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Evaluation of Market Rules Using
a Multi-Agent System Method
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Abstract—The California energy crisis in 2000-2001 showed
what could happen to an electricity market if it did not go through
a comprehensive and rigorous testing before its implementation.
Due to the complexity of the market structure, strategic interaction
between the participants, and the underlying physics, it is difficult
to fully evaluate the implications of potential changes to market
rules. This paper presents a flexible and integrative method to
assess market designs through agent-based modeling. Realistic
simulation scenarios are constructed for evaluation of the pro-
posed PJM-like market power mitigation rules of the California
electricity market. Simulation results show that in the absence of
market power mitigation, generation company (GENCO) agents
facilitated by Q-learning are able to exploit the market flaws
and make significantly higher profits relative to the competitive
benchmark. The incorporation of PJM-like local market power
mitigation rules is shown to be effective in suppressing the exercise
of market power.

Index Terms—Electricity market, market design, market power
mitigation, multi-agent system, Q-learning.

NOMENCLATURE
i GENCO agent index.
7 LSE index.
AS;n Average per MW consumed ancillary services
price charged to load serving entity j at hour h.
cP Multiplier of the supply offer for GENCO .
i Bidding price for spinning reserve capacity of unit
o et Bidding price for regulation up capacity of unit <.
creg-down - Bidding price for regulation down capacity of unit
Cr(h) LMP of real power on load bus & at hour h.
C].C;‘L LMP of real power at hour h for LSE j’s unit.
C5#"" Marginal price of regulation up at hour /.
Cr.;’g’d Marginal price of regulation down at hour h.
Jh
i Marginal price of spinning reserve at hour h.
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Félax Thermal limit of transmission line /.

GSF;_;  Generation shift factor to line [ from bus k.

I Set of GENCO agents.

L Total MW load of LSE 75 at hour h.

Ny Number of buses in the system.

N, Number of lines in the system.

P].Gh* MW power output scheduled at hour A.

P;Zg*“p* Reserved capacity for regulation up at hour h.
P]{fzg»d* Reserved capacity for regulation down at hour A.
P Reserved capacity for spinning reserve at hour h.
Py Net power injection at bus k.

Py Total MW power generation at bus k.

PS Unit + MW power generation at hour h.

Py Total MW demand at bus &.

P?}fgvdown Unit 7 regulation down capacity reserved at hour A.
K2

P&"P Unit 4 regulation up capacity reserved at hour h.

Prs Unit ¢ spinning reserve capacity reserved at hour
h.

Prx(h) MW load of load bus £ at hour h.

R; Retail rates of LSE j’s serving area.

RI® Regulation ramp rates of unit 2.

Re® Operating reserve ramp rates of unit .

RP* Operational ramp rates of unit 3.

Rg;equ }System’s requirement for regulation down at hour
1.

Rg,*""  System’s requirement for regulation up at hour A.

Rs;d System’s requirement for spinning reserve at hour
h.

T Delivery time requirement for ancillary service.

1. INTRODUCTION

OUNTRIES around the world continue to refine their

electricity market structures in various ways. There are
ongoing debates over new market design issues such as how to
correctly design market power mitigation (MPM) rules, how
to properly implement a retail electricity market, how to effec-
tively incorporate ancillary service (AS) markets, etc. Although
much experience has been gained and costly and valuable
lessons have been learned, there is still a lack of a systematic
platform for evaluation of the impact of a new market design
from both engineering and economic points of view. This
difficulty arises from the complex interactions among strategic
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behaviors of market players, various layers of market designs,
and the complex underlying physical network. The potential of
using multi-agent system (MAS) to model complex adaptive
systems has been demonstrated in various fields. Therefore, it
is desirable to develop a MAS and the corresponding software
platform to model the complex phenomena of an electricity
market [1].

Local market power has been known as an issue for elec-
tricity markets due to limited transmission capabilities, lack of
economical electricity storage devices, and short-term inelas-
ticity of demand. During certain peak hours, electricity markets
can be temporarily isolated into several subregions by N-1 and
transmission thermal limit constraints. Hence, generators that
possess potential local market power could leverage it to make
profits through either economical or physical withholding. Fur-
thermore, generation companies can repeatedly play in similar
market scenarios and learn over time to compete less aggres-
sively [2], [3]. Pivotal generation companies might be able to
elicit collusive strategies from others by punishing uncoopera-
tive bidding behaviors. To address the problem of local market
power, various types of MPM rules have been proposed and im-
plemented in the industry. However, the effectiveness of those
rules against strategic bidding market players with learning ca-
pabilities has not been extensively investigated. In general, the
field of strategic bidding in an electricity market will remain an
open research area for years to come.

