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Distributed Containment Control for Multiple Autonomous Vehicles With
Double-Integrator Dynamics: Algorithms and Experiments
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Abstract—This brief studies distributed containment control
for double-integrator dynamics in the presence of both stationary
and dynamic leaders. In the case of stationary leaders, we propose
a distributed containment control algorithm and study conditions
on the network topology and the control gains to guarantee asymp-
totic containment control in any dimensional space. In the case of
dynamic leaders, we study two cases: leaders with an identical ve-
locity and leaders with nonidentical velocities. For the first case, we
propose two distributed containment control algorithms to solve,
respectively, asymptotic containment control under a switching
directed network topology and finite-time containment control
under a fixed directed network topology. In particular, asymptotic
containment control can be achieved for any dimensional space
if the network topology is fixed and for only the 1-D space if the
network topology is switching. For the second case, we propose a
distributed containment control algorithm under a fixed network
topology where the communication patterns among the followers
are undirected and derive conditions on the network topology and
the control gains to guarantee asymptotic containment control for
any dimensional space. Both simulation results and experimental
results on a multi-robot platform are provided to validate some
theoretical results.

Index Terms—Consensus, Containment control, cooperative
control, multi-agent systems.

I. INTRODUCTION

D ISTRIBUTED cooperative control has been an active re-
search area in the systems and controls society due to its

potential applications in both military and civilian sectors. Var-
ious distributed cooperative control scenarios have been inves-
tigated, including consensus [1]–[3], formation control [4]–[6],
rendezvous [7], [8], and flocking [9]–[11].

A fundamental problem investigated in distributed cooper-
ative control is consensus (also called agreement or synchro-
nization in different applications). Consensus means the agree-
ment of a group of vehicles on certain features through only
local interaction. Consensus algorithms have been studied ex-
tensively for both single-integrator kinematics and double-inte-
grator dynamics. For detailed information about recent study of
consensus algorithms, refer to [12], [13], and references therein.

Consensus algorithms were primarily studied when there is
no group reference state. Motivated by the fact that a group of
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vehicles might have a desired trajectory representing the state
of interest for the group, consensus in the presence of a group
reference state, also called consensus tracking or coordinated
tracking, was also investigated. In [14] and [15], a consensus
tracking algorithm was studied under a variable undirected net-
work topology. However, [14] and [15] require the availability
of the leader’s acceleration input to all followers and/or the de-
sign of distributed observers. In [16] and [17], a PD-like con-
sensus tracking algorithm was studied in continuous-time and
discrete-time settings. However, [16] and [17] require either the
availability of the leader’s velocity and the followers’ velocities
or a small sampling period. Consensus tracking in the presence
of time-varying delays was investigated in [18]. However, [18]
requires the velocity measurements of the followers and the es-
timation of the leader’s velocity.

In containment control problems, there exist multiple leaders
and followers and the followers will move in the convex hull
spanned by the leaders. Containment control algorithms are con-
sensus-like algorithms in the presence of multiple leaders. The
study of containment control is motivated by numerous poten-
tial applications. For example, a group of heterogenous vehi-
cles moves from one target to another when only a portion of
the vehicles is equipped with necessary sensors to detect the
hazardous obstacles. Those vehicles equipped with sensors are
normally designated as “leaders” while the other vehicles are
designated as “followers.” By detecting the positions of the dan-
gerous obstacles, the leaders can form a (moving) safety area.
Then the group can arrive at the destination safely given that the
followers always stay within the moving safety area formed by
the leaders. In [19], a stop-and-go strategy was proposed to drive
a group of single-integrator agents to the convex hull spanned
by the leaders under a fixed undirected network topology. In
[20], containment control for single-integrator kinematics was
studied in the presence of both stationary and dynamic leaders
under directed switching network topologies. Note that both
[19] and [20] focus on single-integrator kinematics.

