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Abstract—The goal of this tutorial is three-fold: to facilitate
cross-disciplinary communication among power engineers and
economists by explaining and illustrating basic financial risk
management concepts relevant for wholesale power markets
(WPMs); to illustrate the complicated and risky strategic decision
making required of power traders and risk managers operating
in multiple interrelated submarkets comprising modern WPMs;
and to briefly discuss the potential of agent-based modeling for
the study of this decision making.
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I. INTRODUCTION

HE importance of financial risk management is exempli-

fied by the recent financial crisis. A key lesson learned
is the need to consider carefully the intricate connections
between financial and real markets. It has long been accepted
that real-sector crises can lead to credit crunches and other
forms of financial stress. No one can now doubt the ability of
financial crises to trigger corresponding crises in real-sector
markets leading to severe unemployment and recession.

A second key lesson learned is that company financial
risk management practices must be continuously reexamined
and retooled as financial instruments become increasingly
complex. According to a recent survey [1], 53% of respondent
Chief Financial Officers (CFO) at financial services companies
view bank risk management practices as a reason for the
financial turmoil. A majority of the surveyed CFOs stated
that they plan to put their risk management practices under
a microscope, and that this investigation should in many
instances reach all levels of the organization, from the Board
of Directors down, and from the shop floor up.

A third key lesson learned is that well-designed market reg-
ulations and proper market monitoring are also critical to the
proper functioning of financial markets. In the United States,
the Obama administration has proposed “Financial Regulatory
Reform - A New Foundation” which aims at comprehensive
restructuring of the regulatory landscape. In Europe, the Com-
mittee of European Banking Supervisors (CEBS) has also laid
out guidelines and principles for addressing various loopholes
in the existing regulations for banks [2].
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Similarly challenging financial risk management issues have
recently arisen in wholesale power markets (WPMs) ([3],
[4]). At the level of market participants, the transition from
a monopoly paradigm characterized by a guaranteed rate of
return to a more competitive market design has created various
unfamiliar financial risks. Market participants have thus been
struggling to set up a sound integrated risk management
framework that can facilitate their decision making with regard
to day-ahead energy market trading, Financial Transmission
Rights (FTRs) auction participation, and bilateral contract ne-
gotiations. At the regional and national level, market operators
and regulatory agencies are striving to revise WPM designs in
an attempt to provide proper incentives for prudent short to
medium-term management of financial risks.

Addressing these critical financial risk-management issues
is particularly difficult for WPM participants due to the unique
properties of electricity as a commodity. These properties
include instantaneous delivery, limited storability, inelastic
short-term demand, and compliance with Kirchhoff’s laws.
These peculiar characteristics result in excessive volatility
and spiking of electricity prices, unmatched by any other
commodities and financial assets [5]. They also lead to the
need for special market instruments and a WPM structure that
involves integrated and interrelated market operations.

An additional layer of complexity arises due to game
theoretic and behavioral aspects. A WPM in modern guise
is an open-ended dynamic game among market participants,
a market operator, and one or more regulatory agencies [6].
The market participants repeatedly interact with each other in
interrelated submarkets. As researchers have shown (e.g., [7]),
under these conditions pivotal generation companies empow-
ered by even simple learning algorithms can easily learn to
exercise market power either individually or through implicit
collusion unless proper market monitoring and mitigation
strategies are in place. This market power can be expressed
through different types of strategic market behaviors (e.g.
economic or physical capacity withholding).

Recently a variety of new tools have been proposed for
managing financial risk management in WPMs. New mod-
eling approaches have also been explored, such as agent-
based modeling (ABM), the computational modeling of real-
world phenomena as systems of autonomous interacting units.
This tutorial study provides a summary overview of these
developments.



II. FINANCIAL RISK MANAGEMENT BASICS
A. Definition of Risk

The concept of risk does not have a universally accepted
definition. Economists, statisticians, physicists, philosophers,
psychologists, decision theorists, and insurance theorists all
interpret risk in their own ways. The concept of risk not only
varies by fields of application but also by situation.