The literature on the interaction between strategic bidding
and market designs can be categorized into two approaches:
equilibrium analysis and agent-based simulation. In the equi-
librium analysis approach, oligopoly models such as Bertrand,
Cournot, and supply function equilibrium (SFE) are used to
model the stylized strategic behavior of market participants.
Younes and Ilic [4] modeled the oligopolistic competition in the
electricity market with SFE and Bertrand models. They recog-
nized that inelastic load and low transmission capacities may
give generators incentives to strategically constrain the network
and profit from the high prices in isolated submarkets. Yao et al.
[5] examined the two-settlement electricity market taking into
account congestion, demand uncertainty, and system contingen-
cies with a Cournot model showing that it results in lower spot
equilibrium prices at most buses than a single settlement. Li
and Shahidehpour [6] analyzed the strategic bidding behavior
and potential market power of generation companies with SFE
model. Their conclusion is that setting a lower price cap is a
proper measure for mitigating market power in an electricity
market. Niu et al. [7] modeled the electric firms’ bidding be-
haviors with an SFE model, and studied the effects of forward
contracts on the ERCOT market. They found that a high volume
of forward contracts decreases the incentive of major market
players to raise real-time market prices. Liu et al. [8] studied the
impact of learning behavior of generation companies on elec-
tricity-spot-market equilibrium under repeated linear supply-
function bidding. The result is that under certain conditions,
the overall learning behavior will reduce market-clearing prices
while in some other conditions, the results are just the contrary.

Although the equilibrium analysis yielded some useful results
in the oligopoly electricity market, it may oversimplify the com-
plicated market mechanism [9]. The accumulated bidding ex-

perience from interacting with other market participants in re-
peated auctions may change the perception a player has of others
[10]. The advantage of a learning algorithm is that it could cap-
ture the market dynamics and provide better insights into market
behaviors. In the agent-based approach, variations of reactive
reinforcement learning and anticipatory reinforcement learning
have been used to model the behaviors of generation compa-
nies. The learning algorithm that Bunn and Oliveira designed
[9] for generators shares the same essence with reactive rein-
forcement learning algorithm. The average reward y-greedy re-
inforcement learning (RL) method was used in [11] to model
the learning and bidding processes of generation companies.
These generation companies are incorporated in a nonzero sum
stochastic game model to assess day-ahead (DA) market power
in different auction mechanisms. The average reward y-greedy
reinforcement learning method is an RL method that uses av-
erage reward in the updating process and parameter ~y to balance
the exploration and exploitation. The learning configuration for
generation companies in [12] is a version of stochastic reac-
tive reinforcement learning developed by Roth and Erev [13]. A
test bed was built to investigate the effects of demand-bid price
sensitivity and supply-offer price caps on locational marginal
prices (LMPs). Yu et al. [14] modeled generation companies as
Q-Learning agents. The results demonstrated that Q-Learning
facilitates the GENCO agent exploiting the market in the ab-
sence of an MPM process.

The use of agent-based simulation to evaluate electricity
market rules has been reported in several papers [15]-[18].
Compared to the state of the art, this paper makes the following
contributions.

1) This paper performs agent-based simulation on a realistic
225-bus WECC system with real heat rate data and hourly
time-varying load data. The test system is created as part
of this project. This work demonstrates the potential to
apply multi-agent system methods to evaluate market rules
of a regional market of a realistic size. Specifically, the
effectiveness of PJM-like local market power mitigation
(LMPM) process was fully evaluated against strategic bid-
ding GENCO agents on the test system. The simulation
results provide insights into how the MPM process sup-
pressed the implicit collusion among the pivotal generation
companies.

2) Modeling co-optimization of energy and AS market and
important constraints such as transmission thermal limits,
unit ramp rates, reserve, and regulation requirements in the
proposed multi-agent system. This represents a step closer
to reality which improves the practicality of the simulation
results.

3) The proposed method considers hourly time-varying load
data instead of using typical day load profiles. Load pat-
terns and power imports vary significantly with time, which
could lead to very different congestion patterns and render
generators with different market power. Therefore, it is im-
portant to incorporate the hourly time varying load. To en-
able generation companies to learn from a dynamic market
environment with time varying loads, an anticipatory re-
inforcement learning method, i.e., Q-learning, is used to
model the bidding behavior of generation companies. Em-
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powered with the Q-learning method, generation compa-
nies are capable of learning from their past bidding ex-
perience in a dynamic market environment. Furthermore,
Q-learning allows generation companies to try to maximize
their profit over a planning horizon rather than for one day.

4) This paper reports a software implementation of the pro-
posed multi-agent system on an agent-oriented middle-
ware Java Agent Development Framework (JADE) which
fully complies with the Foundation for Intelligent Phys-
ical Agents (FIPA) standards. JADE is a distributed mid-
dleware system with a flexible infrastructure allowing ex-
tensions that facilitate the development of complete agent-
based applications.

The remainder of this paper is organized as follows. Section II
presents an MAS model for the electricity DA market (DAM). In
Section III, the technical method is presented, including the soft-
ware implementation of the proposed MAS. Section I'V provides
a study case based on the 225-bus WECC system. Section V pro-
vides the conclusion and discusses the future work.

