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Multi-vehicle coordination for double-integrator dynamics under fixed
undirected/directed interaction in a sampled-data setting
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SUMMARY

This paper studies the convergence of two coordination algorithms for double-integrator dynamics under fixed undirected/
directed interaction in a sampled-data setting. The first algorithm guarantees that a team of vehicles achieves coordination on
their positions with a zero final velocity while the second algorithm guarantees that a team of vehicles achieves coordination
on their positions with a constant final velocity. We show necessary and sufficient conditions on the sampling period, the
control gain, and the communication graph such that coordination is achieved using these two algorithms under, respectively,
an undirected interaction topology and a directed interaction topology. Tools like matrix theory, bilinear transformation, and
Cauchy theorem are used for convergence analysis. Coordination equilibria for both algorithms are also given. Simulation
results are presented as a proof of concept. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Distributed multi-vehicle coordination has received
significant attention in the control community in
recent years. Examples include formation control
[1], coverage control [2], flocking [3, 4], distributed
estimation [5], and consensus [6]. Consensus plays
an important role in achieving distributed multi-
vehicle coordination. The basic idea of consensus is
that a team of vehicles achieves an agreement on a
common value by negotiating with their neighbors.
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By specifying desired separations among different vehi-
cles, consensus algorithms can be applied to achieve
distributed multi-vehicle formation control. Consensus
algorithms for single-integrator kinematics have been
studied extensively in the literature (see [6] and refer-
ences therein).

Taking into account the fact that equations of motion
of a broad class of vehicles require a double-integrator
dynamic model, coordination algorithms for double-
integrator dynamics are studied in [7–17]. In partic-
ular, [8–11, 17] derive conditions on the interaction
topology and the control gains under which consensus
is guaranteed. References [12, 13] study formation
keeping problems while [14–16] study flocking of
multiple vehicle systems. All these algorithms are
studied in a continuous-time setting.

In multi-vehicle coordination, vehicles may only
be able to exchange information periodically but
not continuously, which results in discrete-time or
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sampled-data formulation. Current discrete-time
coordination algorithms are primarily studied for
first-order kinematic models [18–21]. The algo-
rithms are essentially distributed weighted averaging
algorithms [22–24]. Discrete-time coordination for
double-integrator dynamics is studied in [25] where a
simple forward difference is used to approximate both
the velocities and accelerations in the continuous-time
setting. However, existing discrete-time coordination
algorithms do not often explicitly consider the effect
of sampled-data control on stability of vehicles with
mass despite the fact the sampling period plays an
important role in stability when there are physical
vehicle dynamics involved. Few works study coordi-
nation algorithms for double-integrator dynamics in
a sampled-data setting except [26, 27]. In [26], an
algorithm is studied for double-integrator dynamics
through average-energy-like Lyapunov functions. The
analysis in [26] is limited to an undirected interac-
tion topology. However, in coordination applications,
information flow may often be directed, either due
to heterogeneity, nonuniform communication powers,
or sensing with a limited field of view. The case of
directed interaction is much more challenging than
that of undirected interaction. Reference [27] studies
the case of directed switching interaction and derive
sufficient conditions by using the property of an
infinity product of stochastic matrices. However, only
sufficient conditions are derived due to the switching
interaction topologies. In contrast to [26, 27], we focus
on studying necessary and sufficient conditions for
convergence in the case of fixed undirected/directed
interaction in this paper. In contrast to [26] (respec-
tively, [27]), our analysis in this paper is based on
tools like matrix theory, bilinear transformation, and
Cauchy theorem rather than a Lyapunov approach
as in [26] (respectively, the property of an infinite
product of stochastic matrices as in [27]). Our results
generalize the convergence conditions derived in [26]
and complement those derived in [27].

In this paper, we study the convergence of two
sampled-data coordination algorithms for double-
integrator dynamics under fixed undirected/directed
interaction by expanding on our preliminary work
reported in [28]. The first algorithm guarantees that
a team of vehicles achieves coordination on their

positions with a zero final velocity while the second
algorithm guarantees that a team of vehicles achieves
coordination on their positions with a constant final
velocity. We show necessary and sufficient condi-
tions on the sampling period, the control gain, and
the communication graph such that coordination is
achieved using these two algorithms under, respec-
tively, an undirected interaction topology and a directed
interaction topology. Tools like matrix theory, bilinear
transformation, and Cauchy theorem are used for
convergence analysis. Coordination equilibria for both
algorithms are also given.

2. BACKGROUND AND PRELIMINARIES

2.1. Graph theory notions

It is natural to model interaction among vehicles by
directed or undirected graphs. Suppose that a team
consists of n vehicles. A weighted graph G consists
of a node set V={1, . . . ,n}, an edge set E⊆V×V,
and a weighted adjacency matrix A=[ai j ]∈Rn×n . An
edge (i, j) in a weighted directed graph denotes that
vehicle j can obtain information from vehicle i , but not
necessarily vice versa. In contrast, the pairs of nodes
in a weighted undirected graph are unordered, where
an edge (i, j) denotes that vehicles i and j can obtain
information from one another. Weighted adjacency
matrix A of a weighted directed graph is defined such
that ai j is a positive weight if ( j, i)∈E, while ai j=0 if
( j, i)∈E. Weighted adjacency matrix A of a weighted
undirected graph is defined analogously except that
ai j=a ji , ∀i �= j , since ( j, i)∈E implies (i, j)∈E.

