
Information Consensus 
in Multivehicle 
Cooperative Control

T
he abundance of embedded computational
resources in autonomous vehicles enables
enhanced operational effectiveness through coop-
erative teamwork in civilian and military applica-
tions. Compared to autonomous vehicles that

perform solo missions, greater efficiency and operational
capability can be realized from teams of autonomous vehi-
cles operating in a coordinated fashion. Potential applica-
tions for multivehicle systems include space-based
interferometers, combat, surveillance, and reconnaissance
systems, hazardous material handling, and distributed
reconfigurable sensor networks. To enable these applica-
tions, various cooperative control capabilities need to be
developed, including formation control, rendezvous, atti-
tude alignment, flocking, foraging, task and role assign-
ment, payload transport, air traffic control, and
cooperative search.

Execution of these capabilities requires that individual
vehicles share a consistent view of the objectives and the
world. For example, a cooperative rendezvous task requires
that each vehicle know the rendezvous point. Information
consensus guarantees that vehicles sharing information over
a noisy time varying network topology have a consistent
view of information that is critical to the coordination task [1].
The instantaneous value of that information is the informa-
tion state. By necessity, consensus algorithms are designed to

be distrib-
uted, assuming
only neighbor-to-
neighbor interaction
between vehicles. Vehicles
update the value of their infor-
mation state based on the informa-
tion states of their neighbors. The goal is
to design an update law so that the informa-
tion states of all of the vehicles in the network
converge to a common value. Examples of the infor-
mation state include a local representation of the center
and shape of a formation, the rendezvous time, the length
of a perimeter being monitored, the direction of motion for
a multivehicle swarm, and the probability that a military
target has been destroyed. Consensus algorithms have
applications in rendezvous [2]–[4], formation control
[5]–[9], flocking [10]–[16], attitude alignment [17]–[19], and
sensor networks [20]–[23].

The purpose of this article is to provide a tutorial
overview of information consensus in multivehicle cooper-
ative control. Theoretical results regarding consensus-seek-
ing under both time invariant and dynamically changing
communication topologies are summarized. Several specif-
ic applications of consensus algorithms to multivehicle
coordination are described.
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COLLECTIVE GROUP BEHAVIOR 
THROUGH LOCAL INTERACTION
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CONSENSUS ALGORITHMS
The basic idea of a consensus algorithm is to impose similar
dynamics on the information states of each vehicle. If the
communication network among vehicles allows continuous
communication or if the communication bandwidth is suf-
ficiently large, then the information state update of each
vehicle is modeled using a differential equation. On the
other hand, if the communication data arrive in discrete
packets, then the information state update is modeled using
a difference equation. This section overviews consensus
algorithms in which a scalar information state is updated
by each vehicle using a first-order differential equation.

The team’s communication topology can be represented
by a directed graph (see “A Tutorial on Graph Theory”).
For example, Figure 1 shows three different communica-
tion topologies for three vehicles. The communication
topology may be time varying due to vehicle motion or
communication dropouts. For example, communication
dropouts might occur when a UAV banks away from its

neighbor or flies through an urban canyon. The most com-
mon continuous consensus algorithm [1], [5], [24]–[26] is
given by

ẋi(t) = −
n∑

j=1

aij(t)(xi(t) − xj(t)), i = 1, . . . , n, (1)

where aij(t) is the (i, j) entry of the adjacency matrix of the
associated communication graph at time t, which is
defined in the sidebar “A Tutorial on Graph Theory,” and
xi is the information state of the ith vehicle. Setting aij = 0
denotes the fact that vehicle i cannot receive information
from vehicle j. A consequence of (1) is that the information
state xi(t) of vehicle i is driven toward the information
states of its neighbors. The critical convergence question is,
when do the information states of all of the vehicles con-
verge to a common value?

While (1) ensures that the information states of the team
come into agreement, it does not dictate a specified

It is natural to model information exchange among vehicles by

means of directed or undirected graphs. A directed graph is a

pair (N , E), where N = {1, . . . , n} is a finite nonempty node set

and E ⊂ N × N is an edge set of ordered pairs of nodes, called

edges. The edge (i, j ) ∈ E denotes that vehicle j can obtain infor-

mation from vehicle i , but not necessarily vice versa. Self edges

(i, i ) ∈ E are allowed. For the edge (i, j ), i is the parent node

and j is the child node. In contrast to a directed graph, the pairs

of nodes in an undirected graph are unordered, where the edge

(i, j ) denotes that vehicles i and j can obtain information from

each other. Note that an undirected graph can be viewed as a

special case of a directed graph, where an edge (i, j ) in the

undirected graph corresponds to edges (i, j ) and ( j, i ) in the

directed graph. The union of a collection of graphs is a graph

whose node and edge sets are the unions of the node and edge

sets of the graphs in the collection.

A directed path is a sequence of edges in a directed graph of

the form (i1, i2), (i2, i3), . . .. An undirected path in an undirected

graph is defined analogously. In a directed graph, a cycle is a

directed path that starts and ends at the same node. The self

edge (i, i ) denotes a cycle of length 1. A directed graph is

strongly connected if there is a directed path from every node to

every other node. An undirected graph is connected if there is

an undirected path between every pair of distinct nodes. A root-

ed directed tree is a directed graph in which every node has

exactly one parent except for one node, called the root, which

has no parent and which has a directed path to every other

node. Note that a rooted directed tree has no cycle since every

edge is oriented away from the root. In the case of undirected

graphs, a tree is a graph in which every pair of nodes is connect-

ed by exactly one undirected path.