Taking into account the fact that a broad class of vehicles
requires a double-integrator dynamic model, i.e., mass-force
model, we study, in this brief, the distributed containment
control for double-integrator dynamics in the presence of both
stationary and dynamic leaders by expanding on our prelimi-
nary work reported in [21]. With multiple stationary leaders,
we propose a distributed containment control algorithm and
present conditions on the network topology and the control
gains to guarantee asymptotic containment control for any
dimensional space. With multiple dynamic leaders, we study
two cases: leaders with an identical velocity and leaders with
nonidentical velocities. For the first case, we propose two dis-
tributed containment control algorithms to solve, respectively,
asymptotic containment control under a switching directed
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network topology and finite-time containment control under
a fixed directed network topology. In particular, when the
network topology is fixed, asymptotic containment control can
be achieved for any dimensional space. When the network
topology is switching, asymptotic containment control can be
achieved for only the 1-D space and all followers will converge
to the minimal hyperrectangle a high-dimensional space. For
the second case, we propose a distributed containment control
algorithm and derive conditions on the network topology and
the control gains to guarantee asymptotic containment control
for any dimensional space under a fixed network topology
where the communication patterns among the followers are
undirected. Both simulation results and experimental results on
a multi-robot platform are provided to validate some theoretical
results in this brief. In contrast to many existing results on
distributed cooperative control where only theoretical results
were provided, we also provide experimental results to validate
some theoretical results.

II. PRELIMINARIES

A. Graph Theory Notions

For a group of vehicles, the interaction for all vehicles can
be naturally modeled by a directed graph , where

and represent, respectively, the
vehicle set and the edge set. Each edge denoted as means
that vehicle can access the state information of vehicle , but
not necessarily vice versa. Accordingly, vehicle is a neighbor
of vehicle . An edge is undirected if implies

. We use to denote the neighbor set of vehicle .
A directed path is a sequence of edges in a directed graph of the
form where . A directed graph has
a directed spanning tree if there exists at least one vehicle that
has a directed path to any other vehicle. The union of a set of
directed graphs is a directed graph with the edge
set given by the union of the edge sets of the directed graphs

, where , have the same
vehicle set.

The interaction graph can be mathematically represented by
two matrices: the adjacency matrix with

if and otherwise, and the
(non-symmetric) Laplacian matrix with

and . Here we assume
that . For undirected graphs, we assume
that . It is easy to verify that has at least one zero
eigenvalue with a corresponding eigenvector , where is an
all-one column vector with a compatible size.

B. Definitions

The following definitions are borrowed from [20].
Definition 2.1: For a group of vehicles, a vehicle is called

a leader if the vehicle has no neighbor. A vehicle is called a
follower if the vehicle has a neighbor. Assume that there are
followers, where . We use and to denote, respec-
tively, the leader set and the follower set. The directed graph
has a united directed spanning tree if for any one of the fol-
lowers, there exists at least one leader that has a directed path to
the follower.

Definition 2.2: Let be a set in a real vector space .
The set is called convex if, for any and in , the point

is in for any . The convex hull for a set
of points in is the minimal convex set con-
taining all points in . We use to denote
the convex hull of . In particular, when

.

III. STABILITY ANALYSIS WITH MULTIPLE

STATIONARY LEADERS

In this section, we study the conditions on, respectively, the
fixed and switching network topologies such that all followers
will converge to the stationary convex hull formed by the sta-
tionary leaders. That is, all followers will ultimately move into
the convex hull formed by the stationary leaders for arbitrary
initial states of the followers.

Consider a group of vehicles with double-integrator dy-
namics given by

(1)

where , and are, respectively,
the position, the velocity, and the control input associated with
the th vehicle. We propose the following containment control
algorithm for (1) as:

(2)

where and are defined in Definition 2.1, is the th
entry of the adjacency matrix at time , and is a posi-
tive constant. The objective of (2) is to guarantee that all vehi-
cles move into the convex hull formed by the leaders. Note that

is constant because the leaders are stationary.
We assume that (i.e., the interaction among the ve-

hicles) is constant over time intervals 1

and switches at time with , where
. Let and denote, respectively, the

directed graph and the adjacency matrix for the vehicles for
. We first consider the case when the

vehicles are in a 1-D space [i.e., in (1)].
Theorem 3.1: Using (2) for (1), all followers will always con-

verge to the stationary convex hull for arbitrary
initial conditions , if and only if there exists a posi-
tive integer such that the union of ,
has a united directed spanning tree for any finite .