A directed path is a sequence of edges in a directed
graph of the form (i1, i2), (i2, i3), . . . , where i j ∈V. An
undirected path in an undirected graph is defined anal-
ogously. A directed graph has a directed spanning tree
if there exists at least one node having a directed path
to all other nodes. An undirected graph is connected
if there is an undirected path between every pair of
distinct nodes.

Let the (nonsymmetric) Laplacian matrix L=
[�i j ]∈Rn×n associated with A be defined as [29]
�i i =∑n

j=1, j �=i ai j and �i j =−ai j , i �= j . For an undi-
rected graph, L is symmetric positive semi-definite.
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However, L for a directed graph does not have this
property. In both the undirected and directed cases, 0
is an eigenvalue of L with associated eigenvector 1n ,
where 1n is the n×1 column vector of all ones.

2.2. Continuous-time coordination algorithms for
double-integrator dynamics

Consider vehicles with double-integrator dynamics
given by

ṙi =vi , v̇i =ui , i=1, . . . ,n (1)

where ri ∈Rm and vi ∈Rm are, respectively, the posi-
tion and velocity of the i th vehicle, and ui ∈Rm is the
control input.

A coordination algorithm for (1) is studied in
[8, 17] as

ui=−
n∑
j=1

ai j [(ri−r j )−(�i−� j )]−�vi ,

i=1, . . . ,n (2)

where �i , i=1, . . . ,n, are real constants, ai j is the
(i, j)th entry of the weighted adjacency matrix A
associated with graph G, and � is a positive gain
introducing absolute damping.‡ Define �i j =�i−� j .
Coordination is achieved for (2) if for all ri (0) and
vi (0), ri (t)−r j (t)→�i j and vi (t)→0 as t→∞.

A coordination algorithm for (1) is studied in [10] as

ui =−
n∑
j=1

ai j [(ri −r j )−(�i −� j )+�(vi −v j )],

i=1, . . . ,n (3)

where �i and ai j are defined as in (2) and � is a posi-
tive gain introducing relative damping. Coordination
is achieved for (3) if for all ri (0) and vi (0), ri (t)−
r j (t)→�i j and vi (t)→v j (t) as t→∞.

‡In [8, 17] (respectively, [10] in the next paragraph), �i , i =
1, . . . ,n, are set to zero. When �i , i =1, . . . ,n, are real constants,
the results in [8, 17] (respectively, [10] in the next paragraph)
still hold.

2.3. Sampled-data coordination algorithms for
double-integrator dynamics

We consider a sampled-data setting where the vehi-
cles have continuous-time dynamics while the measure-
ments are made at discrete sampling times and the
control inputs are based on zero-order hold as

ui (t)=ui [k], kT�t<(k+1)T (4)

where k denotes the discrete-time index, T denotes the
sampling period, and ui [k] is the control input at t=kT .
By using direct discretization in [30], the continuous-
time system (1) can be discretized as

ri [k+1] = ri [k]+T vi [k]+ T 2

2
ui [k]

vi [k+1] = vi [k]+Tui [k]
(5)

where ri [k] and vi [k] denote, respectively, the position
and velocity of the i th vehicle at t=kT . Note that (5)
is the exact discrete-time dynamics for (1) based on
zero-order hold in a sampled-data setting.

We study the following two algorithms:

ui [k]=−
n∑
j=1

ai j [(ri [k]−r j [k])−(�i −� j )]−�vi [k]
(6)

which corresponds to continuous-time algorithm (2) and

ui [k] = −
n∑
j=1

ai j [(ri [k]−r j [k])−(�i −� j )

+�(vi [k]−v j [k])] (7)

which corresponds to continuous-time algorithm (3).
Note that [26] shows conditions for (7) under an undi-
rected interaction topology through average-energy-like
Lyapunov functions. Relying on algebraic graph theory
and matrix theory, we will show necessary and suffi-
cient conditions for convergence of both (6) and (7)
under fixed undirected/directed interaction.

In the remainder of the paper, we assume that�i j =0.
However, all the results hereafter are valid for �i j �=0
by using ri −�i to replace ri . For simplicity, we suppose
that ri ∈R, vi ∈R, and ui ∈R. However, all results still
hold for ri ∈Rm , vi ∈Rm , and ui ∈Rm by use of the
properties of the Kronecker product.
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3. CONVERGENCE ANALYSIS OF THE
SAMPLED-DATA ALGORITHM
WITH ABSOLUTE DAMPING

In this section, we analyze algorithm (6) under, respec-
tively, an undirected and a directed interaction topology.
Before moving on, we need the following lemmas:

Lemma 3.1 (Schur’s formula [31])
Let A, B, C , D∈Rn×n . Let M=[ AC B

D ]. Then det(M)=
det(AD−BC), where det(·) denotes the determinant
of a matrix, if A, B, C , and D commute pairwise.