Nevertheless, most risk definitions share two common ele-
ments. The first element is the possibility of an undesirable
outcome that deviates from what is expected. The second
element is a basic uncertainty regarding the occurrence of this
undesirable outcome. If this uncertainty can be quantified in
terms of probability assessments, then the situation is said to
be one of calculable risk. If, furthermore, these probability
assessments are interpreted as being objectively true assess-
ments (i.e., independent of any person’s beliefs or information
state), the risk is said to be objective; otherwise it is said to
be subjective.

Researchers focusing on risk management in wholesale
power markets typically do not provide a clear definition of
“risk.” An exception is Liu and Wu [8], who define risk
to be “the hazard to which a market participant is exposed
because of uncertainty.” This definition clearly reflects the two
previously mentioned common elements. However, it does not
include the idea of anticipation or expectation as a benchmark.

In the following section we consider the general character-
istics of a typical financial risk-management process, where
financial risk is defined to be “the possibility that financial
outcomes for an investor deviate adversely from what he
expects.” In the remaining sections we focus in greater detail
on the specific types of financial risk faced by a generation
company (GenCo) operating within a WPM. In all cases we as-
sume that financial risk is calculable in terms of probabilities,
and that these probability assessments represent the subjective
assessments of the risk manager.

B. Financial Risk Management as a Four-Stage Process

Consider a decision maker charged with managing financial
risk for a portfolio of assets owned by an investor. Typically
this risk-management process involves four stages.

In the first stage the risk factors representing the principal
sources of financial risk are identified and modeled. In the
second stage the financial risk arising from these multiple risk
factors is mapped into a scalar loss function. In the third stage
this loss function is used to derive one or more financial risk
measures for gauging the financial riskiness of the portfolio as
a whole. Finally, in the fourth stage these comprehensive finan-
cial risk measures, possibly in combination with appropriate
supplemental tools (e.g., stress testing), are used to diversify
the asset portfolio to appropriately protect against financial risk
in accordance with the preferences and needs of the investor.

These four stages are explained more carefully below.

Stage 1: Identification and Modeling of Financial Risk Factors

The first stage in a typical risk-management process is to
identify the underlying risk factors and then build a sensible
model for them. A simple example is given here to illustrate
this stage.

Consider a risk manager attempting to manage a portfolio
of assets for a profit-maximizing GenCo facing two sources
of risk: a variable electric energy demand level D, and a
variable fuel price level F. Suppose for simplicity that D
and F' can only take on two values, High (denoted by 1) or
Low (denoted by 0). The sample space {2 consisting of all
possible outcome pairs (D;, F;) for D and F' then takes the
form Q@ = {(1,1),(1,0),(0,1),(0,0)}. Define F to be the
collection of all subsets of 2, including the empty set. The
two risk factors D and F' can then be modeled by defining an
appropriate joint probability measure P on F.

Additional discussion of this stage is provided in Sec-
tion III-A.

Stage 2: Derivation of a Loss Function

The second risk-management stage typically involves the
derivation of a real-valued loss function that measures the
relative undesirability of different possible risk-factor config-
urations in accordance with the preferences of the portfolio
investor. Continuing with the example presented in Stage 1,
the risk manager would assign a real-valued loss L(w) to each
possible element w of ). For example, if high fuel prices
are the GenCo’s main concern, the risk manager might assign
losses as follows: L(0,1) > L(1,1) > L(0,0) > L(1,0).
Stage 3: Risk Measure Selection

The third risk-management stage typically involves the
choice of an appropriate risk measure for characterizing overall
portfolio risk for the particular situation at hand. This risk-
measure selection process could involve comparative consid-
eration of several candidate risk measures, such as return-
rate variance, Value-at-Risk and Conditional Value-at-Risk.
The definitions and derivations of these commonly used risk
measures are discussed in Section III-B.
Stage 4: Portfolio Optimization

The last stage in a typical financial risk-management process
is portfolio optimization, i.e., the determination of an optimal
portfolio augmentation and rebalancing to achieve the type
of risk-return characteristics appropriate for the investor. This
portfolio optimization problem will take on different forms
and require different solution techniques depending on the
particular risk measure(s) and supplemental risk-management
tools selected by the risk manager.

III. RISK-MANAGEMENT TOOLS AND METHODS

This section provides additional details regarding the tools
and methods used to implement the four-stage risk man-
agement process outlined in Section II-B. A more extensive
discussion can be found in [9].