Proof: (Necessity) We prove this part by contrapo-
sition motivated by [22]. Assume that for every positive
integer , there exists positive such that the union of

, does not have a united directed
spanning tree. This implies that for every positive integer

, there exists positive such that at least one follower,
labeled as , who cannot access any leader’s state directly or
indirectly for . Because can
be chosen arbitrarily large, it is straightforward to show that the

1When � � �, we define � ��.
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state of will not be affected by the leaders’ states for any
. That is, , in general, cannot always converge

to the stationary convex hull for arbitrary initial
conditions.

(Sufficiency) Define .
Using (2) for (1), we can get that

(3)

By following a similar analysis to that in the proof of Theorem
3.1 in [20], it can be shown that will converge to the
convex hull under the condition of the theorem.

Define and .
Here and are constant because the leaders are stationary.
Note that is bounded and as .
Letting , it then follows that

(4)

where we have used the fact that , are constant.
Therefore, the solution of (4) is given by

. It follows that

Noting that and as , it then follows
that as , i.e., as . This
implies that as . Similarly, it can
be shown that as . Therefore,
all followers will converge to the convex hull formed by the
leaders.

Remark 3.2: In Theorem 3.1, all followers are shown to con-
verge to the convex hull in a 1-D space. For any high-dimen-
sional space, by using the decoupling technique, it is straight-
forward to show that all followers will converge to the minimal
hyperrectangle that contains the stationary leaders and each of
whose hyperplanes is normal to one axis of a chosen inertial
coordinate frame. Note that the closed-loop system by using
(2) for (1) is independent of the inertial coordinate frame that
is chosen. Therefore, the followers will converge to the inter-
section of all minimal hyperrectangles that contain the leaders.
Note also that the intersection of all minimal hyperrectangles
that contain the leaders is essentially the convex hull formed by
the leaders. Therefore, all followers will converge to the convex
hull formed by the leaders in any high-dimensional space under
the condition of Theorem 3.1.

IV. STABILITY ANALYSIS WITH MULTIPLE DYNAMIC LEADERS

In Section III, the leaders are assumed to be stationary. In this
section, we study distributed containment control for double-in-

tegrator dynamics in the presence of multiple dynamic leaders.
We consider two cases: leaders with an identical velocity and
leaders with nonidentical velocities.

A. Leaders With an Identical Velocity

In this subsection, we assume that the velocities of all leaders
are the same (i.e., for ).

For (1), we propose the following containment control algo-
rithm as:

(5)

where is the common velocity of the leaders, and are
positive constants, and is the signum function defined
entrywise. Note that the right-hand side of (5) [correspondingly,
(8) and (9)] is discontinuous. Therefore, the solution is studied
in terms of differential inclusions [23], [24]. We first study the
case when the vehicles are in a 1-D space.

Theorem 4.1: Assume that the network topology switches ac-
cording to the same model as described right before Theorem

3.1. Assume also that , where
is bounded. All followers will always converge to the

dynamic convex hull for arbitrary initial condi-
tions , if the network topology has a united directed
spanning tree at each time interval.

Proof: Define . Using (5) for (1) gives

(6)

We next show that will converge to the convex hull
in finite time.