II. PROBLEM FORMULATION

An electricity DAM is composed of interacting units: market
operator, generation companies, and load serving entities
(LSEs). Each of them has its own goal to achieve and will not
only react to changes in the market condition but also try to
exert some degree of influence in the market environment. An
important attribute of the DAM is that it exhibits properties
arising from the interaction in the market that are not properties
of the individual units themselves. Therefore, to evaluate the
effectiveness of market rules of the DAM, a MAS is proposed
that models the complex market dynamics among the traders.
The problem formulation is motivated by CAISO’s market
design.

A. Multi-Agent System Structure

The DAM is modeled as a MAS with three types of inter-
acting agents: GENCO agents, LSEs, and a market operator
(MO). The DAM works as follows. Before day d begins, MO
gathers the load prediction data from LSEs, and publishes the
forecasted zonal load data for day d + 1. On the morning of day
d, LSEs submit their demand bids and possibly supply offers;
GENCO agents submit their supply offers for DAM to MO. The
MO then performs MPM and runs the market clearing software.
Refer to Section II-D where details of MPM and the market
clearing software are discussed. The market clearing software
determines the hourly dispatch schedules to minimize the cost of
purchasing energy and 100% of the AS requirement and the cor-
responding LMPs for energy and AS. In this MAS, MO could
also perform the AS evaluation based on the market clearing re-
sults by simulating the AGC performance of the interconnected
power system [19]. At the end of the process, MO sends the dis-
patch schedules, LMPs, and settlement information to GENCO
agents and LSEs for day d + 1.

B. GENCO Agent Model

GENCO agents sell bulk power to DAM. For simplicity, it is
assumed that each GENCO agent has only one generation plant.
However, this model can be extended to permit GENCO agents
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with multiple generation plants. Suppose the MW power output
of generator ¢ at some hour b is Pg. For generator 4, the variable

production cost at hour £ is represented by a quadratic form:

Ci (P§) = ai- P§ +bi - (PS)’ (1)

ih )

where a;, b; are given constants. By taking derivatives on both
sides of (1), the marginal cost function for generator ¢ is ob-
tained, i.e.,

MC; (P§) =ai+2-b; - P§. )

On each day d, the GENCO agent submits to DAM a supply
offer for day d+ 1 that includes two components. The first com-
ponent is its reported marginal cost function given by

MC; (P5) = cP (a; +2-b; - PS) . 3)

Notice that there are other alternatives to exert market power
through submitting reported marginal cost functions, e.g.,
adding a constant term or allowing both the slope and intercept
of the reported marginal cost function to be decision variables.

In this paper, it is assumed that the GENCO could exercise
market power only through economical withholding. How-
ever, the modeling methodology can be extended to allow the
GENCO to consider a combination of both economical and
physical withholding.

The second component is its reported bidding price for AS
including its bidding price for spinning reserve capacity c;,
regulation up capacity ¢; *"?, and regulation down capacity
899" To provide regulation up or spinning reserve ancil-
lary service, the units have to be synchronized and be able to
deliver the reserved capacity within 10 min. The difference is
that to provide regulation up ancillary service, the unit must be
able to receive AGC signals. This is not a requirement for pro-
viding spinning reserve ancillary service. Each generator is as-
sumed to have a set of benchmark bidding prices for AS. The
reported prices of AS are calculated as the benchmark price
plus a markup which was a decision variable for the genera-
tion company. There are several AS offer price markups from
which GENCOs could choose. The Q-learning algorithm illus-
trated in Section III-B allows the GENCOs to learn from past
bidding experience and to decide which markups combination
is most profitable under each market condition. It is assumed
that the bidding markups for spinning reserve capacity and reg-
ulation up capacity are identical for the same unit. In addition,
the bidding markup for regulation down capacity is assumed to
be zero. Suppose on day d, GENCO agents submit their supply
offers for day d 4+ 1 to MO, and the market clearing program
calculates LMPs for real power and AS, and dispatch sched-
ules. Then GENCO agent ¢’s profit on day d + 1 is obtained by
summing over the 24 h of profits on that day.

C. Load Serving Entity Model

LSEs purchase bulk power from the DAM to serve load. It is
assumed that some LSEs also have generation units. If an LSE is
a net buyer, then its motivation in bidding its generation would
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be to reduce the cost of energy and AS. Suppose the set of buses
where LSE j serves loads is L;. On day d, LSE j submits a fixed
load profile for day d + 1. The load profile specifies 24 h of MW
power demand Pri(h),h = 0,1...23, at each of its load buses
k € L;. Suppose LSE j submits its own generator j’s reported
bidding price for spinning reserve capacity ¢;*, regulation up
capacity ¢;"®"", regulation down capacity 890" and re-
ported marginal cost function MC; (P]-C,*;) =c;j(a;+2-b; 'chii)
to the DAM for day d + 1. Then LSE j’s profit on day d + 1 is
obtained by summing over the 24 h of profits on that day, i.e.,

T 7jD+1
J
23 PG* OG P/I:"gﬂlp* Oﬂ/g,up

Z jh ~jh Jh jh
= reg,d* ~reg,d Tesk sres R Gx*
Lo | pprEtCret 4 preseCres — (Pjh )

Jh Jh jh jh

23 23
=+ Z Lthj — Z Z PLk(h)Ck(h)
h=0

h=0keL;
23

- Z LijnASjp. “4)
h=0

The average per MW consumed ancillary services price
charged to LSE 7 at hour ¢ is denoted by AS ;. It is calculated
by dividing the total cost of procuring all ancillary services at
hour A by the total amount of load at hour A.