A. Tools for Modeling Risk Factors

In the financial industry, three methods are commonly used
to model risk factors in any given time period. These methods
are the “analytical variance-covariance method,” “historical
simulation,” and “Monte Carlo analysis” [10].

The analytical variance-covariance approach, also called
the parametric approach, assumes that changes in risk factors
follow a multivariate normal distribution. In practice, the un-
conditional or conditional mean vector and covariance matrix



of the assumed multivariate normal distribution are estimated
based on historical data for risk-factor changes. The main
advantages of this method are the simplicity of the analytical
solution and its speed of calculation. The main drawback is
that the normality assumption can be problematic.

In the historical simulation approach, data are collected on
the historical frequencies of risk-factor configurations, and the
resulting histogram is then used to estimate the distribution of
future risk-factor configurations. Compared to the variance-
covariance approach, the historical simulation approach is very
intuitive and easy to implement. However, if the historical
frequencies vary over time, the resulting estimate for the
distribution of future risk-factor configurations can be very
misleading.

The Monte Carlo approach involves the construction and
calibration of an explicit parametric model for a set of risk
factors based on historical data, and the subsequent use of this
model to predict future risk-factor configurations. Although
this approach has the potential to provide a much greater range
of outcomes than historical simulation, it is computationally
intensive and hence time-consuming. Moreover, constructing a
reasonable multivariate time series model for a specific group
of risk factors can be a daunting task in practice.

B. Construction of Risk Measures

In theory, the probability density function of the loss func-
tion for a portfolio of assets provides complete information
about its risk. However, portfolio managers have found these
probability density functions too cumbersome and complex for
practical applications. Instead, they have preferred to construct
simpler measures of portfolio risk that can be reduced to
the reporting of a single number. Although single-number
measures clearly lose a great deal of information through
aggregation, the issue is whether they adequately serve the
risk-management purposes of portfolio managers [11]. Three
such single-number measures are briefly reviewed below.

In traditional finance, following the work of Markowitz
[12], the measurement of risk for a portfolio of assets was
primarily associated with the variance of the portfolio’s return
rate. Although variance is a well-understood concept and
is easy to use analytically, it has some major drawbacks
[13]. The most important drawback is that variance does not
distinguish between positive and negative deviations from the
mean. Consequently it is not conceptually compatible with
definitions of risk that focus solely on negative (unfavorable)
deviations.

Beginning in the 1990s, alternative measures of portfolio
risk have increasingly been adopted in financial practice.
As discussed at length in [14]-[20], two of the best-known
measures are “VaR” and “CVaR.”

The Value-at-Risk (VaR) measure is used when a portfolio
manager is interested in making the following type of state-
ment: It is « percent certain that the portfolio loss will not be
more than VaR dollars in the next N days. More precisely, for
any given confidence level «, the VaR of a portfolio is given
by the smallest number / such that the probability that the loss
L exceeds [ is no greater than (1-a).

To put this definition in more rigorous mathematical form,
consider a probability space (2, F, P) where ) is a space of
points called the sample space, F is a sigma-field of subsets
of 2, and P is a probability measure on F. Singleton subsets
{w} of Q, assumed to be elements of F, are called elementary
events. Define ¢ = (x1,29,...z,) to be a given portfolio,
where x,, denotes the amount of money invested in the nth
asset. Let L, denote the loss function of portfolio g, where
Ly maps ) into the real line %. Define A (I) = {w € Q:
Ly(w) > 1}, and assume Ay (1) € F for each I. The Value
at Risk (VaR) for portfolio ¢ at confidence level « € [0,1] is
then defined to be

VaRo(Lg) =inf{l e R: P(AL,(I)) <1—-a}. (1)

Since its inception, VaR has been widely used by corporate
treasurers and fund managers as well as by financial institu-
tions. It has also been incorporated into the Basel II capital-
adequacy framework, an agreement among regulators on how
to calculate the minimum regulatory capital requirements for
banks. In spite of its popularity, however, VaR suffers from
several theoretical deficiencies. First, as a simple quantile of
the loss distribution, it does not provide any information about
the severity of the losses when the loss exceeds the quantile
level. This problem is illustrated in Fig. 1. Although the two
depicted portfolios have the same risk level as measured by
VaR, (L), the portfolio on the right is clearly riskier due to
its larger potential losses.

