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a b s t r a c t

This paper studies the distributed formation control problem for multiple fractional-order systems under
dynamic interaction and with absolute/relative damping. In the context of this paper, formation control
means that a group of systems reaches the desired state deviations via a local interaction. We first study
a formation control algorithm in the case of a directed dynamic network topology. The convergence
conditions on both the network topology and the fractional orders are presented. When the fractional-
orderα satisfiesα ∈ (0, 1)

⋃
(1+ 2n ), sufficient conditions on the network topology are given to ensure the

formation control. We then propose fractional-order formation control algorithms with absolute/relative
damping and study the conditions on the network topology and the control gains such that the formation
control will be achieved under a directed fixed network topology. The final equilibria are also given
explicitly. Finally, several simulation examples are presented as a proof of concept.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In the past decade, distributed motion coordination has re-
ceived significant research attention in the control community.
Examples include rendezvous [1–4], consensus [5–9], formation
control [10–13], and flocking [14–17]. One challenge in distributed
motion coordination is that collective group behavior is achieved
through local interaction.
While the existing results in distributed motion coordination

primarily assume an integer-order dynamics, many phenomena
cannot be explained in the framework of integer-order dynam-
ics, for example, the synchronized motion of agents in fractional
circumstances such as the macromolecule fluids and porous me-
dia [18], where each individual agent demonstrates a noninteger-
order (i.e., fractional-order) dynamics rather than integer-order
dynamics as shown in [19–21]. Also, many other phenomena can
be explained naturally by a coordinated behavior of agents with
fractional-order dynamics. Examples include chemotaxis behavior
and food seeking of microbes and the collective motion of bac-
teria in lubrications perspired by themselves, where the behav-
iors of the microbes and bacteria are modeled by fractional-order
dynamics [22,23]. Considering the fact that systems may demon-
strate fractional-order dynamics under many complicated circum-
stances, the authors in [18] studied a formation control algorithm
for the fractional-order systems. Conditions on both the network
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topology and the fractional orderswere provided to ensure the for-
mation control under a directed fixed network topology.
In this paper, we study the distributed formation control of

the multiple fractional-order systems under dynamic interaction
and with absolute/relative damping. In the context of the current
paper, we use the term formation control to refer to the behavior
that a group of systems reaches the desired state deviation
via a local interaction. We extend the results in [18] in the
following two aspects: (1) Analyze a formation control algorithm
for the fractional-order systems under a directed dynamic network
topology. The motivation for considering a directed dynamic
network topology is from the observation that the interaction
among different systems may be dynamic and directed due
to unreliable communication, limited communication/sensing
range, and/or sensing with a limited field of view. Therefore, it is
necessary and meaningful to study the conditions on the network
topology and the fractional orders such that the formation control
will be achieved under a directed dynamic network topology.
When the fractional-order α satisfies α ∈ (0, 1)

⋃(
1+ 2

n

)
, we

show the sufficient conditions on the network topology to ensure
the formation control. (2) Study formation control algorithms for
fractional-order systems with absolute/relative damping under a
directed fixed network topology. The motivation for introducing
fractional-order damping into the formation control algorithms is
due to either the existence of a fractional-order damping when
vehicles work in complicated environments or the fact that the
fractional-order damping can be used to improve the stability
margin. We derive the conditions on the network topology and
the control gains such that formation control will be achieved
when there exist, respectively, absolute and relative damping
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under a directed fixed network topology. In addition, the final
equilibria are given explicitly. A preliminary version of the current
paper was presented at the 48th IEEE Conference on Decision and
Control [24].
The remainder of this paper is organized as follows: In Section 2,

we introduce the graph theory notions, Caputo fractional operator
and an existing formation control algorithm for fractional-order
systems. This section provides the basic information that will
be used in the following several sections. Section 3 focuses
on the convergence analysis of the existing formation control
algorithm for fractional-order systems under a directed dynamic
network topology. Section 4 focuses on the convergence analysis
of formation control algorithms for fractional-order systems
with absolute/relative damping. In Section 5, several simulation
examples are presented to show the effectiveness of the theoretical
results. A short conclusion is given in Section 6.

2. Preliminaries

2.1. Graph theory notions

Given the n system, where n ≥ 2, the interaction for them can
be naturally modeled by a directed graph G = (V,W), where
V = {v1, v2, . . . , vn} and W ⊆ V2 represent, respectively, the
system set and the edge set. Each edge denoted as (vi, vj) means
that the system j can access the state information of the system
i, but not necessarily vice versa. A directed path is a sequence of
edges in a directed graph of the form (v1, v2), (v2, v3), . . . , where
vi ∈ V . A directed graph has a directed spanning tree if there exists
at least one system that has a directed path to all other systems. The
union of a set of directed graphs Gi1 , . . . ,Gim is a directed graph
with the edge set given by the union of the edge sets of the directed
graphs Gij , j = 1, . . . ,m.
The interaction can be represented by two types of matrices:

the adjacency matrix A = [aij] ∈ Rn×n with aij > 0 if (vj, vi) ∈ W
and aij = 0 otherwise, and the (nonsymmetric) Laplacian matrix
L = [`ij] ∈ Rn×n with `ii =

∑n
j=1 aij and `ij = −aij, i 6= j. It

is straightforward to verify that L has at least one zero eigenvalue
with a corresponding eigenvector 1, where 1 is an all-one column
vector with a compatible size.