A subgraph (N1, E1) of (N , E) is a graph such that N1 ⊂ N
and E1 ⊂ E

⋂
(N1 × N1) . A rooted directed spanning tree

(N1, E1) of the directed graph (N , E) is a subgraph of (N , E)

such that (N1, E1) is a rooted directed tree and N1 = N . An

undirected spanning tree of an undirected graph is defined

analogously. The graph (N , E) has or contains a rooted direct-

ed spanning tree if a rooted directed spanning tree is a sub-

graph of (N , E). Note that the directed graph (N , E) has a

rooted directed spanning tree if and only if (N , E) has at least

one node with a directed path to all of the other nodes. In the

case of undirected graphs, the existence of an undirected span-

ning tree is equivalent to being connected. However, in the

case of directed graphs, the existence of a rooted directed

A Tutorial on Graph Theory

FIGURE S1 Communication graph among six vehicles. An arrow
from node i to node j indicates that vehicle j receives informa-
tion from vehicle i . This directed graph contains two rooted
directed spanning trees with root nodes 1 and 2, but is not
strongly connected since each node 3, 4, 5, and 6 does not have
directed paths to all of the other nodes.
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common value. For example, consider a cooperative ren-
dezvous problem where a team of vehicles is tasked to
simultaneously arrive at a specified location known to all
of the vehicles. Since the rendezvous time is not given and
may need to be adjusted in response to pop-up threats or
other environmental disturbances,
the team needs to come to consen-
sus on the rendezvous time. To do
this, each vehicle first creates an
information variable xi that repre-
sents the ith vehicle’s understand-
ing of the rendezvous time. To
initialize its information state, each
vehicle determines a time at which
it is able to rendezvous with the
team and sets xi(0) to this value.
Each team member then communi-
cates with its neighbors and nego-
tiates a team arrival time using the

consensus algorithm (1). Onboard controllers then maneu-
ver each vehicle to rendezvous at the negotiated arrival
time. When environmental conditions change, individual
vehicles may reset their information state and thus cause
the negotiation process to resume.

FIGURE 1  Three different communication topologies for three vehicles. Case (c) is strongly con-
nected since there is a directed path between every pair of nodes. However, (a) and (b) are not
strongly connected.

(a) (b)

(c)

1 2 3 1 2 3

1 2 3

spanning tree is a weaker condition than being strongly con-

nected. Figure S1 shows a directed graph that contains more

than one rooted directed spanning tree, but is not strongly con-

nected. Nodes 1 and 2 are both roots of rooted directed span-

ning trees since they both have a directed path to all of the

other nodes. However, the graph is not strongly connected

since each node 3, 4, 5, and 6 does not have directed paths to

all of the other nodes.

The adjacency matrix A = [ai j ] ∈ R
n×n of a directed graph

with node set N = {1, . . . , n} is defined such that ai j is a posi-

tive weight if ( j, i ) ∈ E , while ai j = 0 if ( j, i ) �∈ E . Note that all

graphs are weighted. If the weights are not relevant, then ai j is

set equal to 1 for all ( j, i ) ∈ E . Self edges, where ai i > 0, are

allowed. A graph is balanced if 
∑n

j =1 ai j = ∑n
j =1 aj i for all i . For

an undirected graph, A is symmetric, and thus every undirect-

ed graph is balanced.

Define the Laplacian matrix L = [�i j ] ∈ R
n×n of a directed

graph as �i i = ∑
j �=i ai j and �i j = −ai j for all i �= j . Note that if

( j, i ) �∈ E then �ij = −aij = 0. The Laplacian matrix satisfies

�ij ≤ 0, i �= j, (S1)

n∑

j=1

�ij = 0, i = 1, . . . , n. (S2)

For an undirected graph, L is symmetric. However, for a

directed graph, L is not necessarily symmetric. In both the

undirected and directed cases, since L has zero row sums, 0

is an eigenvalue of L with the associated eigenvector 1 �
[1, . . . , 1]T , the n × 1 column vector of ones. Note that L is

diagonally dominant and has nonnegative diagonal entries. If

follows from Gershgorin’s disc theorem [S1, p. 344] that, for

an undirected graph, all of the nonzero eigenvalues of L are

positive (L is positive semidefinite), whereas, for a directed

graph, all of the nonzero eigenvalues of L have positive real

parts. Therefore, all of the nonzero eigenvalues of −L have

negative real parts. For an undirected graph, 0 is a simple

eigenvalue of L if and only if the undirected graph is connect-

ed [S2, p. 147]. For a directed graph, 0 is a simple eigenvalue

of L if the directed graph is strongly connected [5, Proposition

3], although the converse does not hold. For an undirected

graph, let λi (L) be the i th smallest eigenvalue of L with

λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) so that λ1(L) = 0. For an undi-

rected graph, λ2(L) is the algebraic connectivity, which is pos-

itive if and only if the undirected graph is connected [S2, p.

147]. The algebraic connectivity quantifies the convergence

rate of consensus algorithms [48].

Given a matrix S= [si j ] ∈ R
n×n, the directed graph of S,

denoted by �(S) ,  is the directed graph with node set

N = {1, . . . , n} such that there is an edge in �(S) from j to i

if and only if s ij �= 0 [S1, page 357]. In other words, the

entries of the adjacency matrix satisfy ai j > 0 if si j �= 0 and

a ij = 0 if s ij = 0.

[S1] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge

University Press, 1985.

[S2] R. Merris, “Laplacian matrices of graphs: A survey,” Linear

Algebra and its Applications, vol. 197–198, pp. 143–176, 1994.