Another perceived problem with the VaR method is “non-
subadditivity.” Roughly, non-subadditivity contradicts the gen-
eral principle that diversification should reduce overall port-
folio risk. Furthermore, VaR is non-convex with respect to
the portfolio positions. Hence, in practice, it is very difficult
to solve portfolio optimization problems with VaR constraints
because they tend to induce the existence of multiple local
minima.

Having recognized the drawbacks of VaR, researchers have
worked to develop an alternative risk measure, Conditional
Value-at-Risk (CVaR), with better properties than VaR. CVaR
extends VaR by considering the expected loss for a portfolio
¢ conditional on this loss being at least as great as VaR (L),
for any given confidence level a € [0, 1]. More precisely, for
any « € [0,1], the CVaR of a given portfolio ¢ with loss
function L, is defined as:

CVaRa(Ly) = E(Ly | {w € Q: Ly(w) > VaRa(L,)}) .
2

Equivalently, CVaR can be written as:

CVaRy(Ly) = Ly(w)dP(w) , (3)

=y
l=a Ji,, (vaRa(Ly)
where

Ap, () = {weQ: Ly(w) >1} . 4)

To see the distinction between VaR and CVaR more clearly,
refer again to Fig. 1. For the given confidence level a,
the CVaR measure assigns heavier risk to the right-hand
distribution because the expected loss over the loss range
[ > VaR,(L,) is greater for this distribution. In contrast,
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VaR assigns the same risk value VaR,(L,) to each depicted
distribution.

As established in [17], CVaR has four properties required
for a coherent risk measure: subadditivity, positive homo-
geneity, monotonicity and translation invariance. Moreover,
in contrast to VaR, CVaR is convex with respect to portfolio
positions, a major practical advantage of CVaR over VaR in
applications.

C. Supplemental Tools: Stress Testing

To protect against the loss of information inherent in
the use of single-number risk measures, portfolio optimiza-
tion techniques are often supplemented with additional risk-
management tools. One commonly-used supplementary tool is
stress testing. Applied to portfolio analysis, stress testing ex-
amines how robust a portfolio’s return rate is to the occurrence
of extreme events falling outside normal market conditions.

As discussed at greater length in [18], the rationale for using
stress testing is that risk measures derived from historical data
might not adequately reflect possible future risks. For example,
a portfolio manager might be concerned about the occurrence
of a shock that he believes is more likely to occur in the
future than the historical data suggest, or about shocks that he
believes would substantially alter the historically observed cor-
relation patterns among asset returns upon which his current
risk-factor model is based.

Stress testing proceeds by examining responses to variously
specified extreme-event scenarios; it does not address how
likely it is that these scenarios will occur. If a portfolio
manager is able to assign both probability and loss assess-
ments to extreme-event scenarios, and derive the resulting
loss distribution, he can then apply any of the previously
discussed single-number risk measures. Given the meaning
of “extreme events,” however, it is unlikely that a portfolio
manager could make probability and loss assessments with
confidence. The separate scenario-conditioned results of stress
testing can provide important cautionary information about
portfolio vulnerabilities even when these assessments cannot
be comfortably made.

IV. FINANCIAL RISK MANAGEMENT IN WHOLESALE
POWER MARKETS

In this section we use a simple example to illustrate how
the four-stage risk management process described in Section
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II can be applied to wholesale power markets.! The scenario
presented below considers the short-term risk-management
problems faced by a GenCo operating in a wholesale power
market with congestion managed by LMP.
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Fig. 2. [Illustrative risk management problem for a GenCo operating in a
5-bus wholesale power market under LMP.

Consider the 5-bus scenario depicted in Fig. 2. In this
scenario a particular GenCo owns a nuclear power plant, G3,
located at bus 3, and a coal-fired power plant, G4, located at
bus 4. Other generation plants G1, G2, and G5 are located at
buses 1 and 5. There are also three LSEs 1, 2, and 3 located
at buses 2, 3, and 4 whose demand for power in each hour is
assumed to be fixed, i.e., not sensitive to price changes. Each
transmission line has an associated thermal limit (not indicated
in the figure).