2.2. Caputo fractional operator

There are mainly two frequently used fractional operators:
Caputo and Riemann–Liouville (R–L) fractional operators. In
physical systems, the Caputo fractional operator is more practical
than the R–L fractional operator because the R–L fractional
operator has initial value problems [25]. Therefore, we will use
the Caputo fractional operator in this paper to model the system’s
dynamics and analyze the stability of the proposed formation
control algorithms. Generally, the Caputo fractional operator
includes the Caputo integral and the Caputo derivative. The Caputo
integral is defined from the Heaviside unit step function as

C
aD
−α
t f (t) =

1
0(α)

∫ t

a

f (τ )
(t − τ)1−α

dτ ,

where 0(·) is the Gamma function, α ∈ (0, 1], a is an arbitrary
real number, and CaD

−α
t denotes the Caputo integral with an order

α. For an arbitrary real number p, the Caputo derivative/integral is
defined as

C
aD
p
t f (t) =

C
aD
−α
t

[
d[p]+1

dt [p]+1
f (t)

]
, (1)

where α = [p] + 1− p ∈ (0, 1] and [p] is the integer part of p. If p
is an integer, then α = 1 and (1) is equivalent to the integer-order
derivative. For simplicity, in the following of this paper, a simple
notation f (α) will be used to replace CaD

α
t f . When α > 0, f (α) is

called a fractional derivative.Whenα < 0, f (α) is called a fractional
integral.
Next we will introduce the Laplace transform of the Caputo

derivative, and the Mittag–Leffler function which will be used in
the following analysis. Let L{·} denote the Laplace transform of
a function. It follows from the formal definition of the Laplace
transform F(s) = L{f (t)} =

∫
∞

0− e
−st f (t)dt that the Laplace

transformL{f (α)(t)} satisfies

L{f (α)(t)} =
{
sαF(s)+ sα−1f (0−), α ∈ (0, 1]
sαF(s)+ sα−1f (0−)+ sα−2 ḟ (0−), α ∈ (1, 2],

where f (0−) = limε→0− f (ε) and ḟ (0−) = limε→0− ḟ (ε). Similar
to the exponential function which is used frequently in integer-
order systems, there is a frequently used function in fractional-
order systems called the Mittag–Leffler function, which is defined
as

Eα,β(z) =
∞∑
k=0

zk

0(kα + β)
, (2)

where α, β ∈ C. When β = 1 and α > 0, (2) can be written in
a special case as Eα(z) =

∑
∞

k=0
zk

0(kα+1) . The Mittag–Leffler matrix
function is defined as

Eα,β(B) =
∞∑
k=0

Bk

0(kα + β)
, (3)

where B ∈ Rn×n. Accordingly, when β = 1 and α > 0, (2) becomes
Eα(B) =

∑
∞

k=0
Bk

0(kα+1) .

2.3. Formation control algorithm for fractional-order systems

Define δij , δi − δj. Here δij denotes the desired state deviation
between the system i and the system j. For n systems with the
fractional-order dynamics given by

x(α)i (t) = ui(t), (4)

where xi(t) ∈ R and ui(t) ∈ R represent, respectively, the state
and the control input of system i, and x(α)i (t) is the αth Caputo
derivative of xi(t) with α ∈ R,1 a formation control algorithm for
(4) was studied in [18] as

ui(t) =
n∑
j=1

aij[xj(t)− xi(t)− δij], (5)

where aij is the (i, j)th entry of the adjacency matrix A. The
objective of (5) is to achieve the formation control, i.e., xi(t) −
xj(t) → δij as t → ∞ for i 6= j. Using (5), (4) can be written in
matrix form as

X̃ (α)(t) = −LX̃(t), (6)

where X̃(t) = [x̃1(t), . . . , x̃n(t)]T ∈ Rn with x̃i(t) = xi(t)− δi and
L is the Laplacian matrix. For a given matrix L, the existence and
uniqueness of the solution for (6) is always guaranteed [26].

3. Convergence analysis of the fractional-order systems under
a directed dynamic interaction

In this section, we derive the conditions on the network
topology and the fractional orders such that the formation control

1 In contrast, α is an integer in integer-order systems.
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will be achieved for the fractional-order system (6) under a
directed dynamic network topology.
We assume that the interaction is constant over the time

interval [
∑k
j=1∆j,

∑k+1
j=1 ∆j) and switches at the time t =

∑k
j=1∆j

with k = 0, 1, . . . ,2 where ∆j > 0, j = 1, . . . . Let Gk and Ak
denote, respectively, the directed graph and the adjacency matrix
for t ∈ [

∑k
j=1∆j,

∑k+1
j=1 ∆j). We also assume that each nonzero

entry of Ak has a lower bound a and an upper bound a, where a and
a are positive constants with a ≥ a. Then (6) becomes

X̃ (α)[k+ 1] = −LkX̃[k], (7)
where Lk ∈ Rn×n represents the Laplacian matrix associated with
Ak.