[S3] J.N. Tsitsiklis, D.P. Bertsekas, and M. Athans, “Distributed

asynchronous deterministic and stochastic gradient optimiza-

tion algorithms,” IEEE Trans. Automat. Contr., vol. 31, no. 9,

pp. 803–812, 1986.
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Note that (1) does not permit specification of a
desired information state. We show in “Equilibrium
State Under a Time-invariant Communication Topolo-
gy” that if the communication topology is fixed and the
gains aij are time invariant, then the common asymptotic
value is a linear combination of the initial information
states. In general, it is possible to guarantee only that
the common value is a convex combination of the initial
information states.

The consensus algorithm (1) is written in matrix form as

ẋ(t) = −L(t)x(t),

where x = [x1, . . . , xn]T is the information state and
L(t) = [�ij(t)] ∈ Rn×n is the Laplacian of the underlying
communication graph (see “A Tutorial on Graph Theo-
ry” for additional properties of L). Consensus is achieved
by a team of vehicles if, for all xi(0) and all i, j = 1, . . . , n,
|xi(t) − xj(t)| → 0 as t → ∞. The sidebar “Discrete-Time
Consensus Algorithms” addresses the case in which the
evolution of the information state is modeled by a dif-
ference equation.

CONVERGENCE ANALYSIS 
OF CONSENSUS ALGORITHMS

Convergence Analysis for Time-Invariant
Communication Topologies
In this section, we investigate conditions under which the
states of the consensus algorithm (1) converge when the
communication topology is time invariant, that is, the
Laplacian matrix L is constant. As noted in “A Tutorial on
Graph Theory,” zero is always an eigenvalue of −L, and all
of the nonzero eigenvalues of −L have negative real parts.
As also noted in the sidebar “A Tutorial on Graph Theory,”
the column vector 1 of ones is an eigenvector of the zero
eigenvalue, which implies that span{1} is contained in the
kernel of L. It follows that if zero is a simple eigenvalue of
L, then x(t) → x̄1 , where x̄ is a scalar constant, which
implies that |xi(t) − xj(t)| → 0 as t → ∞ for all
i, j = 1, . . . , n. Convergence analysis therefore focuses on
conditions that ensure that zero is a simple eigenvalue of L,
since otherwise the kernel of L includes elements that are
not in span{1}, in which case consensus is not guaranteed.

If the directed graph of L is strongly connected (see “A
Tutorial on Graph Theory” for definitions), then zero is a
simple eigenvalue of L [5, Proposition 3]. However, this
condition is not necessary. For example, consider the
Laplacian matrices

L1 =



1 −1 0
0 1.5 −1.5
0 0 0



 ,

L2 =



1 −1 0
0 1.5 −1.5
0 −2 2



 ,

L3 =



1 −1 0
0 1.5 −1.5

−2 0 2



 (2)

of the directed graphs shown in Figure 1. Although all of the
Laplacians in (2) have a simple zero eigenvalue, cases (a) and
(b) in Figure 1 are not strongly connected. The common fea-
ture is that L1 , L2 , and L3 all contain a rooted directed

Discrete-Time Consensus Algorithms

When communication between vehicles occurs at discrete

instants of time, the information state is updated using a

difference equation. The most common discrete-time consen-

sus algorithm has the form [S3], [24], [26], [31]

xi [k + 1] =
n∑

j=1

aij [k ]xj [k ], i = 1, . . . , n, (S3)

where k denotes a communication event, ai j [k] is the (i, j )

entry of the adjacency matrix of the directed graph that repre-

sents the communication topology, with the additional assump-

tion that A is row stochastic and ai i [k] > 0 for all i = 1, . . . , n.

Intuitively, the information state of each vehicle is updated as

the weighted average of its current state and the current states

of its neighbors. Note that a vehicle maintains its current infor-

mation state if it does not exchange information with other vehi-

cles at that event instant. The discrete-time consensus

algorithm (S3) is written in matrix form as x[k + 1] = D[k]x[k],

where D[k] = [ai j [k]] is a row-stochastic matrix. Similar to the

continuous case, consensus is achieved if, for all xi [0] and for

all i, j = 1, . . . , n,|xi [k] − xj [k]| → 0 as k → ∞.

For the discrete-time consensus algorithm (S3), Gershgorin’s

disc theorem implies that all of the eigenvalues of D are either in

the open unit disk or at 1. If 1 is simple, then limk→∞ Dk → 1νT

as k → ∞ [S1, page 498], where ν is a nonnegative column left

eigenvector of D associated with the eigenvalue 1 and satisfies

νT 1 = 1. As a result, x[k] = Dkx[0] → 1νT x[0] as k → ∞,,

which implies that, for all i , xi [k] → νT x[0] as k → ∞, and thus

|xi [k] − xj [k]| → 0 as k → ∞.

The Perron-Frobenius theorem (see “A Tutorial on Matrix

Theory”) implies that 1 = ρ(A) is a simple eigenvalue of the

row stochastic matrix A if the directed graph �(A) is strongly

connected, or equivalently, if A is irreducible. As in the con-

tinuous-time case, this condition is sufficient but not neces-

sary. Furthermore, for the row-stochastic matrix D, �(D)

contains a rooted directed spanning tree if and only if λ = 1

is a simple eigenvalue of D and is the only eigenvalue of

modulus one [26]. As a result, under a time-invariant commu-

nication topology, (S3) achieves consensus if and only if

either the directed communication topology contains a rooted

directed spanning tree or the undirected communication

topology is connected [26].
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spanning tree. As shown in [7], [8], and [27], zero is a simple
eigenvalue of L if and only if the associated directed graph
contains a rooted directed spanning tree. This result implies
that (1) achieves consensus if and only if the directed commu-
nication topology contains a rooted directed spanning tree or
the undirected communication topology is connected.

