korotkov, PRB 66, 041401(R) (2002) University of California, Riverside

Suppression of environment-induced decoherence by quantum feedback

If qubit coupling to the environment is 100 times weaker than to the detector, then $D_{\text{max}} = 99.5\%$ and qubit fidelity 99.75%. (D = 0 without feedback.)

Two-qubit entanglement by measurement

Ruskov & A.K., 2002

Assume symmetric case: equal symmetric qubits, $\varepsilon_a = \varepsilon_b = 0$, $H_a = H_b$, $\Omega_a = \Omega_b$, equal coupling, $C_a = C_b$, no direct interaction, u = 0

$$\hat{H} = \hat{H}_{QB} + \hat{H}_{DET} + \hat{H}_{INT}$$

$$\hat{H}_{QB} = \mathcal{E}_a(a_{\downarrow}^{\dagger}a_{\downarrow} - a_{\uparrow}^{\dagger}a_{\uparrow}) + H_a(a_{\uparrow}^{\dagger}a_{\downarrow} + a_{\downarrow}^{\dagger}a_{\uparrow}) + \mathcal{E}_b(b_{\downarrow}^{\dagger}b_{\downarrow} - b_{\uparrow}^{\dagger}b_{\uparrow}) + H_b(b_{\uparrow}^{\dagger}b_{\downarrow} + b_{\downarrow}^{\dagger}b_{\uparrow})$$

 $I(\uparrow\downarrow)=I(\downarrow\uparrow)$, states indistinguishable by measurement |BellÚ=(|\uparrow↓Ú |↓↑Ú)/ 2 does not evolve

> Collapse into BellÚstate (spontaneous entanglement) with probability 1/4 starting from fully mixed state

Alexander Korotkov

Using trivial feedback procedure (applying noise in undesirable state), we can keep two qubits entangled

Detector may be nonideal (just $32\eta/3$ peak), so SET is OK

Quadratic Quantum Detection

Mao, Averin, Ruskov, A.K., 2003

Two-qubit detection (oscillatory subspace) $S_{I}(\omega) = S_{0} + \frac{8}{3} \frac{\Omega^{2} (\Delta I)^{2} \Gamma}{(\omega^{2} - \Omega^{2})^{2} + \Gamma^{2} \omega^{2}}$ $\Gamma = \eta^{-1} (\Delta I)^{2} / 4S_{0}, \Delta I = I_{1} - I_{23} = I_{23} - I_{4}$ **Spectral peak at \Omega, peak/noise = (32/3)** η

(Ω is the Rabi frequency)

Extra spectral peaks at 2Ω and 0

$$S_{I}(\omega) = S_{0} + \frac{4\Omega^{2}(\Delta I)^{2}\Gamma}{(\omega^{2} - 4\Omega^{2})^{2} + \Gamma^{2}\omega^{2}}$$
$$(\Delta I = I_{23} - I_{14}, I_{1} = I_{4}, I_{2} = I_{3})$$

Peak only at 2 Ω , peak/noise = 4 η Mao, Averin, Ruskov, A.K., 2003 University of California, Riverside

Two-qubit quadratic detection: scenarios and switching

Three scenarios: (distinguishable by average current) collapse into |↑↓ - ↓↑Ú= |1𝔅, current I_Æ, flat spectrum
 collapse into |↑↑ - ↓↓Ú= |2𝔅, current I_Æ flat spectrum
 collapse into remaining subspace |34𝔅, current (I_Æ + I_Æ)/2, spectral peak at 2Ω, peak/pedestal = 4η.

Switching between states due to imperfections

1) Slightly different Rabi frequencies, $\Delta \Omega = \Omega_1 - \Omega_2$ $\Gamma_{1B \to 2B} = \Gamma_{2B \to 1B} = (\Delta \Omega)^2 / 2\Gamma, \quad \Gamma = \eta^{-1} (\Delta I)^2 / 4S_0$ $S_I(\omega) = S_0 + \frac{(\Delta I)^2 \Gamma}{(\Delta \Omega)^2} \frac{1}{1 + [\omega \Gamma / (\Delta \Omega)^2]^2}$ 2) Slightly nonquadratic detector, $I_1 \neq I_4$ $\Gamma_{2B \to 34B} = [(I_1 - I_4) / \Delta I]^2 \Gamma / 2$ $S_I(\omega) = S_0 + \frac{2}{3} \frac{4\Omega^2 (\Delta I)^2 \Gamma}{(\omega^2 - 4\Omega^2)^2 + \Gamma^2 \omega^2}$ $+ \frac{8(\Delta I)^4}{27\Gamma (I_1 - I_4)^2} \frac{1}{1 + [4\omega (\Delta I)^2 / 3\Gamma (I_1 - I_4)^2]^2}$

Conclusions

- Bayesian formalism for continuous quantum measurement is simple (almost trivial); but still a new interesting subject in solid-state mesoscopics
- Several experimental predictions have been already made; however, many problems not studied yet
- No experiments yet (except one); hopefully, coming soon