3.1. Convergence analysis for 0 < α < 1

In this subsection, we focus on the case where 0 < α < 1. We
have the following result.

Theorem 3.1. Assume that α ∈ (0, 1). Using (5) for (4), a necessary
condition to guarantee the formation control is that there exists a finite
constant N such that the union of Gj, j = k, k + 1, . . . , k + N,
has a directed spanning tree for any finite k. Furthermore, if Gj, j =
0, 1, . . . , has a directed spanning tree at each time interval, there
exists a positive ∆i such that the formation control will be achieved
globally when∆i > ∆i.3

Proof. For the first statement, when there does not exist a finite
constant N such that the union of Gj, j = k, . . . , k + N , has
a directed spanning tree for some k, it follows that at least
one system, labeled as i, is separated from the other systems
for t ∈ [

∑k
j=1∆j,∞). It follows that the state of the system

i is independent of the states of the other systems for t ≥∑k
j=1∆j, which implies that all systems cannot always achieve the

formation control for arbitrary initial conditions.
For the second statement, it follows from Theorem 3.9 in [27]

that

X̃(t) = Eα(−Ltα)X̃(0).

Therefore, the solution to (7) is given by

X̃

(
k∑
j=1

∆j

)
=

k∏
i=1

Eα

(
−Lk

(
k+1∑
j=1

∆j

)α)

×

[
Eα

(
−Lk

(
k∑
j=1

∆j

)α)]−1
Eα(−L0∆1)α X̃(0).

(8)

Define x , maxi x̃i, x , mini x̃i, and V , maxi x̃i − mini x̃i. It
follows from Theorem 3.1 in [18] that x̃i converges to x̃j as t →
∞ if the network topology has a directed spanning tree. That is,
there exists a positive ∆1 such that V (t) < V (0) for any t ≥
∆1. Similarly, by considering [Eα(−L1(∆1)α)]−1Eα(−L0∆1)α X̃(0)
as the new initial state, it follows that there exists ∆2 such that
V (t+∆1) < V (∆1) for any t > ∆2. By following a similar analysis,
there also exist ∆3, . . . . When ∆i ≥ ∆i, V (

∑i+1
j=1∆k) < V (

∑i
j=1

∆k). Therefore, V (
∑i
j=1∆k) → 0 as i → ∞. Therefore, x̃i[k] →

x̃j[k], i.e., xi[k] − xj[k] → δij as k→∞ under the condition of the
theorem. �

Remark 3.2. For system ẋi(t) = ui(t), xi(t) will decrease if ui(t)
< 0 and xi(t) will increase if ui(t) > 0. However, for system

2 We define
∑k
j=1 ∆j , 0 when k = 0.

3 Here the values of ∆i, i = 1, . . . , depend on the initial states, the fractional-
order α, and Gk .
x(α)i (t) = ui(t) with α ∈ (0, 1), due to the long memory process
of the fractional calculus, the aforementioned properties do not
necessarily hold. Therefore, even if the switching network topology
has a directed spanning tree at each time interval, the formation
control might not be achieved ultimately because the switching
sequence also plays an important role.

3.2. Convergence analysis for 1 < α < 1+ 2
n

In this subsection, we focus on the case where 1 < α < 1+ 2
n ,

where n ≥ 2. When the directed network topology is fixed, we
have the following lemma regarding the solution of (6).

Lemma 3.1. When α ∈ (1, 2), the solution of (6) is

X̃(t) = Eα(−Ltα)X̃(0)+ tEα,2(−Ltα)
˙̃X(0). (9)

Proof. Consider the fractional-order system given by (6). By
applying the Laplace transform to both sides of (6), it follows that

s−(2−α)[L{ ¨̃X(t)}] = −LX̃(s). (10)

Eq. (10) can be written as

s−(2−α)[s2X̃(s)− sX̃(0)− ˙̃X(0)] = −LX̃(s). (11)

After some manipulation, (11) can be written as

X̃(s) = (sα In + L)−1sα−1X̃(0)+ (sα In + L)−1sα−2
˙̃X(0). (12)

By applying the inverse Laplace transform to (12), it follows from
Theorem 3.2 in [27] that (9) is a solution of (6). Noting also that L
is a constant matrix, it follows from the uniqueness and existence
theorem of fractional equations in [26] that (9) is the unique
solution of (6). �

Taking the derivative of (9) with respect to t gives that

˙̃X(t) =
1
t
Eα,0(−Ltα)X̃(0)+ Eα(−Ltα)

˙̃X(0). (13)

Combining (9) and (13) leads to the following matrix form[
X̃(t)
˙̃X(t)

]
=

[
Eα(−Ltα) tEα,2(−Ltα)
1
t
Eα,0(−Ltα) Eα(−Ltα)

][
X̃(0)
˙̃X(0)

]
. (14)

Therefore, we can get that[
X̃(∆1)
˙̃X(∆1)

]
=

[ Eα(−L0∆α1 ) ∆1Eα,2(−L0∆α1 )
1
∆1
Eα,0(−L0∆α1 ) Eα(−L0∆α1 )

][
X̃(0)
˙̃X(0)

]
.