D. Market Operator Model

Every day, upon receiving demand bids and supply offers,
MO performs MPM and clears day-ahead energy and AS market
simultaneously. The LMPM is intended to limit the exercise of
local market power by generation owners in load pockets. The
basic idea is to identify which generators are dispatched up to
relieve congestion on noncompetitive paths (e.g., interfaces to
load pockets). Generators that have been identified will be sub-
ject to mitigation since they have the potential to exercise local
market power. If those generation units’ supply offer is higher
than default proxy bids, then energy offers will be reduced to
the default level. Specifically, the MPM process includes three
steps. In the first step, MO runs the market clearing software
and clears the market with only competitive network constraints.
In CAISO, Path 15, Path 26, Inter-ties, and interfaces to cer-
tain generation pockets are predefined as competitive network
constraints. The first step is called competitive constraint run
(CCR). In the second step, MO clears the market with all con-
straints enforced. This step is called all constraint run (ACR). In
the third step, the CCR market clearing result is compared with
that of the ACR. If a generation unit is incremented between
CCR and ACR, the unit will be mitigated per the MPM process.
In other words, mitigation applies to the units that are dispatched
up by the ACR compared to the CCR. If generation unit’s offer
subject to mitigation is higher than cost based default proxy bids
(modeled as marginal cost plus 10% in this study), then energy
offers are reduced to the level of proxy bids. Those mitigated
bids serve as inputs to the actual day-ahead market clearing. In
reality, a method to calculate the default proxy bids is based on
the unit’s variable cost. Under this variable cost option, the de-
fault bids will be calculated based on the incremental heat rate

curve (for gas fueled units) multiplied by the gas price index
or incremental cost rate curve (for non-gas fueled units), plus
an operations and maintenance adder [20]. This quantity multi-
plied by 110% will be used as the default proxy bid.

The market operator runs a market clearing software to de-
termine the hourly dispatch schedules and LMPs of energy and
AS. The market clearing software clears the bid-in supply with
bid-in demand and procures 100% of AS requirement with min-
imum cost. The objective is to minimize the 24-h total pur-
chasing cost, which is formulated as

(B (aiPS +0: (PS)*) + Py

reg,u reg,u reg,down preg,dwon
L CIBUP PreB D 4 e pres )

24
min E E

h=1 | i€l h
Q)
Subject to
Py, — Py + Py, =0, k=1,...N, 6)
Ny
ZGSFlkaPk SFrlna)m l:17Nl (7)
k=1
PLCh; + ir}?s +F’;§g7up S F)imax7 ie 1—7 vh (8)
P§ = Pt > Pt el Vh ©)
e PR .
0§<W+R§es>sﬂ 1e€l, VYh (10)
Igirlfg,down S R;CgT7 ie 17 vh (11)
I
> PR > Rgiett, Vh (12)
=1
I
Do PRE 2 Ry (13)
i=1
I
ST (P + PIE™) > Rsjet + Rgie, h (14)
1=1
PG —P§_y <R®760, iel, Vh (15)
Pf = P < R760, i€l Vh. (16)

The optimization problem of (5) is subject to real power
balance constraints at each bus (6), thermal limit constraints for
each line (7), upper and lower generation capacity constraints
(8)—(9), and ramp rate constraints (10)—(11). There are also
system wide reliability requirements constraints (12)—(14),
and power schedule constraints between hours (15)—(16). In
the case that a generation unit has reserved capacity for both
regulation up and spinning reserve AS, it has to be able to
deliver both within 10 min. That is why there is a combined
constraint on both regulation up and spinning reserve AS in
(10). In procuring upward AS, the MO could substitute a
higher quality AS type to meet the requirement of a lower
quality AS type if it is economically desirable to do so in the
optimization process. Regulation up AS is considered to have a
higher quality than spinning reserve AS. Therefore, there is an
individual constraint on minimum amount of regulation up AS
(12), and a combined constraint on minimum amount of both
regulation up and spinning reserve AS (14). The optimization
problem is solved by CPLEX which is capable of handling
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FIPA Compliant Agent Platform

’ Agent ManagementSystem |prqyided by Agent | Directory Facilitator
1 ' Platform !

Message Transport System

v

A A

‘ Mark
' GenCo LG LSE
1 Operator
{Ihtegrated Forwardg Provided by Ancillary Service‘}
Market Model Developer ‘ ‘

\_ Evaluation Tool /

Clear bid-in Supply with bid-in Demand plus
procure 100% of the Ancillary service requirement

Fig. 1. Structure of the multi-agent platform for electricity DAM.

large-scale power systems problems. A CPLEX Java interface
is implemented in this project to facilitate the sharing of data
between the programs.