Equilibrium State Under a Time-invariant
Communication Topology
We now investigate the consensus equilibrium for the spe-
cial case in which the communication topology is fixed and
the gains aij are constant. When the directed communica-
tion topology contains a rooted directed spanning tree, it
follows from [27] that limt→∞ e−Lt → 1νT , where ν is an
n × 1 nonnegative column vector satisfying 

∑n
j=1 νj = 1. As

a result, for each i = 1, . . . , n , xi(t) → ∑n
j=1 νjxj(0) as

t → ∞. In fact, ν is a nonnegative left eigenvector of L cor-
responding to the zero eigenvalue. That is, the equilibrium
state is a weighted average of the initial information states
in the network. However, some of the components of ν
may be zero, implying that the information states of some
of the vehicles do not contribute to the equilibrium.

To illustrate this phenomenon, consider the Laplacians
given in (2). It can be verified that, for L1, x(t) → x3(0)1,
for L2 , x(t) → (0.5714x2(0) + 0.4286x3(0))1 , and, for L3 ,
x(t) → (0.4615x1(0) + 0.3077x2(0) + 0.2308x3(0))1 . Note that
with L1, the initial information states of vehicles 1 and 2 do
not affect the equilibrium. With L2, the initial information
state of vehicle 1 does not affect the equilibrium. However,
with L3, all of the vehicle’s initial information states affect
the equilibrium. Observing the directed graphs shown in
Figure 1, we can see that, for L1, vehicle 3 is the only agent
that can pass information to all of the other vehicles on the
team, either directly or indirectly. Similarly, for L2, both
vehicles 2 and 3 can pass information to the entire team,
whereas, for L3, all of the vehicles can pass information to
the entire team.

Next, define the nonnegative matrix M = maxi �iiIn − L.
Since ν is the nonnegative column left eigenvector of L cor-
responding to the zero eigenvalue, ν is also the nonnega-
tive left eigenvector of M corresponding to the eigenvalue
maxi �ii of M. From Gershgorin’s disc theorem it follows
that ρ(M) = maxi �ii. If the directed communication graph
is strongly connected, so is the directed graph of M, which
also implies that M is irreducible (see “A Tutorial on
Matrix Theory”). By the Perron-Frobenius theorem, if M is
irreducible, then ν is positive (see “A Tutorial on Matrix

Theory”). Therefore, when the directed communication
topology is strongly connected, all of the initial informa-
tion states contribute to the consensus equilibrium since
νi �= 0 for all i. Furthermore, if νi = 1/n for all i, then the
consensus equilibrium is the average of initial information
states, a condition called average consensus [1]. If the direct-
ed communication topology is both strongly connected
and balanced, then 1 is a left eigenvector of L associated
with the simple zero eigenvalue. Therefore, as shown in
[1], average consensus is achieved if and only if the direct-
ed communication topology is both strongly connected

A Tutorial on Matrix Theory

The matrix A ∈ R
n×n is reducible if either (i) n = 1 and A = 0,

or (ii) n ≥ 2 and there exists a permutation matrix P ∈ R
n×n

such that PT AP is in block upper triangular form. A matrix is

irreducible if it is not reducible. The matrix A is irreducible if

and only if �(A) is strongly connected [S1, p. 362].

A vector or matrix is nonnegative (respectively, positive) if

all of its entries are nonnegative (respectively, positive). The

Perron-Frobenius theorem [S1, p. 508] states that if A is irre-

ducible, then ρ(A) > 0 is a simple eigenvalue of A associat-

ed with a positive eigenvector, where ρ(A) denotes the

spectral radius of A. A square nonnegative matrix is primitive

if it is irreducible and has exactly one eigenvalue of maxi-

mum modulus, which is necessarily positive. A square non-

negative matrix is row stochastic if all of its row sums are 1

[S1, p. 526]. Every row-stochastic matrix has 1 as an eigen-

value with associated n × 1 eigenvector 1. The spectral

radius of a row-stochastic matrix is 1 since 1 is an eigenvalue

and Gershgorin’s disc theorem implies that all of the eigen-

values are contained in the closed unit disk. The row-sto-

chastic matrix A is indecomposable and aperiodic (SIA) if

limk→∞ Ak = 1νT , where ν is a column vector [29]. Two row-

stochastic matrices are of the same type if they have zero

entries and positive entries in the same locations [29].

Let A ∈ R
n×n be nonnegative. If A is primitive, then

limk→∞[ρ(A)−1 Ak] → wνT , where Aw = ρ(A)w, AT ν = ρ(A)ν ,

w > 0, ν > 0,and wTν = 1 [S1, p. 516]. In fact, A is primi-

tive if and only if there exists a positive integer m such that

Am is positive [S1, p. 516]. Therefore, since the spectral

radius of a row stochastic matrix is 1, if A is row-stochastic

and primitive, then limk→∞ Ak = 1νT , where ν > 0 is a col-

umn vector satisfying 1Tν = 1.

The basic idea of a consensus algorithm is to impose similar

dynamics on the information states of each vehicle.
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and balanced. It can be shown that, in the case of undirect-
ed communication, average consensus is achieved if and
only if the topology is connected [1].

To illustrate these ideas, Figure 2 shows time histories
of the information states for two different updates strate-
gies. Figure 2(a) shows the information states for ẋ = −L3x,
where L3 is given in (2). Since the directed graph of L3 is
strongly connected, all of the vehicle’s initial conditions
contribute to the equilibrium state. However, the equilibri-
um is not an average consensus since the directed graph is
not balanced. In contrast, Figure 2(b) shows the time histo-
ries of the information states for ẋ = −diag{w}L3x, where w
is the positive column left eigenvector of L3 satisfying
wT1 = 1 and diag{w} is the diagonal matrix whose diago-
nal entries are given by w. It can be shown that the direct-
ed graph �(diag{w}L3) is strongly connected and balanced,
resulting in average consensus.