Similarly, we can also get that[
X̃(∆k)
˙̃X(∆k)

]
=

k∏
i=1

Ck−iB0,0

[
X̃(0)
˙̃X(0)

]
, (15)

where Ck = Bk+1,k+1B−1k+1,k with

Bm,n =



Eα

(
−Lm

(
n+1∑
i=1

∆i

)α) n+1∑
i=1

∆iEα,2

(
−Lm

(
n+1∑
i=1

∆i

)α)

Eα,0

(
−Lm

(
n+1∑
i=1
∆i

)α)
n+1∑
i=1
∆i

Eα

(
−Lm

(
n+1∑
i=1

∆i

)α)


where C0 , I2n is the 2n by 2n identity matrix. Note that unlike the
integer-order systems, there does not exist a transition matrix for
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fractional-order systems. Therefore, the analysis for the fractional-
order systems is more challenging than that for the integer-order
systems. Next we show the sufficient conditions on the directed
dynamic network topology such that the formation control will be
achieved.

Theorem 3.3. Assume that α ∈
(
1, 1+ 2

n

)
and Gk has a directed

spanning tree. Define V (t) , maxj x̃j(t)−minj x̃j(t). For (15), there
exists a positive ∆̄i such that V (t) < V (

∑i−1
j=1∆j) for any ∆i ≥ ∆̄i

when t ≥
∑i
j=1∆j, i = 1, . . . .4 In addition, if ∆i ≥ ∆̄i, the

formation control will be achieved globally.

Proof. For the first statement, when the directed fixed network
topology has a directed spanning tree, it follows from Theorem
3.3 in [18] that the formation control will be achieved for α ∈(
1, 1+ 2

n

)
. It then follows that there exists a positive ∆̄1 such

that V (t) < V (0) for any t > ∆̄1. Similarly, by considering
B−11,0B0,0

[
X(0)
Ẋ(0)

]
the new initial state, it follows that there exists a

positive ∆̄2 such that V (∆1 + t) < V (∆1) for any t > ∆̄2 + ∆1.
Similarly, we can also show the existence of∆i, i = 3, . . . .
For the second statement, because V (

∑i+1
j=1∆k) < V (

∑i
j=1∆j),

it follows that V (
∑i
j=1∆j) → 0 as i → ∞. Therefore, we can get

that x̃i[k] → x̃j[k], i.e., xi[k] − xj[k] → δij as k → ∞ under the
condition of the theorem. �

Remark 3.4. Theorems 3.1 and 3.3 can be extended to the case
when the fractional order α ∈

(
1, 1+ 2

n

)
is constant for t ∈

[
∑k
j=1∆j,

∑k+1
j=1 ∆j) and switches at t =

∑k
j=1∆j.

4. Convergence analysis of the fractional-order formation
control algorithms with absolute/relative damping

In this section, we propose the fractional-order formation
control algorithms with absolute/relative damping and then study
the conditions on the network topology and the fractional orders
such that the formation control will be achieved when using these
algorithms for the fractional-order systems under a directed fixed
network topology.

4.1. Absolute damping

For n (n ≥ 2) systems with the dynamics given by (4), we
propose the following fractional-order formation control algo-
rithm with absolute damping as

ui(t) = −
n∑
j=1

aij[xi(t)− xj(t)− (δi − δj)] − βx
(α/2)
i (t), (16)

whereβ ∈ R+ and δi ∈ R is constant. Using (16), (4) can bewritten
in matrix form as

X̃ (α)(t)+ βX̃ (α/2)(t)+ LX̃(t) = 0, (17)

where X̃(t) and L are defined in (6). It then follows that (17) can be
written as[
X̃(t)
X̃ (α/2)(t)

](α/2)
=

[
0n×n In
−L −βIn

]
︸ ︷︷ ︸

F

[
X̃(t)
X̃ (α/2)(t)

]
, (18)

4 Here the values of ∆̄i, i = 1, . . . , depend on the initial states, the fractional-
order α, and Gk .
where 0n×n is the n by n all-zero matrix. Note that each eigenvalue
of L, λi, corresponds to two eigenvalues of F , denoted by µ2i−1 =
−β+
√
β2−4λi
2 and µ2i =

−β−
√
β2−4λi
2 [28].