III. PROPOSED MULTI-AGENT APPROACH

A. Software Implementation of Multi-Agent System

When using an agent-based approach to solve a problem,
there are a number of domain independent issues that must be
addressed, such as how to allow agents to communicate [21].
JADE, the most widely-used agent-oriented middleware, pro-
vides the domain independent infrastructure which allows the
developers to focus on the construction of key logics. Since
JADE is written in Java, it benefits from a large set of program-
ming abstractions which greatly facilitate the development of
MAS. JADE fully complies with the FIPA specifications which
are maintained by the standards organization for agents and
MAS. Based on the above considerations, JADE is chosen to be
the middleware on which the proposed MAS was implemented.

The structure of the multi-agent platform is depicted in Fig. 1.
JADE provides two utility agents: the agent management system
(AMS) and directory facilitator (DF) and an inter-agent mes-
saging system through which the agents communicate with each
other. The AMS allocates agent identifiers (AIDs) to each agent
that registered with it, and provides a “white page” service,
where an agent can ask for the address of another. The DF pro-
vides a “yellow page” service, where agents register the services
they provide, and an agent can ask for all agents to provide a par-
ticular service.

MO, GENCO agents, and LSEs are developed fully in Java in
this research. Fig. 2 demonstrates the message flowing sequence
in the multi-agent platform to help explain the daily sequence
of tasks of MO, GENCO agents, and LSEs. A GENCO agent’s
daily sequence of tasks is implemented as follows: collecting
forecasted zonal load data posted by MO, submitting supply of-
fers to MO, collecting market settlement information posted by
MO, and adjusting its bidding strategy based on the Q-learning
algorithm. MO starts the day by collecting forecasted load data
from LSEs, and posting the MO forecasted zonal load data.
Upon receiving the supply offers and demand bids, it performs
MPM followed by market clearing. Afterwards, it posts the
market clearing information and uses an AS evaluation tool
to test the system frequency performance under hypothesized
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Inform market clearing | Inform market clearing
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Fig. 2. Message flowing sequence in the multi-agent platform for electricity
DAM.

disturbances. The sequence of actions taken by the LSEs is:
report forecasted load data to MO, submit demand bid to MO,
and collect the market settlement information from MO.

B. Learning Behavior of Agents Who Own Generation

The learning behavior of agents with generation units is mod-
eled by Q-Learning. Q-Learning, developed by Watkins [22], is
a form of anticipatory reinforcement learning that allows agents
to learn how to act in a controlled Markovian domain. A con-
trolled Markovian domain implies that the environment is Mar-
kovian in the sense that the state transition probability from
any state = to another state y only depends on z, y and the ac-
tion a taken by the agent, and not on the historical information.
It works by successively updating estimates for the Q-values
of state-action pairs. The Q-value Q(z, a) is the expected dis-
counted reward for taking action a at state = and following an
optimal decision rule thereafter. The estimates of Q-values will
be updated based on the reward received immediately after an
action has been taken at each time step. As time moves on, series
of Q-value estimates will be formed. If the series of estimates
of Q-values converge to the correct Q-values, the optimal action
to take in any state is the one with the highest Q-value.

The Q-learning agent moves around a discrete finite world,
choosing one action from its finite action domain at every time
step. In the nth step, the agent observes the current system state
T, selects an action a,,, receives an immediate payoff r,,, and
observes the next system state 1,,. The agent then updates its
Q-value estimates using a learning parameter «,, and a discount
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factor ~y [22] as follows:
Ifx==z,anda = a,,

Qn(x-/ a) = (1 - O‘n)Qn—l(xv a) + an[rn + ’YVn—l(yn)]

(17)
Otherwise
Qn($7a) = Qn—l(x7a) (18)
where
Vi1(y) = ml?JX{Qn_l(y, b)}. (19)

The way Q-Learning is implemented for an agent with gen-
eration unit(s) is as follows. A step in the electricity DAM en-
vironment means a trading day. The agent views the DAM as
a complex system with different states. The perceived system
state by an agent with generation unit(s) on day d is defined as a
vector with two elements which are variables related to the zone
where the agent’s unit is located. The first element is predicted
day d+1’s daily average zonal load level. The second element is
the average LMP level of the most recent day that has a similar
average load level as day d + 1. Each zone’s zonal daily average
load is divided into M, levels. For each zonal daily average load
level, there are Mp LMP levels. Hence, the cardinality of each
agent’s state space is My, X Mp.

For an agent ¢, selecting an action means submitting a specific
supply offer to the MO. The supply offer of the agent is defined
as a vector with two elements. The first element is the bidding
markup for the real power ¢ that has Mg possible values. The
second element is the bidding price for regulation up capacity
¢;°®"P that has Mg possible values. The action domain of an
agent is defined as the set of all possible actions that has a dimen-
sion of Mg x Mpg. To limit the dimension of the action domain
for agents, it is assumed that the bidding markups for spinning
reserve capacity and regulation up capacity are identical for the
same unit. In addition, the bidding markup for regulation down
capacity is assumed to be zero.