In contrast, when the directed communication topology
contains a rooted directed spanning tree, the consensus
equilibrium is equal to the weighted average of the initial
conditions of those vehicles that have a directed path to all
of the other vehicles [27]. Requiring a rooted directed
spanning tree is less stringent than requiring a strongly
connected and balanced graph. However, as shown above,
the consensus equilibrium is a function of only the initial
information states of those vehicles that have a directed
path to all of the other vehicles.

Convergence Analysis for Dynamic 
Communication Topologies
Information-exchange topologies are often dynamic. For
example, communication links among vehicles might be
unreliable due to multipath effects and other distur-
bances. Alternatively, if information is exchanged by
means of line-of-sight sensors, the neighbors visible to a
vehicle might change over time as when a UAV banks
away from its neighbor. Therefore, in this section we
investigate conditions under which the consensus algo-
rithms converge under random switching of the commu-
nication topologies.

One approach to analyzing switching topologies is to
use algebraic graph theory, which associates each graph
topology with an algebraic structure of corresponding
matrices. Since (1) is linear, its solution can be written as
x(t) = �(t, 0)x(0) , where �(t, 0) is the transition matrix
corresponding to −L(t). In fact, �(t, 0) is a row-stochastic
matrix with positive diagonal entries for all t > 0 [28]. Con-
sensus is achieved if limt→∞ �(t, 0) → 1µT , where µ is a
column vector. It is typical to assume that the communica-
tion topology is piecewise constant over finite lengths of
time, called the dwell times, and that the dwell times are
bounded below by a positive constant [24]. In this case, L(t)
is piecewise constant with dwell times τj = tj+1 − tj, where
t1, t2, . . . are the switching instants, and thus consensus is
achieved if limj→∞ e−L(tj)τj e−L(tj−1)τj−1 · · · e−L(t0)τ0 = 1µT .
Since e−L(tj)(t−tj) is a row-stochastic matrix, convergence
analysis involves to the study of infinite products of sto-
chastic matrices.

A classical result given in [29] (see also [28]) demon-
strates the convergence property of infinite products of SIA
matrices (see sidebar “A Tutorial on Matrix Theory”).
Specifically, let S = {S1, S2, . . . , Sk} be a finite set of SIA
matrices with the property that every finite product
SijSij−1 · · · Si1 is SIA. Then, for each infinite sequence
Si1 , Si2 , . . . there exists a column vector ν such that
limj→∞ SijSij−1 · · · Si1 = 1νT . Since the number of potential
communication topologies is finite, the set of matrices
{Sj � e−L(tj)(tj+1−tj)}∞j=1 is finite if the allowable dwell times
τj = tj+1 − tj are drawn from a finite set. Reference [24]
shows that these matrices are SIA and uses this result to
show that the heading angles of a swarm of vehicles
achieve consensus using the nearest-neighbor rules of [30],
which is a special case of the discrete consensus algorithm
(S3), if there exists an infinite sequence of contiguous, uni-
formly bounded time intervals, having one of a finite num-
ber of different lengths, with the property that across each
interval, the union (see “A Tutorial on Graph Theory”) of
the undirected communication graphs is connected.

Consider, on the other hand, the more realistic assump-
tion that the dwell times are drawn from an infinite but

FIGURE 2  Consensus for three vehicles. Plots (a) and (b) correspond to ẋ = −L3x and ẋ = −diag{w}L3x, respectively. Since 0.4 is the
average of the initial states (0.2, 0.4, 0.6), average consensus is achieved in (b), where the graph is strongly connected and balanced, but
not in (a), where the graph is only strongly connected.
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bounded set or L(t) is piecewise continuous and its
nonzero entries are uniformly lower and upper bounded.
In this case let S = {S1, S2, . . . } be an infinite set of n × n
SIA matrices, let Nt be the number of different types (see
“A Tutorial on Graph Theory”) of all of the n × n SIA
matrices, and define the matrix function λ(P) = 1 − mini1,i2∑

j min(pi1 j, pi2 j). Then, limj→∞ SijSij−1 · · · Si1 = 1νT if there
exists a constant d ∈ [0, 1) such that, for every
W � Sk1 Sk2 · · · SkNt+1 , it follows that λ(W) ≤ d [29]. It can be
shown that this condition is satisfied if there exists an infi-
nite sequence of contiguous, uniformly bounded time inter-
vals, with the property that across each interval, the union
of the communication graphs has a rooted directed span-
ning tree [26], [28].

Lyapunov Analysis of Consensus Algorithms
Nonlinear analysis tools can also be used to study consen-
sus algorithms [31]. For the discrete consensus algorithm
(S3), a set-valued function V is defined as V(x1, . . . , xn) =
(conv{x1, . . . , xn})n , where conv{x1, . . . , xn} denotes the
convex hull of {x1, . . . , xn} , and Xn � X × · · · × X . It is
shown in [31] that V(t2) ⊆V(t1) for all t2 ≥ t1, and that x(t)
approaches an element of the set span{1}, which implies
that consensus is reached. Using set-valued Lyapunov the-
ory, [31] shows that the discrete-time consensus algorithm
(S3) is uniformly globally attractive with respect to the col-
lection of equilibrium solutions span{1} if and only if there
exists K ≥ 0 such that the union of the communication
graphs has a rooted directed spanning tree across each
interval of length Kh, where h is the sample time.

For the continuous consensus algorithm (1), [32] consid-
ers the Lyapunov candidate V(x) = max{x1, . . . , xn}−
min{x1, . . . , xn}. It is shown in [32] that the equilibrium set
span{1} is uniformly exponentially stable if there is an
interval length T > 0 such that, for all t, the directed graph
of − ∫ t+T

t L(s)ds has a rooted directed spanning tree.
As an alternative analysis method, [33] applies nonlin-

ear contraction theory to synchronization and schooling
applications, which are related to information consensus.
In particular, (1) is analyzed under undirected switching
communication topologies, and a convergence result iden-
tical to the result given in [24] is derived.