Note that F can be written in the Jordan canonical form as

F = P

Λ1 0 · · · 0
0 Λ2 · · · 0
· · · · · ·

0 0 · · · Λk


︸ ︷︷ ︸

Λ

P−1,

whereΛm, m = 1, 2, . . . , k, are standard Jordan blocks. By defin-

ing Z(t) = [z1(t), . . . , zn(t)]T , P−1
[
X̃(t)

X̃(α/2)(t)

]
, (18) can be written

as

Z (α/2)(t) = ΛZ(t). (19)

Suppose that each diagonal entry of Λi is µi (i.e., an eigenvalue of
F ). Similar to the analysis in [18], by noting that the standard Jordan

Block Λi has the form

[
µi 1 0 · · · 0
0 µi 1 · · · 0
· · · · · ·

0 0 0 · · · µi

]
, (19) can be decou-

pled into n one-dimensional equations represented by either

z(α/2)i (t) = µizi(t) (20)

which corresponds to the equation when the dimension of Λi is
equal to 1, or the last equation when the dimension ofΛi is larger
than 1, or

z(α/2)i (t) = µizi(t)+ zi+1(t) (21)

otherwise. Before moving on, we need the following lemmas.

Lemma 4.1 ([18]). Let Re(·) denote the real part of a complex
number. The solution of (20) has the following properties:

1. When α ∈
(
0, 4θi

π

)
and Re(µi) < 0, limt→∞ zi(t) → 0 as

t → ∞, where θi = π − | arg{−µi}| with arg{−µi} denoting
the phase of −µi.5

2. When α ∈ (0, 2] and µi = 0, zi(t) ≡ zi(0),∀t.
3. When α ∈ (2, 4) and µi = 0, zi(t) = zi(0)+ żi(0)t.
4. When α ∈ (4,∞), the system is not stable.

Lemma 4.2 ([18]). Suppose that the continuous function zi+1(t)
satisfies limt→∞ zi+1(t) = 0. When α ∈

(
0, 4θi

π

)
, where θi =

π − | arg{−µi}|, the solution of (21) satisfies limt→∞ zi(t) = 0.

Lemma 4.3 ([29]). Let λi be the ith eigenvalue of L,µ2i−1 andµ2i are
the two eigenvalues of F corresponding to λi, and Im(·) denotes the
imaginary part of a complex number. When Re(λi) > 0, Re(µ2i−1) <

0 and Re(µ2i) < 0 if and only if β >
√
[Im(λi)]2
Re(λi)

.

Theorem 4.1. Let λi be the ith eigenvalue of L, and µ2i−1 and
µ2i be the two eigenvalues of F corresponding to λi. Define θ ,
minµi 6=0,i=1,2,...,2n θi, where θi = π − | arg{−µi}|. Using (16) for (4),
the formation control will be achieved if the directed fixed network
topology has a directed spanning tree and α ∈

(
0, 4θ

π

)
. In particular,

the following properties hold.

Case 1: β > maxλi 6=0
√
[Im(λi)]2

Re(λi)
. When α ∈ (0, 2], x̃i(t) and

x̃j(t) converge to pT X̃(0) + 1
β
pT X̃ (α/2)(0) as t → ∞, where p is

the left eigenvector of L associated with the zero eigenvalue satisfying

5 We follow the convention that arg{x} ∈ (−π, π] for x ∈ C.
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pT1 = 1. When α ∈
(
2, 4θ

π

)
,6 x̃i(t) and x̃j(t) converge to pT X̃(0) +

1
β
pT X̃ (α/2)(0) +

[
pT ˙̃X(0)+ 1

β
pT X̃ (1+α/2)(0)

]
t, and ˙̃xi(t) and ˙̃xj(t)

converge to pT ˙̃X(0)+ 1
β
pT X̃ (1+α/2)(0) as t →∞.

Case 2: 0 < β ≤ maxλi 6=0
√
[Im(λi)]2

Re(λi)
. Then we have that x̃i(t) and

x̃j(t) and pT X̃(0)+ 1
β
pT X̃ (α/2)(0) as t →∞.

Proof (Proof of Case 1). When the directed fixed network topology
has a directed spanning tree, L has a simple zero eigenvalue
and all the other eigenvalues have positive real parts [30,7].
Without loss of generality, let λ1 = 0 and Re(λi) > 0, i 6=
1. For λ1 = 0, it follows that µ1 = 0 and µ2 = −β .
Because −β < 0, it follows from Property 1 of Lemma 4.1
that z2(t) → 0 as t → ∞. When α ∈ (0, 2], because µ1
= 0 is a simple zero eigenvalue, µ1 satisfies (20). It follows
from Property 2 in Lemma 4.1 that z1(t) ≡ z1(0). When β >

maxλi 6=0
√
[Im(λi)]2

Re(λi)
, it follows from Lemma 4.3 that Re(µ2i−1) < 0

and Re(µ2i) < 0, i 6= 1. When µ2i−1 and µ2i satisfy (20), it
then follows from Property 1 of Lemma 4.1 that z2i−1(t) → 0
and z2i(t) → 0 as t → ∞. When µ2i−1 satisfies (20) and µ2i
satisfies (21), it then follows from Lemmas 4.1 and 4.2 that
z2i−1(t) → 0 and z2i(t) → 0 as t → ∞ as well. Recalling the
structure of the standard Jordan block, by following the previous
analysis, it can be shown that z2i−1(t) → 0 and z2i(t) → 0 as
t → ∞ when µ2i−1 and µ2i satisfy (21). Combining the above
arguments gives limt→∞ Z(t) = [z1(0), 0, . . . , 0]T , which implies

limt→∞
[
X̃(t)