Suppose that the GenCo is required each day to report a 24-
hour supply offer to the day-ahead energy market for its coal-
fired power plant, and it does this by reporting strategically
in an attempt to secure for itself the highest possible net
earnings. That is, for its coal-fired plant the GenCo can report
higher-than-true marginal costs of production or less-than-true
maximum operating capacity. On the other hand, suppose the
GenCo’s daily 24-hour supply of nuclear power is externally
determined in accordance with safety regulations.

Given all supply offers for all generation plants and total
LSE load for any given hour H of the day-ahead energy
market, the ISO solves a standard DC optimal power flow (DC

'A more detailed discussion and analysis of risk management for partici-
pants in wholesale power markets can be found [9] and [21].



OPF) optimization problem that involves the minimization of
(reported) generation production costs subject to network con-
straints, (reported) generation operating capacity limits, and a
balancing condition requiring that the total supply of power
just equal total load. The solution of this problem determines
for hour H the GenCo’s dispatch levels for nuclear power at
bus 3 and coal-fired power at bus 4, as well as dispatch levels
for all other generation plants and a Locational Marginal Price
(LMP) in $/MWh at each bus. Given congestion anywhere
on the 5-bus grid in a particular hour, the LMP solutions
determined via DC OPF for this hour will “separate,” meaning
that the LMPs at two or more buses will deviate from each
other. The price received by the GenCo for its dispatched
supply of nuclear power at bus 3 is the LMP at bus 3, and
the price received by the GenCo for its dispatched supply of
coal-fired power at bus 4 is the LMP at bus 4.

Clearly drops in the LMP value at either bus 3 or bus 4 result
in lower net earnings for the GenCo, all else equal. Moreover,
lower LMP values over time result in lower net earnings for
the GenCo, all else equal. Finally, increases in the GenCo’s
fuel input costs lower its net earnings, all else equal. Hereafter
the possibility that the GenCo receives lower net earnings due
to adverse price movements, either output or input, will be
called the GenCo’s price risk.

The GenCo can attempt to manage its price risk by engaging
in physical or financial bilateral transactions® with other mar-
ket participants. For example, the GenCo could write a contract
C with an LSE j on day D specifying that the GenCo will
inject ¢ MWs of power at bus 3 and/or bus 4 during a specific
hour H of day D+1 for a specific strike price p ($/MWh), and
the LSE j will in turn withdraw power ¢ at its bus location
during hour H of day D+1 and pay to the GenCo the strike
price p.

However, as discussed at greater length in Section V, this
bilateral contracting is complicated by the fact that injections
and withdrawals of power on the transmission grid are in fact
charged in accordance with LMP. To ensure the strike price
p can be implemented in hour H of day D+1 under LMP,
the bilateral contract C' needs to incorporate an appropriate
contract-for-difference (CFD) clause ensuring the effective
price is p even if the LMP received by GenCo ¢ or paid by
LSE j differs from p. Further, given the possibility of LMP
separation across buses, “making whole” the strike price p in
hour H of day D+1 also requires additional contracts, such as
Financial Transmission Rights (FTRs) associated with pairs of
buses k and m. Roughly stated (ignoring network losses), a
1-MW FTR from a bus k to a bus m in hour H of day D+1 is
a financial contract that entitles its holder to receive (or pay)
compensation ($/h) in amount 1-MW x [LMP,, — LMPy] for
hour H of day D+1.

As will be seen in Section V, an appropriate combination of
an FTR contract and a CFD-extended version of the bilateral

2In U.S. ISO-managed energy regions such as MISO [22, p. 15], a
bilateral transaction that involves the physical transfer of energy through a
transmission provider’s region is referred to as a physical bilateral transaction.
Bilateral transactions that only transfer financial responsibility within and
across a transmission provider’s region are referred to as financial bilateral
transactions.

contract C' can ensure that the GenCo receives the strike
price p for its injection of ¢ MWs in hour H of day D+1,
thus reducing its price risk. However, this reduction in price
risk needs to be balanced against the cost of acquiring the
supporting contracts.

In summary, for the scenario at hand, at any given time the
GenCo’s asset portfolio will include physical assets (power
plants G3 and G4), a futures contract (cleared supply offer)
for sales in the day-ahead energy market, and various forms of
bilateral contracts and FTRs. We will next briefly consider how
the four-stage risk management process set out in Section II-B
might be applied to manage risk for this portfolio.