Define , and

. Noting that the leaders have the same ve-
locity, if , then for any . This
implies that if leader has the maximal state at , leader

always has the maximal state, i.e., .
Therefore, is differentiable and the derivative of is equal to

. Similarly, it can be shown that is differentiable
and the derivative of is also equal to . We next
will show that and in finite time. Here we
only consider the case when and . Similar
analysis can also be applied to other cases. We next show that
when for with for
except for some isolated time instants. We prove this by contra-
diction. Because for , it follows from (6) and the
definition of that or for .
Assume that for , where .
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There exists some vehicle, labeled , with the maximal state sat-
isfying for , where . It
then follows from (6) that

for . Because vehicle is with the maximal state,
it then follows that , for .
By following a similar analysis, when has a united directed
spanning tree at each time interval, for some

for , which results in a contradiction because
. Therefore, will keep decreasing with a speed

large than for except for some isolated time in-
stants. From the proof of Theorem 4.2 in [20], if , then

for . It then follows that in finite time.
Similarly, it can be shown that in finite time. Therefore,

, will converge to the convex hull
in finite time.

Because , will converge to the convex hull
in finite time, there exists positive such

that ,
for . Because the leaders have the same velocity, if

, then for any ,
which implies that for any . Without loss of
generality, let for some
and for some . It then
follows that

, for . For and

Therefore, , as . Because
the leaders have the same velocity, all followers will converge
to the convex hull formed by the leaders.

Remark 4.2: When the directed network topology is fixed
and the vehicles are in a 1-D space, by following a similar
analysis to that of Theorem 4.1 in [20], it can be shown that

as , where and
is an all-zero vector with a compatible size, under the con-

dition of Theorem 4.1. Noting that all leaders have the same
velocity, it is easy to show that as , where

. Similarly, when the vehicles are
in any high-dimensional space [i.e., in (1)], by using the
decoupling technique, it can be shown that
as , where is the Kronecker product. Therefore, all fol-
lowers will converge to the convex hull formed by the leaders
for any high-dimensional space under a fixed directed network
topology when the conditions of Theorem 4.1 are satisfied. In
contrary, when the switching directed network topology has a
directed spanning tree at each time interval and the vehicles are
in a high-dimensional space, by using the decoupling technique,
it can be shown that the followers will converge to the minimal
interval containing the leaders in each dimension. That is, the
followers will converge to the minimal hyperrectangle that con-
tains the leaders and each of whose hyperplanes is normal to one
axis of the chosen coordinate frame. Meanwhile, because the
network topology might change as increases,
might not approach as . Therefore the followers might
not be able to converge to the convex hull formed by the leaders
under switching topologies in a high-dimensional space. Note

that the changing sequence of the network topology plays an
important role in determining whether the followers will ulti-
mately converge to the convex hull.

We next propose a distributed containment control algorithm
which can guarantee that all followers converge to the convex
hull formed by the leaders in finite time. In the following of
this subsection and Section IV-B, we assume that all vehicles
are in a 1-D space for the simplicity of presentation. However,
all the results hereafter are still valid for arbitrary high-dimen-
sional space by using the decoupling technique and the Kro-
necker product.

Inspired by [25], we propose the following finite-time con-
tainment control algorithm as:

(7)

where
, and

(8)

(9)

with and for .
Theorem 4.3: Assume that the fixed network topology has a

united directed spanning tree and . Using (7) for (1),
all followers will converge to the dynamic convex hull formed
by the leaders in finite time if and .

Proof: When , it follows from (9) and
a similar proof to that of Theorem 4.1 that , will
converge to the convex hull formed by the leaders in finite time.
Noting that , it follows that

, in finite time. Without loss of generality, let
, for , where is some positive

constant. For , (8) can be written in matrix form as

(10)

where and is the Laplacian matrix
of the vehicles including both the leaders and the followers.
Let . Because , it
follows that (10) can be rewritten as .
Note that , because the th row of is zero.
When the fixed graph has a united directed spanning tree, it can
be shown that in finite time by showing that both
the maximal and minimal states will go to zero in finite time.
This implies that , will be within the convex hull
formed by the leaders in finite time. It then follows from (10)
that in finite time. Without loss of generality,
let for , where is some positive con-
stant. Note also that can be replaced with for
because for any .
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Fig. 1. Network topology for a group of vehicles with multiple leaders.� � � �

�� � � � � �, denote the leaders. � � � � �� � � � � �, denote the followers. (a) Graph
1. (b) Graph 2. (c) Graph 3.