Lemma 3.2
Let L be the nonsymmetric Laplacian matrix (respec-
tively, Laplacian matrix) associated with directed graph
G (respectively, undirected graph G). Then L has a
simple zero eigenvalue and all other eigenvalues have
positive real parts (respectively, are positive) if and
only if G has a directed spanning tree (respectively,
is connected). In addition, there exist 1n satisfying
L1n=0 and p∈Rn satisfying p�0, pTL=0, and
pT1=1.§

Proof
See [32] for the case of undirected graphs and [20] for
the case of directed graphs. �

Lemma 3.3 ([33] Lemma 8.2.7 part(i), p. 498)
Let A∈Rn×n be given, let �∈C be given, and suppose
x and y are vectors such that (i) Ax=�x , (ii) ATy=�y,
and (iii) xTy=1. If |�|=�(A)>0, where �(A) denotes
the spectral radius of A, and � is the only eigenvalue of
A with modulus �(A), then limm→∞(�−1A)m → xyT.

Using (6), (5) can be written in matrix form as

[
r [k+1]
v[k+1]

]
=
⎡
⎢⎣ In−T 2

2
L

(
T−�T 2

2

)
In

−TL (1−�T )In

⎤
⎥⎦

︸ ︷︷ ︸
F

[
r [k]
v[k]

]
(8)

where r =[r1, . . . ,rn]T, v=[v1, . . . ,vn]T and In denote
the n×n identity matrix. To analyze (8), we first study

§That is, 1n and p are, respectively, the right and left eigenvectors
of L associated with the zero eigenvalue.

the property of F . Note that the characteristic polyno-
mial of F is given by

det(s I2n−F)

=det

⎛
⎜⎝
⎡
⎢⎣s In−(In− T 2

2
L) −(T − �T 2

2
)In

TL s In−(1−�T )In

⎤
⎥⎦
⎞
⎟⎠

=det

([
s In−

(
In− T 2

2
L

)]
[s In−(1−�T )In]

−
(
TL

[
−
(
T − �T 2

2

)
In

]))

=det

(
(s2−2s+�T s+1−�T )In+ T 2

2
(1+s)L

)
where we have used Lemma 3.1 to obtain the second
to the last equality.

Letting �i be the i th eigenvalue of −L, we get
det(s In+L)=∏n

i=1(s−�i ). It thus follows that

det(s I2n−F)

=
n∏

i=1

(
s2−2s+�T s+1−�T − T 2

2
(1+s)�i

)
Therefore, the roots of det(s I2n−F)=0 (i.e. the eigen-
values of F) satisfy

s2+
(

�T −2− T 2

2
�i

)
s+1−�T − T 2

2
�i =0 (9)

Note that each eigenvalue of −L, �i , corresponds to
two eigenvalues of F , denoted by �2i−1 and �2i .

Without loss of generality, let �1=0. It follows
from (9) that �1=1 and �2=1−�T . Therefore, F has
at least one eigenvalue equal to one. Let [pT,qT]T,
where p, q∈Rn , be the right eigenvector of F associ-
ated with eigenvalue �1=1. It follows that⎡

⎢⎣ In− T 2

2
L

(
T − �T 2

2

)
In

−TL (1−�T )In

⎤
⎥⎦
[
p

q

]
=
[
p

q

]

After some manipulation, it follows from Lemma 3.2
that we can choose p=1n and q=0n , where 0n is the
n×1 column vector of all zeros. Similarly, it can be
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shown that [pT, (1/�−T/2)pT]T is a left eigenvector
of F associated with eigenvalue �1=1.

Lemma 3.4
Using (6) for (5), ri [k]→pTr [0]+(1/�−T/2)pTv[0]
and vi [k]→0 as k→∞ if and only if one is the unique
eigenvalue of F with maximum modulus, where p is
defined in Lemma 3.2.

Proof (Sufficiency)
Note that x=[1Tn ,0Tn ]T and y=[pT, (1/�−T/2)pT]T
are, respectively, a right and left eigenvector of F asso-
ciated with eigenvalue one. Also note that xTy=1. If
one is the unique eigenvalue with maximum modulus,
then it follows from Lemma 3.3 that

lim
k→∞Fk →

[
1n

0n

][
pT,

(
1

�
− T

2

)
pT
]

Therefore, it follows that

lim
k→∞

[
r [k]
v[k]

]
= lim

k→∞Fk

[
r [0]
v[0]

]

=
⎡
⎢⎣r [0]+

(
1

�
− T

2

)
pTv[0]

0n

⎤
⎥⎦

(Necessity) Note that F can be written in Jordan
canonical form as F= P J P−1, where J is the Jordan
block matrix. If ri [k]→pTr [0]+(1/�−T/2)pTv[0]
and vi [k]→0 as k→∞, it follows that

lim
k→∞Fk →

[
1n

0n

][
pT,

(
1

�
− T

2

)
pT
]

which has rank one. It thus follows that limk→∞ J k

has rank one, which implies that all but one eigenvalue
are within the unit circle. Noting that F has at least
one eigenvalue equal to one, it follows that one is the
unique eigenvalue of F with maximum modulus. �

3.1. Undirected interaction

In this subsection, we show necessary and sufficient
conditions on � and T such that coordination is achieved
using (6) under an undirected interaction topology. Note
that all eigenvalues ofL are real for undirected graphs.