The Q-learning algorithm does not specify how to choose an
action at each time step. An action a in state x is selected ac-
cording to the Gibbs/Boltzmann distribution given in (20) which
depends on the Q-values:

eQ(z,a)/Td
pp(z,a) = S G

(20)

In (20), AD; is the action domain of the agent, and T4 is
a “temperature” parameter that models a decay over time ac-
cording to the formula given in Table I. In this paper, the Gibbs/
Boltzmann distribution is chosen because, by setting proper pa-
rameters, it ensures a sufficient exploration while still favoring
actions with higher Q-value estimates.

According to (20), when T4 = oo, every action has an equal
probability of being chosen. As T4 gradually decreases over

TABLE 1
Q-LEARNING PARAMETERS

Y o ® T4 My | Mp | Mg | My

07 | /T?

(x,a)

077 | constxN,* | 4 | 3 | 5 | 3

time, the action with a higher Q-value estimate will have a larger
probability to be chosen. By using the Gibbs/Boltzmann distri-
bution to select actions, the Q-learning agents are able to try a
variety of actions when there was not much historical bidding
information from which to learn. As time moves on, it also al-
lows agents to progressively favor those that appear to be the
best actions. In this way, the trade-off between exploration and
exploitation is made.

Consider the beginning of each day d. An agent first makes
a prediction of the system state based on published load fore-
casting data and historical LMP data, which is represented by
x. It next chooses an action according to the process illustrated
above. Having chosen an action a, the agent will submit its
supply offer and possibly demand bids to the MO. Once the
market is cleared, the agent will receive its reward, which is the
profit for day d + 1. Then the agent uses this reward to update
its Q-value estimates according to (17)—(19). In the generator
model, the Q-value estimates of the state-action pairs are up-
dated by the Q-learning algorithm.

The parameters that are used in the numerical study are set
according to Table I.

In Table I, T{,,q) is the number of times action a has been
taken in state x. IV, is the number of days that have been sim-
ulated. w should be chosen to obtain a suitable decay for the
learning parameter «. -y should be assigned a value that strikes
an appropriate balance between immediate reward and expected
reward in the future. The choice of these parameter values de-
pends on the specific application. Since the application of this
paper is in a dynamic multi-agent learning environment and the
simulation only runs for 184 days, the v and w parameter are set
so that the agents are able to extract enough information from
the limited historical bidding experience and learn at a relatively
fast pace from the environment.

IV. NUMERICAL STUDIES

A. Test System

A 225-bus WECC system developed in this project is used
as the test market. The system model, which is extended from a
179-bus model used in CAISO planning studies [23], represents
the essentials of the CAISO area. The system block diagram
is shown in Fig. 3, where blocks with a thick dashed outline
represent constrained load and generation pockets, and thick
solid lines denote simplified network constraints, which are used
as illustrations in CAISO’s Congestion Management Reform
Project, which predated market redesign and technology up-
grade (MRTU).

Inside the CAISO area, 23 aggregated thermal generators
are modeled as GENCO agents that bid strategically into the
market. A total of 15 aggregated hydroelectric and other renew-
able energy generators are modeled by time-varying outputs
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Fig. 3. The 225-bus WECC model—Details of California.

TABLE II
INSTALLED CAPACITY IN DIFFERENT AREAS OF CAISO

Area 1 2 3 4 5 6 7
Installed
Capacity 4146 2644 196 1223 4010 7371 42
MW)
Area 8 9 10 11 12 13
Installed
Capacity 395 17842 3577 255 903 4669
MW)

according to historical resource availability. Outside the CAISO
area, resources represented as 22 generators produce net im-
ports into the CAISO area. The hourly time-varying data reflect
a six-month period of operations from May 1, 2004 to October
31, 2004, and include area loads for 11 local areas within the
CAISO as well as net exports into a separate control area that
is surrounded by the CAISO control area. The system peak
demand is 44209.2 MW. The installed capacities in different
areas of CAISO are listed in Table II. Due to confidentiality,
names of the areas are not shown in the table.

B. Evaluation of Market Mitigation Rules of CAISO

To demonstrate the exercise of market power by Q-Learning
agents and evaluate the effectiveness of the MPM rules, the
following three scenarios are simulated. The first scenario is
a competitive benchmark where every GENCO agent bids its
marginal cost. The second scenario is an unmitigated scenario
where every GENCO agent bids strategically into the market
according to the Q-learning rules in the absence of MPM. The
third scenario is a mitigated scenario where every GENCO agent
still bids strategically into the market, but is subject to the MPM
specified in Section II.

In every scenario, 15 simulation runs, each with a different
random seed, are performed. The average results are reported in
Figs. 4-6.

To illustrate how Q-learning facilitates the exercise of market
power and implicit collusion of large GENCO agents, two piv-
otal GENCO agents from the SCE area are chosen for a case
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Fig. 6. Percent largest unit’s profit increase in the unmitigated and mitigated
scenarios compared to the competitive benchmark.

study. GENCO agents 7 and 8 together have a capacity of 7685
MW, which comprises of 64% of the area’s generation capacity.

For simulation run 1 of the unmitigated scenario and miti-
gated scenario, key information from the Q-tables of GENCO
agent 7 and 8 on August 10 are illustrated in Table III.