Information consensus is also studied from a stochastic
point of view in [34]–[36], which consider a random net-
work, in which the existence of an information channel
between a pair of vehicles at each time is probabilistic and
independent of other channels, resulting in a time-varying
undirected communication topology. For example, the

adjacency matrix A = [aij] ∈ Rn×n for an undirected ran-
dom graph is defined as aii(p) = 0, aij(p) = 1 with probabil-
ity p, and aij = 0 with probability 1 − p for all i �= j. In [34],
consensus over an undirected random network is
addressed by means of notions from stochastic stability.

Communication Delays and Asynchronous Consensus
When information is exchanged among vehicles through com-
munication, time delays associated with both message trans-
mission and processing after receipt must be considered. Let
σij denote the time delay for information communicated from
vehicle j to reach vehicle i. In this case, (1) is modified as

ẋi =
n∑

j=1

aij(t)[xj(t − σij) − xi(t − σij)].

In the simplest case, where σij = σ and the communication
topology is fixed, undirected, and connected, average con-
sensus is achieved if and only if 0 ≤ σ < (π/2λmax(L)) [1],
where L is the Laplacian of the communication graph. See
[37], [38] for extensions.

Alternatively, consider the case in which the time delay
affects only the information state that is being transmitted
so that (1) is modified as

ẋi =
n∑

j=1

aij(t)[xj(t − σij) − xi(t)].

When σij = σ and the communication topology is directed
and switching, the consensus result for switching topolo-
gies remains valid for an arbitrary time delay σ [32].

For the discrete consensus algorithm (S3), it is shown in
[39] that if consensus is reached under a time-invariant
undirected communication topology, then the presence of
communication delays does not affect consensus. In addi-
tion, the result in [31] is extended to take into account
bounded time delays in [40]. Furthermore, [41] shows suf-
ficient conditions for consensus under dynamically chang-
ing communication topologies and bounded time-varying
communication delays.

More generally,  in an asynchronous consensus
framework [42]–[46], each vehicle exchanges informa-
tion asynchronously and updates its state with possibly
outdated information from its local neighbors. As a
result, heterogenous agents, time-varying communica-
tion delays, and packet dropout must all be taken into
account in the same asynchronous consensus frame-
work. Reference [46] categorizes several consensus

The consensus equilibrium is a function of only the initial information states

of those vehicles that have a directed path to all of the other vehicles.
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results in the literature according to synchronism, con-
nectivity, and direction of information flow.

SYNTHESIS AND EXTENSIONS OF 
CONSENSUS ALGORITHMS

Consensus Synthesis
In some applications, consensus algorithms must satisfy
given requirements or optimize performance criteria. For
example, when a UAV or micro-air vehicle (MAV) swarm
consists of hundreds or thousands of vehicles, it might be
desirable to solve the fastest distributed linear averaging
(FDLA) problem, which is defined as follows [47]. Let
W = [Wij] ∈ Rn×n be such that Wij = 0 if information is not
exchanged between vehicle i and vehicle j. Given
x[k + 1] = Wx[k], find W to minimize

rasym(W) = sup
x[0]�=x̄

lim
k→∞

( ‖x[k] − x̄‖
‖x[0] − x̄‖

)1/k

subject to the condition that limt→∞ Wk = (1/n)11T , where
x̄ = (1/n)11Tx[0]. In other words, the FDLA problem is to
find the weight matrix W that guarantees the fastest con-
vergence to the average consensus value. In contrast to the
discrete consensus algorithm (S3), the weights Wij can be
negative [47]. With the additional constraint Wij = Wji, the
FDLA problem reduces to a numerically solvable semidefi-
nite program [47]. A related problem is considered in [48],
where an iterative, semidefinite-programming-based
approach is developed to maximize the algebraic connec-
tivity of the Laplacian of undirected graphs (see  “A Tutor-
ial on Graph Theory”) with the motivation that the
algebraic connectivity of the Laplacian characterizes the
convergence rate of the consensus algorithm.

Another problem is considered in [49], which focuses on
designing consensus algorithms in which the information state
is updated according to ẋi = ui, and the information available
to the ith agent is given by yi = Gix, where x = [x1, . . . , xn]T ,
yi ∈ Rmi , and Gi ∈ Rmi×n. The information control variable is
designed in the form of ui = kiyi + zi, where ki is a row vector
with mi components and zi is a scalar.

More generally, consider an interconnected network of n
vehicles whose information states are updated according to
ẋi = ∑n

j=1 Aijxj + B1iwi + B2iui , i = 1, . . . , n, where xi ∈ Rn

denotes the information state, wi ∈ Rm denotes distur-
bances, and ui ∈ Rr denotes the information control input
with i = 1, . . . , n. Letting x, w, and u be column vectors

with components xi, wi, and ui, respectively, the dynamics
of x are denoted by ẋ = Ax + B1w + B2u. Reference [50]
focuses on synthesizing a decentralized state feedback con-
trol law that guarantees consensus for the closed-loop sys-
tem without disturbances as well as synthesizing a
state-feedback controller that achieves not only consensus
but optimal H2 performance for disturbance attenuation.

Extensions of Consensus Algorithms
The consensus algorithm (1) is extended in various ways in
the literature. For example, in [51] an external input is
incorporated in (1) so that the information state tracks a
time-varying input. In [52], necessary and sufficient condi-
tions are derived so that a collection of systems is con-
trolled by a team leader. An approach based on
nonsmooth gradient flows is developed in [53] to guaran-
tee that average consensus is reached in finite time.