Lemma 3.5
The polynomial

s2+as+b=0 (10)

where a,b∈C, has all roots within the unit circle if and
only if all roots of

(1+a+b)t2+2(1−b)t+b−a+1=0 (11)

are in the open left half plane (LHP).

Proof
By applying bilinear transformation s=(t+1)/(t−1)
[34], polynomial (10) can be rewritten as

(t+1)2+a(t+1)(t−1)+b(t−1)2=0

which implies (11). Note that the bilinear transforma-
tion maps the open LHP one-to-one onto the interior
of the unit circle. The lemma follows directly. �

Lemma 3.6
Suppose that the undirected graph G is connected. All
eigenvalues of F , where F is defined in (8), are within
the unit circle except one eigenvalue equal to one if
and only if � and T are chosen from the set¶

Sr =
{
(�,T )|− T 2

2
min
i

�i<�T<2

}
(12)

where ∩ denotes the intersection of sets.

Proof
When undirected graph G is connected, it follows from
Lemma 3.2 that �1=0 and �i<0, i=2, . . . ,n. Because
�1=0, it follows that �1=1 and �2=1−�T . To ensure
|�2|<1, it is required that 0<�T<2.

Let a=�T −2−(T 2/2)�i and b=1−�T−(T 2/2)�i .
It follows from Lemma 3.5 that for �i<0, i=2, . . . ,n,
the roots of (9) are within the unit circle if and only if
all roots of

−T 2�i t
2+(T 2�i +2�T )t+4−2�T =0 (13)

are in the open LHP. Because −T 2�i>0, the roots
of (13) are always in the open LHP if and only
if T 2�i +2�T>0 and 4−2�T>0, which implies
that −(T 2/2)�i<�T<2, i=2, . . . ,n. Combining the
above arguments proves the lemma. �

¶Note that Sr is nonempty.
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Theorem 3.1
Suppose that undirected graph G is connected. Let p
be defined in Lemma 3.2. Using (6) for (5), ri [k]→
pTr [0]+(1/�−T/2)pTv[0] and vi [k]→0 as k→∞ if
and only if � and T are chosen from Sr , where Sr is
defined by (12).

Proof
The statement follows directly from Lemmas 3.4 and
3.6. �

Remark 3.2
From Lemma 3.6, we can get T<2/(

√−�i ). From the
Gershgorin circle theorem, we know that |�i |�2maxi �i i .
Therefore, if T<

√
2/maxi �i i , then we have T<2/

(
√−�i ). Note that maxi �i i represents the maximal
in-degree of a graph. Therefore, the sufficient bound of
the sampling period is related to the maximal in-degree
of a graph.

3.2. Directed interaction

In this subsection, we first show necessary and sufficient
conditions on � and T such that coordination is achieved
using (6) under a directed interaction topology. Because
it is not easy to find the explicit bounds for � and T
such that the necessary and sufficient conditions are
satisfied, we present sufficient conditions that can be
used to compute the explicit bounds for � and T . Note
that the eigenvalues of L may be complex for directed
graphs, which makes the analysis more challenging.

Lemma 3.7
Suppose that the directed graph G has a directed span-
ning tree. Let Re(·) and Im(·) denote, respectively, the
real and imaginary part of a number. There exist � and
T such that the following three conditions are satisfied:

(1) 0<�T<2;
(2) When Re(�i )<0 and Im(�i )=0, (�,T )∈ Sr ,

where Sr is defined in (12);
(3) When Re(�i )<0 and Im(�i ) �=0, � and T

satisfy �/T>−|�i |2/2Re(�i ) and T<T i , where

T i = −2�Re(�i )[Re(�i )+�]−2
√

�2[Re(�i )]2[Re(�i )+�]2−Re(�i )|�i |2[Im(�i )]2
Re(�i )|�i |2

(14)

In addition, all eigenvalues of F , where F is defined
in (8), are within the unit circle except one eigenvalue
equal to one if and only if the previous three conditions
are satisfied.

Proof
For the first statement, when T is sufficiently small,
there always exists � such that conditions (1), (2),
and (3) are satisfied.

For the second statement, when �1=0, it follows that
�1=1 and �2=1−�T . Therefore, condition (1) guar-
antees that �2 is within the unit circle. When Re(�i )<0
and Im(�i )=0, it follows from Lemma 3.6 that all roots
of F corresponding to �i are within the unit circle if
and only if condition (2) is satisfied.

