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Single-electron memory vs. single-electron logic

* Much simpler architecture for memory

* Passive information storage vs. active information processing
» Easier temperature requirements for memory

 Random background charge OK for single-electron memory

Single-electron memory is much simpler for implementation
then single-electron logic

Various meanings of “single-electron memory”

* Bit representation by one electron (or few electrons)
e Coulomb blockade for information storage
* Read-out by single-electron transistor
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bit representation?
Advantages Disadvantages
Fundamental limit e Information destroyed by single

Lowest energy dissipation leakage event

* Error probability grows linearly

Storage element as small
with time

as one atom

No charging “tails” fi fast * Refreshing impossible

Best case: single-electron storage (using single atoms?!)
but extra redundancy (either few one-electron
elements in one memory cell or check sums)
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Two possible regimes:

either many electrons (n>10) stored on the floating gate;
random background charge OK,
Or one electron; very long retention time for background
charge q,=-e/2
Few-electron (2-10) regime is bad (fluctuations are too large)

A. Korotkov, J.Appl.Phys. 92, 7291 (2002)
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Defect-tolerant architecture UNWERSITYODFCAHFORMA

based on nanofuses and nanoshorts RIVERSIDE
Idea: bit line rerouting [] memory cen
by blowing nanofuses @ inuse
and activating nanoshorts
[E bad cell

Needs reliable single-use nanofuse 1-0
nanofuses and nanoshorts

. . nanoshort 0-1
(simple devices!)

$ K

Works even for <L— X i R
low-yield cells: > = 4 -

A. Korotkov, J.Appl.Phys. 92, 7291 (2002)
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Good agreement between

theory and experiment
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Full “orthodox” model for SET is used

J. Yang, T. Gong, and A. Korotkov
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T-SPICE works for SET circuits,
but not very well
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J. Yang, T. Gong, and A. Korotkov