Define . For , by replacing with
, (7) can be rewritten as

. It then follows from [25, Proposition
1] that in finite time.

Combining the previous statements completes the proof.

B. Leaders With Nonidentical Velocities

In this subsection, we consider a more general case where
the velocities of the leaders are nonidentical. Without loss of
generality, we assume that the first vehicles are leaders.

For (1), we propose the following containment control algo-
rithm as:

(11)

where is the acceleration input for the th leader, and
, and are positive constants. Using (11), (1) can be written

in matrix form as

(12)

where with
for , and for

, and is the Laplacian matrix defined in
Section II. Note that the first rows of are equal to zero.

Define . It follows that the first entries of are
equal to zero. Then (12) can be written as

(13)

Fig. 2. Trajectories of the agents using (2) under a fixed and a switching di-
rected network topology in 2-D. Circles denote the starting positions of the sta-
tionary leaders while the red and black squares denote, respectively, the starting
and ending positions of the followers. (a) Fixed directed network topology. (b)
Switching directed network topology.

Let be the vector containing only the last entries of
and be the vector containing only the last entries of .
Therefore, (14) can be rewritten as

(14)

where with if and
.

Lemma 4.1: Assume that the fixed graph has a united di-
rected spanning tree and the communication patterns among

the followers are undirected. Let

and , where and

are two positive constants and is defined right
before this lemma. If and are chosen satisfying
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Fig. 3. Trajectories of the agents using (5) under a fixed directed network
topology in 2-D. Circles denote the positions of the dynamic leaders while the
squares denote the positions of the followers. Two snapshots at � � 25 s and
� � 50 s show that all followers remain in the dynamic convex hull formed by
the dynamic leaders.

Fig. 4. Trajectories of the vehicles using (7) under a fixed directed network
topology in 2–D. Circles denote the positions of the dynamic leaders while the
squares denote the positions of the followers. Two snapshots at � � 25 s and
� � 50 s show that all followers remain in the dynamic convex hull formed by
the dynamic leaders.

,
both and are symmetric positive definite, where
denotes the smallest eigenvalue of a symmetric matrix.

Proof: When the graph has a united directed spanning tree
and the communication patterns among the followers are undi-
rected, is symmetric positive definite. Therefore, is also
symmetric positive definite. Then can be diagonalized as

, where
with being the th eigenvalue of . Let be an eigenvalue
of . It then follows that satisfies

(15)

Fig. 5. Trajectories of the vehicles using (11) under a fixed directed network
topology in 2-D. Circles denote the positions of the dynamic leaders while the
squares denote the positions of the followers. Two snapshots at � � 21.47 s and
� � 45.17 s show that all followers remain in the dynamic convex hull formed
by the dynamic leaders.

Fig. 6. Multi-vehicle experimental platform at Utah State University.

which can be simplified as
. Because is symmetric, the eigenvalues of

are real. Therefore, the roots of (15) are all positive if and
only if and . After
some simplification, we can get that . Therefore, is
symmetric positive definite if .

Similarly, it can be shown that is symmetric positive defi-
nite if .

Theorem 4.4: Assume that the fixed graph has a united di-
rected spanning tree and the communication patterns among the
followers are undirected. Using (11) for (1), if and satisfy
the conditions in Lemma 4.1 and , all fol-
lowers will converge to the convex hull formed by the leaders,
where is defined right before (14) and is defined right
after (14).

Proof: Consider the Lyapunov function candidate
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Fig. 7. Network topology for five mobile robots. � � � � �� � � � � �, denote the
leaders. � � � � �� � � � � �, denote the followers.

Fig. 8. Trajectories of the five mobile robots using (5). (a) Part I of the trajec-
tories (0 to 25 s). (b) Part II of the trajectories (25 to 50 s).