We next consider the case when Re(�i )<0 and
Im(�i ) �=0. Letting t1 and t2 be the two roots of (13),
it follows that

Re(t1)+Re(t2)=1+2
�

T

Re(�i )

|�i |2
Therefore, both t1 and t2 are in the open LHP only if

1+2
�

T

Re(�i )

|�i |2
<0

i.e. �/T>−|�i |2/2Re(�i ). To find the bound on T ,
we assume that one root of (13) is on the imaginary
axis. Without loss of generality, let t1=�j, where � is
a real constant and j is the imaginary unit. Substituting
t1=�j into (13) and separating the corresponding real
and imaginary parts give that

T 2 Re(�i )�
2−T 2 Im(�i )�+4−2�T = 0 (15)

T 2 Im(�i )�
2+[T 2 Re(�i )+2�T ]� = 0 (16)

It follows from (16) that

�=−T Re(�i )+2�

T Im(�i )
(17)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:987–1000
DOI: 10.1002/rnc



MULTI-VEHICLE COORDINATION FOR DOUBLE-INTEGRATOR DYNAMICS 993

By substituting (17) into (15) gives that

Re(�i )[T Re(�i )+2�]2
[Im(�i )]2

+T [T Re(�i )+2�]+4−2�T =0

After some simplifications, we get that

Re(�i )|�i |2T 2+4�Re(�i )[Re(�i )+�]T
+4[Im(�i )]2=0 (18)

Note that when T =0, the left side of (18) is larger
than zero. Because Re(�i )|�i |2<0, there exists a unique
positive T i such that (14) holds when T =T i , where
T i is given by (14).

Combining the previous arguments completes the
proof. �

Theorem 3.3
Suppose that directed graph G has a directed spanning
tree. Let p be defined in Lemma 3.2. Using (6) for
(5), ri [k]→pTr [0]+(1/�−T/2)pTv[0] and vi [k]→0
as k→∞ if and only if � and T are chosen satisfying
the conditions in Lemma 3.7.

Proof
The statement follows directly from Lemmas 3.4 and
3.7. �

From Lemma 3.7, it is not easy to find � and T
explicitly such that the conditions in Lemma 3.7 are
satisfied. We next present a sufficient condition in which
� and T can be easily determined. Before moving on,
we need the following lemmas.

Lemma 3.8 ([35, 36])
All the zeros of the complex polynomial

P(z)= zn+�1z
n−1+·· ·+�n−1z+�n

satisfy |z|�r0, where r0 is the unique nonnegative solu-
tion of the equation

rn−|�1|rn−1−·· ·−|�n−1|r−|�n|=0

The bound r0 is attained if �i =−|�i |.

Corollary 3.4
All roots of polynomial (10) are within the unit circle
if |a|+|b|<1. Moreover, if |a+b|+|a−b|<1, all roots
of (10) are still within the unit circle.

Proof
According to Lemma 3.8, the roots of (10) are within
the unit circle if the unique nonnegative solution s0 of
s2−|a|s−|b|=0 satisfies s0<1. It is straightforward
to show that s0=(|a|+√|a|2+4|b|)/2. Therefore, the
roots of (10) are within the unit circle if

|a|+
√

|a|2+4|b|<2 (19)

We next discuss the condition under which (19) holds. If
b=0, then the statements of the corollary hold trivially.
If |b| �=0, we have

(|a|+√|a|2+4|b|)(−|a|+√|a|2+4|b|)
−|a|+√|a|2+4|b| <2

After some computation, it follows that condition
(19) is equivalent to |a|+|b|<1. Therefore, the first
statement of the corollary holds. For the second state-
ment, because |a|+|b|�|a+b|+|a−b|, if |a+b|+
|a−b|<1, then |a|+|b|<1, which implies that the
second statement of the corollary also holds. �

Lemma 3.9
Suppose that directed graph G has a directed spanning
tree. There exist positive � and T such that Sc∩Sr is
nonempty, where

Sc = ⋂
∀Re(�i )<0 and Im(�i )�=0

{(�,T )||1+T 2�i |

+|3−2�T |<1} (20)

and Sr is defined by (12). If � and T are chosen from
Sc∩Sr , then all eigenvalues of F are within the unit
circle except one eigenvalue equal to one.

Proof
For the first statement, we let �T = 3

2 . When Re(�i )<0
and Im(�i ) �=0, |1+T 2�i |+|3−2�T |<1 implies
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|1+T 2�i |<1 because �T = 3
2 . It thus follows that

0< T<

√−2Re(�i )

|�i |
∀Re(�i ) < 0 and Im(�i ) �=0

When �i�0, −(T 2/2)�i<�T<2 can be simplified
as −T 2�i<

3
2 because �T = 3

2 . It thus follows that
0<T<(

√
3/−�i ), ∀�i�0. Let‖

Tc= ⋂
∀Re(�i )<0 and Im(�i )�=0

{
T |0<T<

√−2Re(�i )

|�i |

}

and Tr = ⋂
∀�i�0

{
T |0<T<

√
3

−�i

}

It is straightforward to see that Tc∩Tr is nonempty.
Recalling that �T = 3

2 , it follows that Sc∩Sr is
nonempty as well.