Stage 1 of this risk-management process is the identification
and modeling of the principal underlying risk factors (sources
of uncertainty) faced by the GenCo. For the scenario at hand,
four key risk factors need to be considered: LSE loads at buses
2, 3, 4; fuel prices for the GenCo’s power plants G3 and G4;
plant or line forced outages; and the offer behaviors of the
rival generation plants G1, G2, and G5 in the FTR and day-
ahead energy markets. The modeling of these risk factors could
take the form of a joint probability distribution describing the
likelihood of any particular risk-factor configuration.

Stage 2 is the derivation of a loss function for the GenCo’s
portfolio. As discussed at some length in Yu [9], the appro-
priate formulation for this loss function will depend on the
specific structures and rules govering the energy and financial
markets in which the GenCo is participating. The GenCo’s
portfolio loss is affected by three different types of risk derived
from the four previously identified risk factors: price risk, i.e.,
adverse movements in output or input prices; volume risk,
which is the risk arising from uncertain future production
levels at its coal-fired plant; and credit risk, which is the risk
that one or more counter-parties for the GenCo’s contracts
could default, i.e., fail to meet their contractual obligations.

Stage 3 is the selection of an appropriate overall measure
of portfolio risk. As discussed in Section III-B, no one risk
measure is best for all circumstances and purposes; each has
its particular strengths and weaknesses. The effectiveness of
any particular candidate risk measure needs to be evaluated in
context. Detailed experimental test results for the performance
of variance, VaR and CVaR as portfolio risk measures for the
particular scenario at hand are reported in Yu [9].

Stage 4 involves the choice of an optimal portfolio mix,
conditional on a given choice of risk measure. The criterion
of optimality will typically involve some form of trade-off
between risk and return, e.g., maximization of expected return
over a specified planning horizon subject to an upper bound on
allowable risk. Depending on the particular specifications for
the risk-factor model and the risk measure, the portfolio opti-
mization problem can range from a simple linear programming
problem to a complex multicriteria optimization problem. An
in-depth analysis of various forms of portfolio optimization
problems suitable for the scenario at hand can also be found
in Yu [9].



V. INTEGRATED OPERATION OF FINANCIAL AND
PHYSICAL ENERGY MARKETS

In this section we discuss in greater detail the risk manage-
ment issues that arise for GenCos when they simultaneously
participate in financial and physical energy markets.

We start with a preliminary discussion explaining how
bilateral contracts, suitably extended with CFD clauses and
accompanied by suitable FTR holdings, can be used to hedge
price risk in day-ahead energy markets.’ We then use a
relatively simple analytical example to illustrate the extremely
complex multi-stage game problem faced by day-ahead energy
market traders who attempt to optimally hedge their energy
trades with bilateral and FTR contracts taking contract acqui-
sition costs into consideration.

A. Risk-Hedging Through Bilateral and FTR Contracts

Consider a GenCo 7 and an LSE j that are participants
in an ISO-managed day-ahead energy market with locational
marginal pricing. GenCo 7 receives a price LMP; for each MW
of power it injects at its bus 4, and LSE j pays a price LMP;
for each MW of power that its retail customers withdraw at
bus location j, where these LMP values are determined by the
ISO through an appropriate OPF calculation.

Suppose GenCo ¢ wishes to use bilateral contracts to
manage its (output) price risk. In particular, suppose GenCo
7 enters into a contract C' with LSE j on day D specifying
that GenCo ¢ will inject ¢ MWs of power at bus ¢ during
a specific hour H of day D+1 for a specific strike price p
($/MWh). In turn, the contract C' obliges LSE j to purchase ¢
MWs of power at bus location j during hour A of day D+1
and to pay to GenCo i the strike price p for each MW of this
withdrawn power.

As noted in Section IV, the implementation of this bilateral
contract is complicated by the fact that power injected into or
withdrawn from the transmission network is priced by means
of LMPs. Consider, first, the case in which there is no network
congestion during the designated hour H. In this case all bus
LMPs for hour H collapse to a single value, say LMP*. If
LMP* differs from the contract strike price p, Genco 7 and
LSE j will need to extend their original bilateral contract C
to a contract C* incorporating a CFD clause stipulating that
either party will be compensated by the other for excessive or
insufficient payment in relation to the intended strike price p.

