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Single-electron memory vs. single-electron logic
• Much simpler architecture for memory
• Passive information storage vs. active information processing
• Easier temperature requirements for memory
• Random background charge OK for single-electron memory 

Single-electron memory is much simpler for implementation 
then single-electron logic

Various meanings of “single-electron memory”
• Bit representation by one electron (or few electrons)
• Coulomb blockade for information storage
• Read-out by single-electron transistor



Single-electron or few-electron 
bit representation?

Advantages
• Fundamental limit
• Lowest energy dissipation
• Storage element as small 

as one atom 
• No charging “tails” fi fast

Disadvantages
• Information destroyed by single

leakage event
•  Error probability grows linearly 

with time
• Refreshing impossible

Best case:   single-electron storage (using single atoms?!)
but extra redundancy (either few one-electron 
elements in one memory cell or check sums)
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(solid line: random 
background charge,
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Two possible regimes: 
either many electrons (n>10) stored on the floating gate; 

random background charge OK,  
or one electron; very long retention time for background

charge q0=-e/2 
Few-electron (2-10) regime is bad (fluctuations are too large)
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SET operates as a switch signals before and after erase compared

simpler better SNR, higher T
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Defect-tolerant architecture
based on nanofuses and nanoshorts

A. Korotkov, J.Appl.Phys. 92, 7291 (2002)

Idea:  bit line rerouting
by blowing nanofuses
and activating nanoshorts

Needs reliable single-use
nanofuses and nanoshorts

(simple devices!)

Works even for 
low-yield cells:



Calculating capacitance matrix 
by FASTCAP
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10 mV0.20.73 aF3.3 aFND exp

8 mV0.160.69 aF2.0 aFTheory

Vg periodCfi/CffCib,tCic,t

Good agreement between 
theory and experiment



T-SPICE for SET circuits modeling

Full “orthodox” model for SET is used

J. Yang, T. Gong, and A. Korotkov



T-SPICE modeling results

J. Yang, T. Gong, and A. Korotkov

Resistively-loaded SET inverter

Ring oscillator with three SETs

T-SPICE works for SET circuits,
but not very well