Note that according to Lemma 4.1, is symmetric positive def-
inite when and satisfy the conditions in Lemma 4.1. Taking
derivative of gives that

Fig. 9. Linear and rotational velocities of the two followers using (5). (a) Linear
velocities. (b) Rotational velocities.

Note that according to Lemma 4.1, is symmetric positive def-
inite when and satisfy conditions in Lemma 4.1. Noting also
that , it follows that is negative definite. It

then follows that and . Therefore, ,
which implies that all followers will converge to the convex hull
formed by the leaders.

Remark 4.5: Collisions between vehicles may occur when
executing the proposed algorithms in Sections III and IV. One
approach that might be adopted here is the behavior-based ap-
proach where the followers can choose two different actions at
each time: collision avoidance and containment control. When
two vehicles are quite close, the collision avoidance action can
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Fig. 10. Status of the two followers. The status is set to 1 when the follower is
within the convex hull and 0 otherwise.

be triggered. Otherwise, the containment control action can be
triggered. The feasibility of this approach still deserves further
investigation. Another approach might be to incorporate the col-
lision avoidance capabilities directly into the control laws by
introducing proper potential functions. These will be our future
research directions.

V. SIMULATION

In this section, we present several simulation results to vali-
date some theoretical results. We consider a group of vehicles
with four leaders and four followers.

When the leaders are stationary, the fixed directed network
topology is chosen as in Fig. 1(a). It can be noted that
has a united directed spanning tree. Simulation results using
(2) are shown in Fig. 2(a). We can see that all followers will
converge to the stationary convex hull formed by the leaders. In
the case of switching network topologies, the network topology
switches from Fig. 1(b)–(c) every 0.5 s. Note that neither
Figs. 1(b) nor (c) has a united directed spanning tree while the
union of Figs. 1(b) and (c) has a united directed spanning tree.
Simulation results using (2) are shown in Fig. 2(b). We can see
that all followers will converge to the stationary convex hull
formed by the leaders.

For the algorithms (5) and (7), the fixed network topology is
chosen as in Fig. 1(a). Simulation results using (5) are shown in
Fig. 3. We can see that all followers will converge to the dynamic
convex hull formed by the leaders. Simulation results using (7)
are shown in Fig. 4. Note that all followers will converge to the
dynamic convex hull formed by the leaders in finite time.

When the velocities of the leaders are nonidentical, the fixed
network topology is chosen as in Fig. 1(a). Note that has a
united directed spanning tree and the communication patterns
among the followers are undirected. Simulation results using
(11) are shown in Fig. 5. It can be noted that all followers will
converge to the dynamic convex hull formed by the dynamic
leaders.

Fig. 11. Trajectories of the five mobile robots using (11). (a) Part I of the tra-
jectories (0 to 26 s). (b) Part II of the trajectories (26 to 52 s).

VI. EXPERIMENTAL VALIDATION

In this section, we experimentally validate some of the pro-
posed containment algorithms on a multi-robot platform. In the
experiments, five wheeled mobile robots are used to obtain the
experimental results. In particular, three robots are designated
as the leaders and the other two robots are designated as the
followers. We next briefly introduce the experimental platform
developed in the Cooperative Vehicle Networks (COVEN) Lab-
oratory at Utah State University.

The textbed in the COVEN Laboratory includes five
Amigobots and two P3-DX from the ActivMedia Robotics as
shown in Fig. 6. Both the Amigobots and P3-DX are similar
in terms of functionalities. Each robot has a differential-drive
system with rear caster, high precision wheel encoders, and
eight sonar positioned around the robot. The robots can calcu-
late their positions and orientations based on the encoders. The
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Fig. 12. Linear and rotational velocities of the two followers using (11). (a)
Linear velocities. (c) Rotational velocities.

eight sonar can be used for localization and detection of obsta-
cles. Although the Amigobots have eight sonar, the encoders
are more reliable for our experiments; whereas the eight sonar
have proven more reliable for environmental navigation. The
maximum speed for the AmigoBots is 1 m/s and the AmigoBots
can climb a 1.5% incline.