As can be seen from Table III, in the unmitigated scenario,
both GENCO agents are in state 12. This state is encountered
when the forecasted day d + 1’s load level is high and most
recent similar load level day’s LMP is also high. In state 12,
the highest Q-value estimate for GENCO 7 is given by action
11 which corresponds to a 12% bidding markup for real power.
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TABLE III
KEY INFORMATION FROM GENCO AGENT 7 AND 8’S UPDATING Q-TABLE
Unmitigated Scenario Mitigated Scenario
Action Action
Index Bidding Index Bidding
with the | Markup with the | Markup
State Highest | for Real State Highest | for Real
Estimate Power Estimate Power
Q-value Q-value
OENCO 1 12 11 12% | 12 7 8%
GEI;CO 12 7 8% 12 4 4%

Similarly, for GENCO 8, the highest Q-value estimate is given
by action 7 which corresponds to an 8% bidding markup for real
power. The highest possible bidding markup for real power is set
to be 16% and the lowest is set to be 0%. From (20), an action
that has a higher Q-value estimate will have a higher probability
to be selected. Q-learning method has helped GENCO 7 and 8
to favor high markup actions when there is more potential to ex-
ercise their market power. In addition, it is shown that those two
Q-learning GENCO agents are capable of implicitly colluding
with each other by setting relatively high bidding markup to-
gether which will successfully drive up the price. However, the
highest possible bidding markup, 16%, is not very attractive to
the two pivotal GENCO agents. Indeed, although the LMPs are
further driven up, they will lose part of their previously prof-
itable generation schedule to two other relatively smaller gener-
ation companies in the area. This result extends the conclusion
from [24], in that the condition of having the same demand in
every trading period is not necessary. Even in a rapidly changing
market environment, large generation owners who interact with
each other in similar scenarios easily learn to implicitly collude
even without having to know others’ historical bidding data.

In the mitigated scenario, both GENCO agents are also in
state 12 on Aug. 10. This time, the highest Q-value estimate
for GENCO 7 is given by action 7 which correspond to an 8%
bidding markup for real power. The highest Q-value estimate
for GENCO 8 is given by action 4 which corresponds to a 4%
bidding markup for real power. Comparing to the unmitigated
case, the favorite actions’ bidding markups are lower for both
GENCO agents. This result shows that the MPM helped to break
the high markup collusion of the two pivotal suppliers and suc-
cessfully suppressed the Q-learning GENCO’s potential to exert
market power.

As shown in Fig. 4, the total market payment in the unmiti-
gated scenario is significantly higher than that of the competitive
benchmark. With the help of Q-Learning, the GENCO agents
are able to exploit the market together and gain an average of
9.7% increase in total market payment comparing to the com-
petitive benchmark. However, the total market payment in the
mitigated scenario is slightly higher than that of the competitive
benchmark. Facilitated by the MPM rules, the MO effectively
reduced the percentage increase in total market payment to only
2%. The lower average load level and less congestion leads to a
relatively low percentage increase of total market payment from
August to the October compared to June and July.

Fig. 5 demonstrates the percentage increase of total genera-
tion cost in the mitigated and unmitigated scenario, compared

to the competitive benchmark. The simulation result shows that
the total generation cost increase in the unmitigated scenario
is about 1.5% higher than that of the competitive benchmark.
The strategic bidding of the GENCO agents’ results in extra-
marginal capacity being cleared, and inframarginal capacity left
not dispatched. The reduction of market efficiency is caused by
the market power collectively exercised by the GENCO agents.
The total generation cost increase in the mitigated scenario is
only about 0.5% higher than that of the competitive benchmark.
This result shows that the MPM rules not only suppressed the
exercise of market power but also enhanced market efficiency
by bringing the total generation cost closer to marginal cost rev-
enues, compared to the unmitigated scenario’s outcome.

The largest unit’s profit percentage increase in the unmit-
igated and mitigated scenarios, compared to the competitive
benchmark, is depicted in Fig. 6. The largest GENCO agent’s
profit increase, which is 47.9% above the competitive bench-
mark, is significantly higher than the average increase of all
other GENCO agents. This shows the Q-learning algorithm did
help the GENCO agent realize that the huge size of its unit does
provide a higher potential to exercise market power. In the mit-
igated scenario, the strategic bidding of generators is not ben-
eficial to the largest GENCO agent at all. In some situations,
the strategic bidding behavior will even lead to a lower profit
compared to the competitive benchmark. The MPM rules being
examined did reasonably well in discouraging the exercise of
market power.

C. Effects of LSE Owning Generation Resources

It is common in agent modeling studies of electric markets
to have separate agents for GENCO agents versus LSEs, and
rare to have the same agents both buying and selling electricity.
However, in CAISO, a number of LSEs also own or control
generation. The results of this study demonstrate the importance
of accounting for this type of LSE.