For the second statement, note that if directed graph
G has a directed spanning tree, then it follows from
Lemma 3.2 that �1=0 and Re(�i )<0, i=2, . . . ,n.
Note that �1=0 implies that �1=1 and �2=1−�T .
To ensure that |�2|<1, it is required that 0<�T<2.
When Re(�i )<0 and Im(�i ) �=0, it follows from Corol-
lary 3.4 that the roots of (9) are within the unit circle
if |1+T 2�i |+|3−2�T |<1, where we have used the
second statement of Corollary 3.4 by letting a=�T −
2−(T 2/2)�i and b=1−(T 2/2)�i −�T . When �i<0,
it follows from the proof of Lemma 3.6 that the roots
of (9) are within the unit circle if −(T 2/2)�i<�T<2.
Combining the above arguments proves the second
statement. �

Remark 3.5
According to Lemmas 3.4 and 3.9, if � and T are
chosen from Sc∩Sr and directed graph G has a directed
spanning tree, coordination can be achieved ultimately.
An easy way to choose � and T is to let �T = 3

2 . It then

‖When �i =0, T>0 can be chosen arbitrarily.

follows that T can be chosen satisfying

T< min∀Re(�i )<0 and Im(�i )�=0

|�i |√−Re(�i )

and T< min∀Re(�i )<0 and Im(�i )=0

√
3

−�i

4. CONVERGENCE ANALYSIS OF THE
SAMPLED-DATA ALGORITHM
WITH RELATIVE DAMPING

In this section, we analyze algorithm (7) under,
respectively, an undirected and an directed interaction
topology.

Using (7), (5) can be written in matrix form as

[
r [k+1]
v[k+1]

]
=
⎡
⎢⎣ In−T 2

2
L T In−T 2

2
L

−TL In−�TL

⎤
⎥⎦

︸ ︷︷ ︸
G

[
r [k]
v[k]

]
(21)

A similar analysis to that for (8) shows that the roots
of det(s I2n−G)=0 (i.e. the eigenvalues of G) satisfy

s2−
(
2+�T�i+

1

2
T 2�i

)
s+1+�T�i−

1

2
T 2�i=0 (22)

Similarly, each eigenvalue of −L, �i , corresponds
to two eigenvalues of G, denoted by �2i−1 and �2i .
Without loss of generality, let �1=0, which implies that
�1=�2=1. Therefore, G has at least two eigenvalues
equal to one.

Lemma 4.1
Using (7) for (5), ri [k]→pTr [0]+kTpTv[0] and
vi [k]→pTv[0] for large k if and only if G has exactly
two eigenvalues equal to one and all other eigenvalues
have modulus smaller than one.

Proof (Sufficiency)
Note from (22) that if G has exactly two eigenvalues
equal to one (i.e. �1=�2=1), then −L has exactly
one eigenvalue equal to zero. Let [pT,qT]T, where
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p,q∈Rn , be the right eigenvector of G associated with
eigenvalue one. It follows that⎡

⎢⎣ In− T 2

2
L T In− T 2

2
L

−TL In−�TL

⎤
⎥⎦
[
p

q

]
=
[
p

q

]

After some computation, it follows that eigenvalue one
has geometric multiplicity equal to one even if it has
algebraic multiplicity equal to two. It also follows from
Lemma 3.2 that we can choose p=1n and q=0n . In
addition, a generalized right eigenvector associated with
eigenvalue one can be chosen as [0Tn , (1/T )1Tn ]T. Simi-
larly, it can be shown that [0Tn ,TpTn ]T and [pT,0Tn ]T
are, respectively, a left eigenvector and generalized
left eigenvector associated with eigenvalue one. Note
that G can be written in Jordan canonical form as
G=PJP−1, where the columns of P , denoted by pk ,
k=1, . . . ,2n, can be chosen to be the right eigenvec-
tors or generalized right eigenvectors of G, the rows
of P−1, denoted by qTk , k=1, . . . ,2n, can be chosen
to be the left eigenvectors or generalized left eigen-
vectors of G such that pTk qk =1 and pTk q� =0, k �=�,
and J is the Jordan block diagonal matrix with the
eigenvalues of G being the diagonal entries. Note that
�1=�2=1 and Re(�k)<0, k=3, . . . ,2n. Also note that
we can choose p1 = [1Tn ,0Tn ]T, p2 = [0Tn , (1/T )1Tn ]T,

q1=[pT,0Tn ]T, and q2=[0Tn ,TpTn ]T. It follows that

Gk → P Jk P−1 →
⎡
⎣1n 0n

0n
1

T
1n

⎤
⎦[1 k

0 1

][
pT 0Tn

0Tn TpT

]

=
[
1npT kT 1npT

0n 1npT

]

Therefore, it follows that ri [k]→pTr [0]+kTpTv[0]
and vi [k]→pTv[0] for large k.

(Necessity) Note that G has at least two eigenvalues
equal to one. If ri [k]→pTr [0]+kTpTv[0] and vi [k]→
pTv[0] for large k, it follows that Fk has rank two for
large k, which in turn implies that J k has rank two for
large k. It follows that G has exactly two eigenvalues
equal to one and all other eigenvalues have modulus
smaller than one. �

4.1. Undirected interaction

In this subsection, we show necessary and sufficient
conditions on � and T such that coordination is achieved
using (7) under an undirected interaction topology.