For example, suppose LMP* > p, implying that LSE j pays
more than the strike price p for the power its retail customers
withdraw at bus 7 and GenCo ¢ receives more than the strike
price p for the power it injects at bus ¢. The CFD clause
should then require GenCo 7 to compensate LSE j with an
extra payment ¢-[LMP* - p], thus “making whole” LSE j
by ensuring the effective price paid for the contracted power
amount q is the strike price p. Similarly, in the reverse case
p > LMP*, the CFD clause should require LSE j to “make
whole” GenCo 7 with an extra payment g-[p - LMP*].

Hence, in the absence of congestion, the extended contract
C* provides a perfect hedge for GenCo ¢ and LSE j against

3See [23] for an extensive discussion of the use of bilateral contracts and
FTRs as an instrument to hedge against price risk.

price risk in the form of deviations of LMP* from p. If
network congestion arises in hour H, however, C* will not
be enough to ensure a complete hedging against this price
risk. Congestion can lead to divergence between the LMP; at
bus i received by GenCo i and the LMP; at bus j paid by
LSE j. In particular, the LMP; at bus ¢ could drop below p
while at the same time the LMP; at bus j exceeds p, implying
that both parties to the contract are in need of “make whole”
payments.

This gap in hedge coverage can be filled by an appropriate
parallel purchase of FTRs in the form of obligations, the only
form of FTR to be considered below. An FTR in the form of
an obligation entitles its holder to compensation (or obliges
its holder to pay) based on the difference in LMP outcomes
between two specified bus locations for some specified hour.*
For example, suppose a market participant holds an FTR
position of ¢ MWs for a source bus ¢ and a sink bus j for
a particular hour H. The holder is then entitled to receive a
compensation of

q- [LMP; —LMP;] ($/h) 5)

7Tij =

from the ISO if 7r;; > 0; otherwise the holder must pay the ISO
the amount —m;;. Since bus LMPs collapse to a single value
across the transmission network in the absence of congestion
(ignoring typically small network losses), FTR compensations
and payments only take place in congested conditions.

How might GenCo ¢ and LSE j accomplish a complete
hedge of their price risk through a combined holding of
an appropriate CFD-extended bilateral contract and an FTR
holding? Suppose GenCo 7 acquires an FTR position of ¢
MWs from bus ¢ to bus 5 on day D for hour H of the day-
ahead energy market on day D+1. GenCo ¢’s net receipts on
day D+1 from its energy injection and its FTR holding are
then as follows:

¢-LMP; + ¢-[LMP; —LMP;] = ¢-LMP; . (6)

Consequently, under the FTR, GenCo i’s sale price in hour
H of day D+1 has been effectively changed from LMP; to
LMP;, the purchase price paid by LSE; at bus j in hour H
of day D+1. Suppose, in addition, that GenCo ¢ and LSE;
extend their bilateral contract C' with the following type of
CFD clause applying only to bus j: GenCo ¢ makes a payment
to LSE j in amount ¢ - [LMP; — p] if LMP; > p or receives a
payment from LSE j in amount ¢ - [p — LMP;] if p > LMP;.
This combination of contracts ensures that the price received
by GenCo ¢ and paid by LSE j for the contracted power level
q in hour H of day D+1 is precisely p.

B. GenCo Participation in FTR and Day-Ahead Markets

As shown in Section V-A, the payoffs from FTR holdings
depend on LMP settlements in the day-ahead market (DAM).
The prices that energy traders are willing to pay to acquire
FTR holdings in FTR auctions will thus presumably reflect

“More precisely, if network losses are considered, these compensations or
payment obligations are based on the congestion components of LMPs rather
than the LMP values per se. This complication is ignored in this introductory
presentation.



their expectations with regard to payoffs in the DAM. On the
other hand, after acquiring FTR holdings, market participants
can report strategic supply offers to the ISO for the DAM in
an attempt to influence the LMP outcomes upon which their
FTR payments depend.

Previous work focusing on risk management in wholesale
power markets has generally focused either on FTR auction
bidding, conditional on expected outcomes in the DAM (e.g.,
[24]), or on DAM trading conditional on given FTR holdings.?
Thus the feedback mechanism linking strategy choices in the
two markets has not been extensively studied.