To examine the bidding behaviors of LSEs that own genera-
tion resources and their impacts on suppressing the GENCOs’
collective market power, it is assumed that five major LSEs have
their own generation units. Details of study inputs about LSEs’
service areas, their units’ capacity, and peak load are listed in
Table IV. Itis assumed that each LSE serves a peak load of twice
its unit’s capacity. To provide the desired test scenarios, this dis-
tribution of load among LSEs is more uniform than the actual
CAISO market, in which one LSE dominates each of three trans-
mission areas that also contain smaller municipal utilities and
customers served by competitive retail energy service providers.

The simulation is carried out in four scenarios categorized
by whether mitigation rules exist and whether some generation
units are owned by LSEs. Fifteen simulation runs are performed
in each scenario and the average results are reported below.

As shown in Fig. 7, generator 7, for example, quickly learned
to bid at a lower markup in the unmitigated scenario when it
is owned by an LSE and the load level is high. The LSE also
learned the same strategy to reduce the cost of energy and AS in
the mitigated scenario, however, at a slower rate. In the unmiti-
gated scenario where generator 7 is owned by a GENCO agent,
Q-Learning helped it learn to bid at a higher markup during high
load days. In the mitigated scenario, the GENCO agent learned



TABLE IV
LSES’ DETAILED INFORMATION
. Unit
Area Peak Geperatlon Capacity Peak Load to
Load (MW) Unit Owned (MW) Serve (MW)
LSE A 16280.3 Generator 7 3718 7436
LSEB 16280.3 Generator 8 3967 7934
LSE C 7002.0 Generator 18 2628 5256
LSE D 6977.8 Generator 20 1478 2956
LSEE 6977.8 Generator 22 1314 2628

9-day Average Bidding Markup Unmitigated Scenario (Owned by LSE)
9-day Average Bidding Markup Unmitigated Scenario (Owned by GENCO Agent)

— e O-day Average Bidding Markup Mitigated Scenario (Owned by LSE)
————— 9-day Average Bidding Markup Mitigated Scenario (Owned by GENCO Agent)

Bidding Markup %

High Load Level Day

Fig. 7. Nine-day average bidding markup of generator 7 in unmitigated or mit-
igated scenario when owned by LSE or GENCO agent.

a similar strategy, except that the actual bidding markup cannot
exceed 10% due to the existence of MPM rules. The bidding
markup of other generators in Table IV also exhibits similar pat-
terns in the four simulation scenarios.

A conclusion from these simulation results is that if the gen-
eration capacity of a LSE is smaller than the LSE’s total load, it
will tend to bid at its generation unit’s true marginal cost. How-
ever, if a generation company owns the same generator, it will
tend to bid at a much higher markup.

The total market payment and total generation cost per-
centage increase from competitive benchmark in the four
scenarios are shown in Fig. 8. The simulation results show that
both MPM procedure and the LSEs’ ownership of generation
units contribute to reductions in total market payment and total
generation cost. In the mitigated scenario, on average, the total
profit of the group of generators that are not owned by LSEs
is about 1.5% lower when some LSEs own generation units
compared to the case when LSEs do not own any generation
units. In the unmitigated scenarios, the reduction in profit is
about 1.1% on average. Therefore, the generation resources
that are owned or managed by LSEs are useful for reduction of
market power during peak hours to the GENCO agents.

V. CONCLUSION

This paper presents a multi-agent simulation approach to
the evaluation of electricity market rules. It is found that the
agent-based simulation approach empowered by Q-Learning
agents is able to capture the dynamic interaction between
strategic bidding market participants. The simulation result in
the unmitigated scenarios shows that, even in a rapidly changing
market environment, major generation owners who interact with
each other in similar scenarios easily learn to implicitly collude

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 1, FEBRUARY 2010

12

B Total Market Payment
Percentage Change from
10 Competitive Benchmark
@ Total Generation Cost
Percentage Change from
Competitive Benchmark

Percentage %
(o))

4
2
, il :.
Mitigated Mitigated Unmitigated Unmitigated
Some LSEs  NoLSEs Own  Some LSEs No LSEs Own
Own Generation  Generation Own Generation  Generation

Scenarios

Fig. 8. Total market payment and total generation cost percentage increase in
four scenarios compared to the competitive benchmark.

even without having to know others’ historical bidding data.
This is achieved by anticipating each other’s impact on market
prices. The simulation results in a mitigated scenario show that
the LMPM rules proposed by CAISO perform reasonably well
against Q-Learning agents and enhance the market efficiency.
It is also shown that when LSEs with generation resources are
net buyers in the market, they pose effectively countervailing
market power against the GENCO agents. A drawback of the
Q-Learning model for GENCO agents is that it may suffer from
the curse of dimensionality if there are too many decision vari-
ables. This weakness can be overcome by designing a learning
algorithm for electricity market participants that combines the
strength of both Q-Learning and artificial neural networks.

Further research is needed on the development of the pro-
posed multi-agent platform to enable the negotiation between
GENCO agents and LSEs on bilateral contracts and study the
effects of forward contracts on DAM. In addition, it is desirable
to incorporate marketers into the model who trade energy but
do not own generation or serve load, to examine the impacts of
virtual bidding on electricity markets.
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