Lemma 4.2
Suppose that undirected graph G is connected. All
eigenvalues of G are within the unit circle except two
eigenvalues equal to one if and only if � and T are
chosen from the set∗∗

Qr =
{
(�,T )

∣∣∣∣T 2

2
<�T<− 2

mini �i

}
(23)

Proof
Because undirected graph G is connected, it follows
that �1=0 and �i<0, i=2, . . . ,n. Note that �1=�2=1
because �1=0. Let a=−(2+�T�i + 1

2T
2�i ) and b=

1+�T�i − 1
2T

2�i . It follows from Lemma 3.5 that for
�i<0, i=2, . . . ,n, the roots of (22) are within the unit
circle if and only if all roots of

−T 2�i t
2+(T 2�i −2�T�i )t+4+2�T�i =0 (24)

are in the open LHP. Because −T 2�i>0, the roots
of (24) are always in the open LHP if and only if
4+2�T�i>0 and T 2�i −2�T�i>0, which implies
that T 2/2<�T<−(2/�i ), i=2, . . . ,n. Combining the
above arguments proves the lemma. �

Theorem 4.1
Suppose that undirected graph G is connected. Let p
be defined in Lemma 3.2. Using (7), ri [k]→pTr [0]+
kTpTv[0] and vi [k]→pTv[0] for large k if and only
if � and T are chosen from Qr , where Qr is defined
by (23).

Proof
The statement follows directly from Lemmas 4.1 and
4.2. �

4.2. Directed interaction

In this subsection, we show necessary and sufficient
conditions on � and T such that coordination is achieved

∗∗Note that Qr is nonempty.
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using (7) under a directed interaction topology. Note
again that the eigenvalues of L may be complex for
directed graphs, which makes the analysis more chal-
lenging.

Lemma 4.3
Suppose that Re(�i )<0 and Im(�i ) �=0. All roots
of (22) are within the unit circle if and only if �/T> 1

2
and Bi<0, where

Bi�
(
4Re(�i )

|�i |2T 2
+2

�

T

)(
1−2

�

T

)2+ 16Im(�i )
2

|�i |4T 4
(25)

Proof
As in the proof of Lemma 4.2, all roots of (22) are
within the unit circle if and only if all roots of (24) are
in the open LHP. Letting s1 and s2 denote the roots of
(24), it follows that

s1+s2=1−2
�

T
(26)

and

s1s2=− 4

�i T 2
−2

�

T
(27)

Noting that (26) implies that Im(s1)+Im(s2)=0, we
define s1=a1+jb and s2=a2−jb, where j is the
imaginary unit. Note that s1 and s2 have negative real
parts if and only if a1+a2<0 and a1a2>0. Note from
(26) that a1+a2<0 is equivalent to (�/T )> 1

2 . We next
show conditions on � and T such that a1a2>0 holds.
Substituting the definitions of s1 and s2 into (27), gives

a1a2+b2+j(a2−a1)b= −4

�i T 2
−2

�

T

which implies that

(a2−a1)b = 4Im(�i )

|�i |2T 2
(28)

a1a2+b2 = −4Re(�i )

|�i |2T 2
−2

�

T
(29)

It follows from (28) that

b= 4Im(�i )

|�i |2T 2(a2−a1)

Consider also the fact that (a2−a1)2=(a2+a1)2−
4a1a2=(1−2�/T )2−4a1a2. After some manipula-
tion, (29) can be written as

4(a1a2)
2+Aia1a2−Bi =0 (30)

where

Ai�4

(
4Re(�i )

|�i |2T 2
+2

�

T

)
−
(
1−2

�

T

)2
and Bi is defined in (25). It follows that

A2
i +16Bi =

[
4

(
4Re(�i )

|�i |2T 2
+2

�

T

)
+
(
1−2

�

T

)2]2

+16Im(�i )
2

|�i |4T 4
�0

which implies that (30) has two real roots. There-
fore, necessary and sufficient conditions for a1a2>0 are
Bi<0 and Ai<0. Because

16Im(�i )
2

|�i |4T 4
>0

if Bi<0, then

4

(
4Re(�i )

|�i |2T 2
+2�/T

)
<0

which implies Ai<0 as well. Combining the previous
arguments proves the lemma. �

Lemma 4.4
Suppose that directed graph G has a directed spanning
tree. There exist positive � and T such that Qc∩Qr is
nonempty, where

Qc= ⋂
∀Re(�i )<0 and Im(�i )�=0

{
(�,T )

∣∣∣∣12<
�

T
, Bi<0

}

(31)

where Bi is defined by (25) and Qr is defined by (23).
All eigenvalues of G are within the unit circle except
two eigenvalues equal to one if and only if � and T are
chosen from Qr ∩Qc.

Proof
For the first statement, we let �>T>0. When Re(�i )<0
and Im(�i ) �=0, it follows that �/T> 1

2 holds appar-
ently. Note that �>T implies (T −2�)2>�2. Therefore,
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a sufficient condition for Bi<0 is

�T<− 8Im(�i )
2

|�i |4�2
− 2Re(�i )

|�i |2
(32)

To ensure that there are feasible �>0 and T>0 satis-
fying (32), we first need to ensure that the right
side of (32) is positive, which requires �>2|Im(�i )|/
(|�i |

√−Re(�i )). It also follows from (32) that

T<− 8Im(�i )
2

|�i |4�3
− 2Re(�i )

|�i |2�
, ∀Re(�i )<0

and Im(�i ) �=0

Therefore, (31) is ensured to be nonempty if � and T
are chosen from, respectively,

�c= ⋂
∀Re(�i )<0 and Im(�i )�=0

{
�|�>

2|Im(�i )|
|�i |

√−Re(�i )

}

and

Tc = ⋂
∀Re(�i )<0 and Im(�i )�=0{
T |T<− 8Im(�i )

2

|�i |4�3
− 2Re(�i )

|�i |2�
and 0<T<�

}
Note that (23) is ensured to be nonempty if � and T
are chosen from, respectively, �r ={�|�>0} and

Tr = ⋂
∀�i<0

{
T |0<T<2� and T<− 2

�i�

}

It is straightforward to see that both �c∩�r and Tc∩Tr
are nonempty. Combining the above arguments shows
that Qc∩Qr is nonempty.