X̃(α/2)(t)

]
= limt→∞ PZ(t) = PSZ(0) = PSP−1

[
X̃(0)

X̃(α/2)(0)

]
,

where S = [sij] ∈ Rn×n has only one nonzero entry s11 =
1. Note that the first column of P can be chosen as [1T , 0T ]T

while the first row of P−1 can be chosen as
[
pT , 1

β
pT
]T
by noting

that [1T , 0T ]T and
[
pT , 1

β
pT
]T
are, respectively, a right and left

eigenvector of F associatedwithµ1 = 0 and
[
pT , 1

β
pT
]
[1T , 0T ]T =

1, where 0 is an all-zero column vector with a compatible
size. Therefore, limt→∞

[
X̃(t)

X̃(α/2)(t)

]
= PSP−1

[
X̃(0)

X̃(α/2)(0)

]
= [1T , 0T ][

pT , 1
β
pT
]T [ X̃(0)

X̃(α/2)(0)

]
, that is, limt→∞ x̃i(t) = pT X̃(0) + 1

β
pT

X̃ (α/2)(0).
When α ∈

(
2, 4θ

π

)
, it follows from Property 3 of Lemma 4.1 that

z1(t) = z1(0) + ż1(0)t . A similar discussion to that for α ∈ (0, 2]
shows that zi(t) → 0 as t → ∞ for i = 3, . . . , 2n. Therefore,
it follows that limt→∞ Z(t) = [z1(0) + ż1(0)t, 0, . . . , 0]T , which
implies that limt→∞ Ż(t) = [ż1(0), 0, . . . , 0]T . Similar to the
proof for α ∈ (0, 2], we can get that limt→∞ x̃i(t) = pT X̃(0) +
1
β
pT X̃ (α/2)(0) +

[
pT ˙̃X(0)+ 1

β
pT X̃ (1+α/2)(0)

]
t and limt→∞ ˙̃xi(t) =

pT ˙̃X(0)+ 1
β
pT X̃ (1+α/2)(0).

(Proof of Case 2) When 0 < β ≤ maxλi 6=0
√
[Im(λi)]2
Re(λi)

, it follows
from Lemma 4.3 that Re(µ2i−1) ≥ 0 for some i, which implies that
4θ
π
≤ 2. Therefore, we can get that α ∈ (0, 2). The proof then

follows a similar analysis to that of Case 1 when α ∈ (0, 2]. �

Remark 4.2. From Theorem 4.1, it can be noted that the control
gain β can be chosen as any positive number. In particular,
the possible range of α to ensure formation control will be
different depending on β . In addition, when there exists an

6 Note that 4θ
π
> 2 because θ > π

2 according to Lemma 4.1.
absolute damping, the final velocity may not be zero as shown
in Theorem 3.1, which is different from the results in [13,28].
The existing formation control algorithms for double-integrator
dynamics with absolute damping studied in [13,28] can be viewed
as a special case of Theorem 4.1 when α = 2.

4.2. Relative damping

For n (n ≥ 2) systems with the dynamics given by (4), we
propose the following fractional-order formation control algo-
rithm with the relative damping as

ui(t) = −
n∑
j=1

aij{xi(t)− xj(t)− (δi − δj)

+ γ [x(α/2)i (t)− x(α/2)j (t)]}, (22)

where γ ∈ R+ and δi ∈ R is constant. Using (22), (4) can bewritten
in matrix form as

X̃ (α)(t)+ γ LX̃ (α/2)(t)+ LX̃(t) = 0, (23)

where X̃(t) and L are defined in (6). It follows that (23) can be
written as[
X̃(t)
X̃ (α/2)(t)

](α/2)
=

[
0n×n In
−L −γ L

]
︸ ︷︷ ︸

G

[
X̃(t)
X̃ (α/2)(t)

]
. (24)

Note that each eigenvalue of L, λi, also corresponds to two

eigenvalues of G, denoted by µ2i−1 =
−γ λi+

√
γ 2λ2i −4λi
2 and µ2i =

−γ λi−
√
γ 2λ2i −4λi
2 [12].

Note that G can also be written in the Jordan canonical form as

G = Q

Σ1 0 · · · 0
0 Σ2 · · · 0
· · · · · ·

0 0 · · · Σk


︸ ︷︷ ︸

Σ

Q−1,

where Σm,m = 1, 2, . . . , k, are standard Jordan blocks. By

defining Z(t) = [z1(t), . . . , zn(t)]T , Q−1
[
X̃(t)

X̃(α/2)(t)

]
, (24) can be

written as

Z (α/2)(t) = ΣZ(t). (25)
Suppose that each diagonal entry of Σi is µi (i.e., an eigenvalue of
G). Similar to the analysis of (19), (25) can be decoupled into n one-
dimensional equations represented by either (20) or (21). Before
moving on, we need the following lemma.