The single-integrator consensus algorithm given by (1)
is also extended to double-integrator dynamics in [54] and
[55] to more naturally model the evolution of physical phe-
nomena, such as a coaxial rotorcraft MAV that can be con-
trolled through gentle maneuvers with a decoupled
double-integrator model. For double-integrator dynamics,
the consensus algorithm is given by

ẍi = −
n∑

j=1

aij(t)[(xi − xj) + γ (ẋi − ẋj)],

where γ > 0 denotes the coupling strength between the
state derivatives, and both xi and ẋi are transmitted
between team members. It is shown in [54] that both the
communication topology and coupling strength γ affect
consensus-seeking in the general case of directed informa-
tion exchange. To achieve consensus, the directed commu-
nication topology must have a rooted directed spanning
tree and γ must be sufficiently large.

Related to consensus algorithms are synchronization
phenomena arising in systems of coupled nonlinear oscil-
lators. The classical Kuramoto model [56] consists of n cou-
pled oscillators with dynamics given by

θ̇i = ωi +
k
n

n∑

j=1

sin(θj − θi), (3)

where θi and ωi are, respectively, the phase and natural
frequency of the ith oscillator, and k is the coupling
strength. Note that the model (3) assumes full connectivity
of the network. The model (3) is generalized in [57] to
nearest-neighbor information exchange as

θ̇i = ωi +
k
n

n∑

j=1

aij(t) sin(θj − θi).

Connections between phase models of coupled oscillators
and kinematic models of self-propelled particle groups are

One approach to analyzing switching

topologies is to use algebraic

graph theory. 
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studied in [58]. Analysis and design tools are developed to
stabilize the collective motions. Stability of the generalized
Kuramoto coupled nonlinear oscillator model is studied in
[57], where it is proven that, for couplings above a critical
value, all oscillators synchronize given identical and
uncertain natural frequencies. Extensions of [57] to a
tighter lower bound on the coupling strength are given in
[59] for the traditional Kuramoto model with full connec-
tivity. The result in [57] is also extended to account for het-
erogenous time delays and switching topologies in [60].

Synchronization of coupled oscillators with other non-
linear dynamics are also studied in the literature. As an
example, consider a network of n vehicles with informa-
tion dynamics given by

ẋi = f (xi, t) +
n∑

j=1

aij(t)(xj − xi), (4)

where x = [x1, . . . , xn]T. In [33] partial contraction theory
is applied to derive conditions under which consensus is
reached for vehicles with dynamics (4). As another exam-
ple, [61] studies a dynamical network of n nonlinear oscil-
lators, where the state equation for each node is given by

ẋi = f (xi) + γ

n∑

j=1

aij(t)(xj − xi),

where xi ∈ Rm and γ > 0 denotes the global coupling
strength parameter. It is shown in [61] that the algebraic
connectivity of the network Laplacian matrix plays a cen-
tral role in synchronization.

DESIGN OF COORDINATION STRATEGIES
BY MEANS OF CONSENSUS ALGORITHMS
In this section, we briefly describe a few applications of con-
sensus algorithms to multivehicle coordination problems.

Rendezvous Problem
The rendezvous problem requires that a group of vehicles
in a network rendezvous at a time or a location determined
through team negotiation. Consensus algorithms can be
used to perform the negotiation in a way that is robust to
environmental disturbances such as nonuniform wind for a
team of UAVs. The rendezvous problem for a group of
mobile autonomous vehicles is studied in [2] and [3], where
synchronous and asynchronous cases are considered. In [2]
and [3], agents execute a sequence of stop-and-go maneu-
vers to rendezvous in a distributed manner without com-
munication between neighbors. A stop-and-go maneuver
takes place within a time interval consisting of a sensing
period during which neighbors’ positions are determined,
as well as a maneuvering period during which vehicles
move in response to the position of their neighbors.

Figure 3 shows a simple coordination framework for
multivehicle rendezvous, where a consensus manager

applies distributed consensus algorithms to guarantee that
all vehicles reach consensus on a rendezvous objective
such as a rendezvous time or rendezvous location. Based
on the output of the consensus manager, each vehicle uses
a local control law to drive itself to achieve the rendezvous
time and/or location. An application of Figure 3 is
described in [62], where multiple UAVs are controlled to
converge simultaneously on the boundary of a radar detec-
tion area to maximize the element of surprise. Team-wide
consensus is reached on time-over-target, requiring each
vehicle to adjust its velocity to ensure synchronous arrival.

Formation Stabilization
The formation stabilization problem requires that vehicles
collectively maintain a prescribed geometric shape. This
problem is relatively straightforward in the centralized
case, where all team members know the desired shape and
location of the formation. On the other hand, in the decen-
tralized formation stabilization problem each vehicle
knows the desired formation shape but the location of the
formation needs to be negotiated among team members.
The information state for this problem includes the center
of the formation. Each vehicle initializes its information
state by proposing a formation center that does not require
it to maneuver into formation. The consensus algorithm is
then employed by the team of vehicles to negotiate a for-
mation center known to all members of the team.

In [5], an information flow filter is used to improve sta-
bility margins and formation accuracy through propaga-
tion of the formation center to all of the vehicles. Formation
stabilization for multiple unicycles is studied in [7] using a
consensus algorithm to achieve point, line, and general for-
mation patterns. In addition, the simplified pursuit strategy
for wheeled-vehicle formations in [63] can be considered a
special case of the continuous consensus algorithm (1),
where the communication topology is a unidirectional ring.