In Somani [30] an analytical framework is developed to
examine this complicated feedback mechanism. Successive
choices in FTR and DAM markets are modeled as a game
among rival GenCos. In particular, the bid strategies of the
GenCos in the FTR auction are conditioned on their expecta-
tions of DAM payoffs as well as on their expectations of the
bid and offer strategies of rival GenCos in the two markets.
Conditions are explored for the existence (or not) of Nash
equilibria for this dynamic multi-player game.

FTRs to hedge GenCos submit

| D=0_ _ _ _ _________: 365>D>0_________. D+l __ _
|m T T T T e m | 1T T T T T T T |
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Fig. 3. Tllustration of a the choice problem for a GenCo participating first
in an FTR auction and then in a day-ahead energy market.

More precisely, as depicted in Fig. 3, the dynamic choice
problem for the GenCos is modeled analytically as a three-
stage process. In stage 1, day D = 0, the GenCos submit bids
to acquire FTRs from the ISO’s FTR auction. In stage 2, day
D > 0, the GenCos report supply offers to the ISO for the
DAM for dispatch for power production on day D+1. On day
D+1, the GenCos receive (or are liable to pay) compensation
for the FTRs acquired on day D = 0 based on the LMP
outcomes for day D+1. The logical flow of information for
this three-stage process is presented in Fig. 4. For a detailed
explanation of the depicted sequential choice problems, see
Somani [30].

Research to date shows the strong dependence of GenCo
DAM supply-offer behaviors on their FTR holdings, and vice

5Importam exceptions include [25]-[29], who study the effects of FTRs on
the market power exercised by GenCos in day-ahead energy markets and on
overall market efficiency.
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Fig. 4. Feedback mechanism between the FTR Auction and the Day-Ahead
Energy Market

versa. A key finding is that existence of Nash equilibria is
not guaranteed. Indeed, the best response functions for the
GenCos are so complicated in form, even for simple 3-bus grid
specifications, that it is doubtful whether market participants
could practically make use of them as a decision-making tool
even in cases where Nash equilibria exist.

This level of complexity suggests the potential desirability
of undertaking the integrated study of FTR auction and DAM
trading by means of a agent-based test bed with market
participants modeled as adaptive learners. This would allow
analysis to procede even in cases in which Nash equilibria
are difficult to calculate or fail to exist. The following section
discusses this alternative approach.

VI. EXPLORING FINANCIAL RISK MANAGEMENT VIA AN
AGENT-BASED TEST BED

As suggested by the discussion in previous sections, the
study of risk management in wholesale power markets is com-
plex, requiring the detailed modeling and analysis of strategic
decision making by market participants, market operators, and
oversight agencies. Fortunately, as demonstrated already in a
number of studies (e.g., [7], [31], [32]), agent-based simulation
tools are designed to handle this level of complexity.

In future work we plan to study financial risk management
for wholesale power markets using an appropriately enhanced
version of the AMES Wholesale Power Market Test Bed
developed by a group of researchers at lowa State University
[33]. AMES is an open-source agent-based computational
laboratory designed for the controlled experimental study of
strategic trading in restructured wholesale power markets with
congestion managed by LMP. AMES is fully implemented in
Java, meaning that all structural, institutional, and decision
making entities are rendered as “agents” encapsulating data
and methods. This modular architecture permits great flexibil-
ity for the systematic exploration of various risk-management
practices of market participants and overall market perfor-
mance under alternative grid conditions, market designs, and
learning capabilities.
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Fig. 5. [Illustration of the AMES agent hierarchy. Blue (solid) lines denote
current agent types, and red (dotted) lines denote planned agent types.

=

Fig. 5 depicts the currently implemented AMES agent
hierarchy using blue (solid) lines. In addition, Fig. 5 depicts
with red (dotted) lines the new agent types to be intro-
duced under this project, described more carefully as follows.
The Real-Time Market Module will permit us to examine
more fully the effects of uncertainties in load, transmission,
and generation operating conditions on the supply-offer and
demand-bid strategies of GenCos and LSEs and on the overall
performance of the market. The FTR Market Module will
permit us to study the effectiveness of alternative FTR market
designs as a means for financial hedging against congestion-
induced price volatility in the day-ahead market, completion
of bilateral contracts, and encouragement of new transmission
investment.
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