Lemma 4.4. Let λi be the ith eigenvalue of L, andµ2i−1 andµ2i be the
two eigenvalues of G corresponding to λi. Suppose that Re(λi) > 0.
Then Re(µ2i−1) < 0 and Re(µ2i) < 0 if and only if γ > γ̄i, where

γ̄i ,

√
Im(λi)2

Re(λi)|λi|2
.

Proof. The characteristic polynomial of G is given by

s(s+ γ λi)+ λi = 0. (26)

Letting s1 and s2 be the two roots of (26), it follows from (26) that
s1 + s2 = −γ λi. Because Re(λi) > 0, at least one of the two roots
is in the open left half plane if γ > 0. Note that the bound of γ ,
γ̄i, can be obtained when one of the two roots is on the imaginary
axis. Without loss of generality, we let s1 = zj, where z is a real
constant and j is the imaginary unit. Substituting s1 = zj into (26)
gives that−z2+ γ̄iλizj+ λi = 0. After somemanipulation, we can
get that γ̄i satisfies−Im(λi)2+ γ̄ 2i Im(λi)

2Re(λi)+ γ̄ 2i Re(λi)
3
= 0,

which can be simplified as γ̄i =
√

Im(λi)2

Re(λi)|λi|2
. �
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(a) G1 . (b) G2 .

Fig. 1. Directed network topology for four systems. An arrow from j to i denotes that system i can receive information from system j.
Fig. 2. States of the four systems using (5) when the network topology switches
between Fig. 1(a) and (b) every 3 s with α = 0.8.

Theorem 4.3. Let λi be the ith eigenvalue of L, and µ2i−1 and µ2i be
the two eigenvalues of G corresponding to λi. Define γ̄ , maxλi 6=0 γ̄i
with γ̄i being defined in Lemma 4.4, and θ = minµi 6=0,i=1,2,...,2n θi,
where θi = π−| arg{−µi}|. Using (23) for (4), the formation control
will be achieved if the directed fixed network topology has a directed
spanning tree and α ∈

(
0, 4θ

π

)
. In addition, the following properties

hold.
Case 1: γ > γ̄ . When α ∈ (0, 2], x̃i(t) and x̃j(t) converge to

pT X̃(0) + tα/2
0(1+α/2)p

T X̃ (α/2)(0) as t → ∞, where p is defined in
Theorem 4.1. When α ∈

(
2, 4θ

π

)
,7 x̃i(t) and x̃j(t) converge to pT

X̃(0)+ tα/2
0(1+α/2)p

T X̃ (α/2)(0)+ t1+α/2
0(α/2+2) X̃

(α/2+1)(0) as t →∞.
Case 2: γ ≤ γ̄ . Then we have that x̃i(t) and x̃j(t) converge to

pT X̃(0)+ tα/2
0(1+α/2)p

T X̃ (α/2)(0) as t →∞.

Proof (Proof of Case 1). When the directed fixed network topology
has a directed spanning tree, L has a simple zero eigenvalue and
all other eigenvalues have positive real parts [30,7]. Without loss
of generality, let λ1 = 0 and Re(λi) > 0, i 6= 1. For λ1 = 0, it
follows from (26) that µ1 = 0 and µ2 = 0. Because G has two
zero eigenvalues whose geometric multiplicity is 1, it follows that
µ2 = 0 satisfies (20) and µ1 = 0 satisfies (21). When α ∈ (0, 2],
it follows from Property 2 in Lemma 4.1 that z2(t) ≡ z2(0). By
substituting z2(t) = z2(0) into (21), it follows that

z1(t) = z2(0)
tα/2

0(1+ α/2)
+ z1(0). (27)

We next study the case of λi, i 6= 1. Because Re(λi) > 0, i 6= 1,
it follows from Lemma 4.3 that Re(µ2i−1) < 0 and Re(µ2i) <
0 when γ > γ̄ . By following a similar analysis to that in the
proof of Theorem 4.1, it can be shown that z2i−1(t) → 0 and
z2i(t) → 0 as t → ∞ as well. Similar to the analysis in the proof
of Theorem 4.1, it can also be computed that w1 = [1T , 0T ]T and

7 Note that 4θ
π
> 2 because θ > π

2 according to Lemma 4.4.
Fig. 3. Directed network topology for four systems. An arrow from j to i denotes
that system i can receive information from system j.