FIGURE 3  A simple coordination framework for multivehicle ren-
dezvous. The consensus manager applies distributed consensus
algorithms to guarantee that the team reaches consensus on a
rendezvous objective. Based on the output of the consensus
manager, each vehicle applies a local control law to achieve the
rendezvous objective.

Consensus Manager

Local
Control

Local
Control• • •
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Furthermore, feedback control laws are derived in [8] using
relative information between neighboring vehicles to stabi-
lize vehicle formations.

Formation Maneuvering and Flocking
Consensus algorithms can be applied to execute decentralized
formation maneuvers. For example, in [6], a class of formation
maneuvers is studied where the desired position of each
robot, hd

i (t), is either communicated to the team by a central-
ized entity or is preprogrammed on each robot. The robots are
to maintain a prespecified formation shape even during tran-
sients and in response to environmental disturbances. In other
words, when one robot slows down or maneuvers to avoid an
obstacle, the other robots must maneuver to maintain the for-
mation shape. The inter-vehicle communication network is
limited and requires a decentralized approach to maintaining
the formation. The mobile robot dynamic model is feedback
linearized as the double-integrator system ḧi = ui, where hi
denotes the location of a point on the i th robot that is not on
the wheel axis, and ui denotes the control input. The decen-
tralized formation control law is given in [6] as

ui = − Kgh̃i − Dgḣi − Kf

n∑

j=1

aij(h̃i − h̃j)

− Df

n∑

j=1

aij(ḣi − ḣj), (5)

where Kg and Kf are symmetric positive definite, Dg and
Df are symmetric positive semidefinite, and h̃i � hi − hd

i .
In the control law (5), the first two terms guarantee that hi
approaches hd

i , while the second two terms guarantee that
the pairs h̃i, h̃j and ḣi, ḣj reach consensus. If consensus can
be reached for each h̃j, the desired formation shape is guar-
anteed to be preserved during maneuvers.

A similar approach can be applied to the rigid body
attitude dynamics

˙̂qi = −1
2
ωi × q̂i +

1
2

q̄iωi, ˙̄qi = −1
2
ωi · q̂i,

Jiω̇i = −ωi × (Jiωi) + Ti,

where, for the ith rigid body, q̂i ∈ R3 , q̄i ∈ R , and
qi = [q̂T

i , q̄i]T ∈ R4 is the unit quaternion, that is, the Euler
parameters, ωi ∈ R3 is the angular velocity, and Ji ∈ R3×3

and Ti ∈ R3 are, respectively, the inertia tensor and the
control torque. Defining vec ([q̂, q̄]T) = q̂ as the operator
that extracts the vector part of a quaternion, the control
torque is given by [17]–[19]

Ti = − kGvec
(

qd∗
i qi

)
− DGωi − kS

n∑

j=1

aijvec (q∗
j qi)

− DS

n∑

j=1

aij(ωi − ωj), (6)

where kG > 0 and kS ≥ 0 are scalars, DG is symmetric posi-
tive definite, DS is symmetric positive semidefinite, q∗ is
the quaternion inverse [64, p. 465], and q d is the centrally
commanded quaternion. The first two terms in (6) align
the rigid body with the prespecified desired orientation q d

i .
The second two terms in (6) are consensus terms that cause
the team to maintain attitude alignment during the tran-
sients and in response to environmental disturbances [19].

Using biologically observed motions of flocks of birds,
[65] defines three rules of flocking and applies them to
generate realistic computer animations. The three rules of
flocking are collision avoidance, velocity matching, and
flock centering. Together these rules maintain the flock in
close proximity without collision. Reference [65] motivates
the use of similar rules for multivehicle robotic systems
[10]–[12]. As an example, consider the vehicle dynamics

ṙi = vi, v̇i = ui,

where ri and vi are the position and velocity of vehicle i,
respectively, and ui denotes its input. In [10], the control
input ui is defined as

ui = −∂V(r)
∂ ri

+
n∑

j=1

aij(r)(vj − vi) + f γ

i , (7)

where the first term is the gradient of a collective potential
function V(r), the second term drives the system toward
velocity consensus, and the third term incorporates navi-
gational feedback. In (7), the first term guarantees flock
centering and collision avoidance among the vehicles, the
second term guarantees velocity matching among the vehi-
cles, and the third term achieves a group objective. Equa-
tion (7) has been validated for flocking with undirected
communication topologies.

CONCLUSIONS
This article has provided a tutorial on consensus strategies
and has reviewed recent results from the literature. Cur-
rent research in information consensus primarily assumes
that the consensus equilibrium is a weighted average (see
[66] for generalization to a weighted power mean) of the
initial information states and therefore constant. This
assumption might not be appropriate when each vehicle’s
information state evolves over time, as occurs in formation
control problems, where the formation evolves in two- or
three-dimensional space. In addition, recall that (1) ensures
only that the information states converge to a common
value but does not allow specification of a particular value.
While this paradigm is useful for applications such cooper-
ative rendezvous where there is not a single correct value,
there are many applications where there is a desired, or
correct, information state. For example, a distributed sen-
sor network may be tasked to determine the location of an
intruder. Consensus algorithms need to be extended to
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handle distributed sensor inputs that drive the information
state. In this case the convergence issues include both con-
vergence to a common value, as well as convergence of the
common state to its correct value.

Experimental implementation of consensus algorithms
is a key element of future research. Issues such as distur-
bance rejection, time delay, communication or sensor
noise, and model uncertainties need to be addressed before
consensus algorithms find widespread use in cooperative
control applications. Recent experimental results [67], [68]
provide initial validation of consensus theory applied to
mobile robot flocking and cyclic pursuit. Further infusion
of consensus algorithms into hardware platforms tasked
with realistic missions is feasible and is of paramount
importance to enable robust coordinated control for the
vast array of emerging networked systems.
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