For the second statement, note that if directed
graph G has a directed spanning tree, it follows from
Lemma 3.2 that �1=0 and Re(�i )<0, i=2, . . . ,n.
Note that �1=0 implies that �1=1 and �2=1. When
Re(�i )<0 and Im(�i ) �=0, it follows from Lemma
4.3 that the roots of (22) are within unit circle if and
only if �/T> 1

2 and Bi<0. When �i<0, it follows
from Lemma 4.2 that the roots of (22) are within unit
circle if and only if (T 2/2)<�T<(−2/�i ). Combining
the above arguments shows that all eigenvalues of
G are within the unit circle except two eigenvalues
equal to one if and only if � and T are chosen from
Qc∩Qr . �

Remark 4.2
From the proof of the first statement of Lemma 4.4, an
easy way to choose � and T is to let �>T . Then � is
chosen from �c and T is chosen from Tc∩Tr , where
�c, Tc, and Tr are defined in the proof of Lemma 4.4.

Theorem 4.3
Suppose that directed graph G has a directed spanning
tree. Using (7), ri [k]→pTr [0]+kTpTv[0] and vi [k]→
pTv[0] for large k if and only if � and T are chosen
from Qc∩Qr , where Qc and Qr are defined in (31)
and (23), respectively.

Proof
The proof follows directly from Lemma 4.2 and
Theorem 4.4. �

Remark 4.4
Note that it is required in Theorems 3.3 and 4.3 that
the communication graph has a directed spanning tree
in order to guarantee coordination. The connectivity
requirement in Theorems 3.3 and 4.3 can be interpreted
as follows. For a group of vehicles, if the communica-
tion graph does not have a directed spanning tree, then
the group of vehicles can be divided into at least two
disconnected subgroups. Because there is no commu-
nication among these subgroups, the final states of the
subgroups in general cannot achieve coordination.

5. SIMULATION

In this section, we present simulation results to validate
the theoretical results derived in Sections 3 and 4. We
consider a team of four vehicles with directed graph G
shown by Figure 1. Note that G has a directed spanning

Figure 1. Directed graph G for four vehicles. An arrow
from j to i denotes that vehicle i can receive information

from vehicle j .
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Figure 2. Convergence results using (6) and (7) with different � and T values. Note that coordination is achieved in (a) and
(c) but not in (b) and (d) depending on different choices of � and T . (a) Convergence resulting using (6) (�=4 and T =0.4s);
(b) Convergence resulting using (6) (�=1.2 and T =0.5s); (c) Convergence resulting using (7) (�=0.6 and T =0.02s); and

(d) Convergence resulting using (7) (�=0.6 and T =0.5s).

tree. The nonsymmetric Laplacian matrix associated
with G is chosen as

L=

⎡
⎢⎢⎢⎢⎣

1 −1 0 0

0 1.5 −1.5 0

−2 0 2 0

−2.5 0 0 2.5

⎤
⎥⎥⎥⎥⎦

It can be computed that for L, p=[0.4615,0.3077,
0.2308,0]T. Here for simplicity, we have chosen �i =
0, i=1, . . . ,4.

For coordination algorithm (6), let r [0]=
[0.5,1,1.5,2]T and v[0]=[−0.1,0,0.1,0]T. Figure 2
shows the convergence result using (6) with �=4
and T =0.4 s. Note that the conditions in Theorem
3.3 are satisfied. It can be seen that coordination is
achieved with the final equilibrium for ri [k] being
0.8835, which is equal to pTr [0]+(1/�−T/2)pTv[0]
as argued in Theorem 3.3. Figure 2 shows the conver-
gence result using (6) with �=1.2 and T =0.5 s. Note
that coordination is not achieved in this case.

For coordination algorithm (7), let r [0]=[0,1,2,3]T
and v[0]=[0,0.2,0.4,0.6]T. Figure 2 shows the
convergence result using (7) with �=0.6 and T=0.02 s.
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Note that the conditions in Theorem 4.3 are satisfied.
It can be seen that coordination is achieved with the
final equilibrium for vi [k] being 0.1538, which is equal
to pTv[0] as argued in Theorem 4.3. Figure 2(d) the
convergence result using (7) with �=0.6 and T =0.5 s.
Note that coordination is not achieved in this case.

6. CONCLUSION

We have studied the sampled-data coordination algo-
rithms for double-integrator dynamics under fixed
undirected/directed interaction. Two sampled-date
coordination algorithms with, respectively, absolute
damping and relative damping have been studied under
both undirected and directed interaction topologies.
Necessary and sufficient conditions for convergence
are given in both undirected and directed cases. The
final coordination equilibria for both algorithms have
also been given. Simulation results have illustrated the
effectiveness of the results.
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