Fig. 4. States of the four systems using (16) with α = 1.6 and β = 1 with the
directed fixed network topology given by Fig. 3.

v1 = [0T , pT ]T are the right and left eigenvectors corresponding
to µ1 = 0. Meanwhile, w2 = [0T , 1T ]T and v2 = [pT , 0T ]T
are the generalized right and left eigenvectors corresponding to
µ2 = 0, where vT1w2 = 1 and v

T
2w1 = 1. Therefore, the first

and second columns of Q can be chosen as [1T , 0T ]T and [0T , 1T ]T
while the first and second rows of Q−1 can be chosen as [pT , 0T ]T

and [0T , pT ]T . Therefore, limt→∞
[
X̃(t)

X̃(α/2)(t)

]
= limt→∞ QZ(t) =

limt→∞ QSZ(0) = limt→∞ QSQ−1
[
X̃(0)

X̃(α/2)(0)

]
, where S = [sij] ∈

Rn×n has three entries which are not equal to zero, s11 = 1,
s12 = tα/2

0(1+α/2) and s22 = 1, where s12 is derived from (27).

After some manipulation, we can get that limt→∞
[
X̃(t)

X̃(α/2)(t)

]
=[

1pT X̃(0)+
tα/2

0(1+ α/2)
1pT X̃(α/2)(0)

1pT X̃(α/2)(0)

]
,that is, limt→∞ x̃i(t) = pT X̃(0) +

tα/2
0(1+α/2)p

T X̃ (α/2)(0).

When α ∈
(
2, 4θ

π

)
, it follows from Property 3 of Lemma 4.1

that z2(t) = z2(0) + ż2(0)t . Because z1(t) satisfies (21), we can
get that z1(t) = z1(0) + z2(0) tα/2

0(α/2+1) + ż2(0)
t1+α/2

0(α/2+2) . A similar
discussion to that for α ∈ (0, 2] shows that zi(t) → 0 as t →
∞ for i = 3, . . . , 2n. Therefore, it follows that limt→∞ Z(t) =
[z1(0)+ z2(0) tα/2

0(α/2+1) + ż2(0)
t1+α/2

0(α/2+2) , z2(0)+ ż2(0)t, 0, . . . , 0]
T .

Similar to the proof for α ∈ (0, 2], we can get that limt→∞ x̃i(t) =
pT X̃(0)+ tα/2

0(1+α/2)p
T X̃ (α/2)(0)+ t1+α/2

0(α/2+2) X̃
(α/2+1)(0).

(Proof of Case 2) When γ ≤ γ̄ , it follows from Lemma 4.4 that
Re(µ2i−1) ≥ 0 for some i, which implies that 4θπ ≤ 2. Therefore, we
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(a) xi(t). (b) ẋi(t).

Fig. 5. States of the four systems using (22) with α = 1.2 and γ = 1 with the directed fixed network topology given by Fig. 3.
can get that α ∈ (0, 2). The proof then follows a similar analysis to
that of Case 1 when α ∈ (0, 2]. �

Remark 4.4. From Theorem 4.3, it can be noted that the control
gain γ can also be chosen to be any positive number. In particular,
the range of α will be different depending on γ . In addition,
when there exists a relative damping, the final velocity may not
be constant as shown in Theorem 4.3, which is different from
the results in [12]. The existing formation control algorithms for
double-integrator dynamics with relative damping studied in [12]
can be viewed as a special case of Theorem 4.3 when α = 2.

5. Simulation

In this section, we present several simulation results to
illustrate the theoretical results in Sections 3 and 4. We consider
a network of four systems.
To illustrate the results in Section 3, we consider the case of a

directed dynamic network topology with the interaction pattern
chosen from Fig. 1. Note that both Fig. 1(a) and (b) have a directed
spanning tree. Fig. 2 shows the states of the four systems using (5)
when the network topology switches between Fig. 1(a) and (b)
every 3 s with α = 0.8. Here for simplicity we have chosen
δi = 0. It can be noted that the formation control is achieved with
a directed dynamic network topology and time-varying fractional
orders.
To illustrate the results in Section 4, we consider the case of

a directed fixed network topology shown by Fig. 3 which has a
directed spanning tree. The simulation result using (16) is shown
in Fig. 4 when α = 1.6 and β = 1. The simulation result using (22)
is shown in Fig. 5 when α = 1.2 and γ = 1. Here for simplicity we
have again chosen δi = 0. It can be noted from Figs. 4 and 5 that
the formation control is achieved. In particular, it can be seen from
the bottom subplot of Fig. 5 that using (22) the final velocity ẋi(t)
is no longer constant when α = 1.2 and γ = 1.

6. Conclusion

In this paper, we studied the distributed formation control
problem for multiple fractional-order systems under a dynamic
interaction and with absolute/relative damping. We first studied
a closed-loop fractional-order system in the case of a directed
dynamic network topology.We derived the conditions on both the
network topology and the fractional orders to ensure a formation
control. When the order α ∈ (0, 1)

⋃(
1, 1+ 2

n

)
, sufficient
conditions on the network topology were given to ensure
the formation control. Then we proposed the fractional-order
formation control algorithms with an absolute/relative damping
and studied the conditions on the network topology and the
control gains to ensure the formation control under a directed
fixed network topology. In addition, the final equilibria were given
explicitly.
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