In order to control multiple mobile robots under various net-
work topologies, a control software was developed to emulate
a limited or even changing network topology. The control plat-
form can be divided into two layers [26]. The top layer is re-
sponsible for network topology setting, control algorithm imple-
mentation, and bidirectional communication with the onboard
micro-controller. The bottom layer is responsible for sensor data
acquisition and direct PID loop control where both linear and ro-
tational velocity commands are generated and executed.

Fig. 13. Status of the two followers. The status is set to 1 when the follower is
within the convex hull and 0 otherwise.

The system dynamics of the wheeled mobile robots can be
described as

(16)

where is the position of the center of the th robot,
is the orientation of the th robot, and and are

the linear and rotational velocities of the th robot. To
avoid using the nonlinear dynamics (16), we feedback lin-
earize (16) for a fixed point off the center of the wheel
axis denoted as , where
and with 0.15 m. By letting

, we can get

that

(17)

Note that (17) is a single-integrator kinematics model. By letting
and , a double-integrator dynamics model

can be obtained by designing the control inputs and .
The network topology is chosen as in Fig. 7. It can be noted

from Fig. 7 that the network topology has a united directed
spanning tree. In the following, we use triangles and circles
to denote, respectively, the starting and ending positions of the
leaders, and diamonds and squares to denote, respectively, the
starting and ending positions of the followers.

When the velocities of leaders are identical, experimental re-
sults using (5) are given in Fig. 8 where Fig. 8(a) and (b) together
show the trajectories of the five robots. In each subfigure, two
snapshots are presented to show, respectively, the starting po-
sitions of the five robots as well as the convex hull formed by
the leaders and the ending positions of the five robots as well as
the convex hull formed by the leaders. The linear and rotational
velocities of the two followers are shown in Fig. 9. In order to
better demonstrate whether the followers will converge to the
convex hull formed by the leaders, Fig. 10 shows the status of
the two followers using (5). It can be seen from Fig. 10 that the
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two followers moved to the convex hull formed by the leaders,
which is consistent with the results in Theorem 4.1.

When the velocities of leaders are nonidentical, experimental
results using (11) are given in Fig. 11, where Fig. 11(a) and
(b) together show the trajectories of the five robots. In each
subfigure, we also use two snapshots to show, respectively, the
starting positions of the five robots as well as the convex hull
formed by the leaders and the ending positions of the five robots
as well as the convex hull formed by the leaders. The linear and
rotational velocities of the two followers are shown in Fig. 12.
Similar to the identical velocity case, we use Fig. 13 to show
the status of the two followers using (11). It can be seen from
Fig. 13 that the two followers moved to the convex hull formed
by the leaders, which is consistent with the results in Theorem
4.4.

VII. CONCLUSION

In this brief, we studied distributed containment control for
double-integrator dynamics in the presence of both stationary
and dynamic leaders. First, we proposed a distributed contain-
ment control algorithm in the presence of multiple stationary
leaders and presented conditions on the network topology
and the control gains to guarantee asymptotic containment
control. We then proposed two distributed containment con-
trol algorithms in the presence of multiple dynamic leaders
with an identical velocity to solve, respectively, asymptotic
containment control and finite-time containment control.
When the dynamic leaders have nonidentical velocities, we
proposed a distributed containment control algorithm and
derived sufficient conditions on the network topology and
the control gains to guarantee asymptotic containment con-
trol. Both simulation results and experimental results on a
multi-robot platform were provided to show the effective-
ness of some theoretical results. The experimental movies of
this brief can be found at http://www.neng.usu.edu/ece/fac-
ulty/wren/videos/Amigobots/containment-same-vel.MOV and
http://www.neng.usu.edu/ece/faculty/wren/videos/Amigobots/
containment-vary-vel.MOV.
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